1
|
Pei D, Zhang D, Guo Y, Chang H, Cui H. Long Non-Coding RNAs in Malignant Human Brain Tumors: Driving Forces Behind Progression and Therapy. Int J Mol Sci 2025; 26:694. [PMID: 39859408 PMCID: PMC11766336 DOI: 10.3390/ijms26020694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 01/12/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Long non-coding RNAs (lncRNAs) play a pivotal role in regulating gene expression and are critically involved in the progression of malignant brain tumors, including glioblastoma, medulloblastoma, and meningioma. These lncRNAs interact with microRNAs (miRNAs), proteins, and DNA, influencing key processes such as cell proliferation, migration, and invasion. This review highlights the multifaceted impact of lncRNA dysregulation on tumor progression and underscores their potential as therapeutic targets to enhance the efficacy of chemotherapy, radiotherapy, and immunotherapy. The insights provided offer new directions for advancing basic research and clinical applications in malignant brain tumors.
Collapse
Affiliation(s)
| | | | | | | | - Hongjuan Cui
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing 400715, China; (D.P.); (D.Z.); (Y.G.); (H.C.)
| |
Collapse
|
2
|
Ge Y, Zhang T. SNAP25 as a prognostic marker in transcriptome analysis of meningioma. Lab Med 2024:lmae085. [PMID: 39514545 DOI: 10.1093/labmed/lmae085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Meningiomas are the most common intracranial tumors and their diagnosis relies mostly on neuroimaging and histology. However, the histology grades cannot predict the outcome exactly and some meningiomas tend to recur after resection of even benign tumors. Therefore, it is necessary to explore prognostic and diagnostic molecular targets. METHODS Differential expression analysis between meningiomas and meninges was performed based on the merged data of GSE43290 and GSE84263. Next, we performed gene set enrichment analysis (GSEA), immune cell infiltration analysis, protein-protein interaction analysis, and survival analysis using public data. The expression level of Synaptosome-associated-protein-25kDa (SNAP25) was verified by reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) and Western blotting in meningioma tissues. RESULTS There were 263 upregulated and 592 downregulated genes identified in meningiomas by differential expression analysis. GSEA results revealed that meningiomas were negatively related to the pathway of soluble N-ethylmaleimide sensitive factor attachment protein receptor interactions in vascular transport and chemokine signaling. SNAP25 was characterized as a hub gene and downregulated in meningiomas. The Kaplan-Meier plot indicated that high expression of SNAP25 is a favorable factor. CONCLUSION SNAP25 was downregulated and identified as a potential prognostic marker in meningioma.
Collapse
Affiliation(s)
- Yu Ge
- Department of Laboratory Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200123, China
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Tao Zhang
- Department of Laboratory Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200011, China
| |
Collapse
|
3
|
Imran M, Abida, Kamal M, Al Fares MA, Hazazi A, Sabour AA, Alshiekheid MA, Sulaiman T, Abdulkhaliq AA, Al Kaabi NA, Alfaresi M, Rabaan AA. Non-coding RNAs in meningitis: Key regulators of immune response and inflammation. Pathol Res Pract 2024; 263:155626. [PMID: 39353323 DOI: 10.1016/j.prp.2024.155626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/11/2024] [Accepted: 09/26/2024] [Indexed: 10/04/2024]
Abstract
Non-coding RNAs (ncRNAs) contain circular RNAs (circRNAs), long non-coding RNAs (lncRNAs), and micro-ribonucleic acids (miRNAs). These RNAs receive good functionality in modulation of gene expressions & cellular roles. Recent research is shedding light on their pivotal roles in the pathophysiology of inflammatory meningitis, such as viral, fungal, or bacterial infections. This review addresses the intricate roles of non-coding RNAs (ncRNAs) that transcribe code-independent mRNA and other biological elements that control inflammation and immunological events extant during meningitis. ncRNAs, acting on a myriad of immune cell development, cytokine production, pathogen recognition, and so forth, finely orchestrate the host's immune response. Although lncRNAs and circRNAs are associated with gene networks regulating immune responses, miRNAs can precisely modulate the expression of pro- and anti-inflammatory cytokines. Moreover, ncRNAs have unique expression patterns in disease states and are stable in bio-fluids; therefore, they can serve as specific molecular biomarkers for meningitis concerning the diagnosis and prognosis. It might also be helpful to target ncRNAs as a therapeutic strategy to impact immune regulation and inflammation. Here, we review the current knowledge of how ncRNAs function in meningitis and discuss adopted approaches and perspectives and their implications for therapeutic strategies.
Collapse
Affiliation(s)
- Mohd Imran
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia; Center for Health Research, Northern Border University, Arar, Saudi Arabia
| | - Abida
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia.
| | - Mehnaz Kamal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Mona A Al Fares
- Department of Internal Medicine, King Abdulaziz University Hospital, Jeddah 21589, Saudi Arabia
| | - Ali Hazazi
- Department of Pathology and Laboratory Medicine, Security Forces Hospital Program, Riyadh, Saudi Arabia; College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Amal A Sabour
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Maha A Alshiekheid
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Tarek Sulaiman
- Infectious Diseases Section, Medical Specialties Department, King Fahad Medical City, Riyadh 12231, Saudi Arabia
| | - Altaf A Abdulkhaliq
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Saudi Arabia
| | - Nawal A Al Kaabi
- College of Medicine and Health Science, Khalifa University, Abu Dhabi 127788, United Arab Emirates; Sheikh Khalifa Medical City, Abu Dhabi Health Services Company (SEHA), Abu Dhabi 51900, United Arab Emirates
| | - Mubarak Alfaresi
- Department of Microbiology, National Reference Laboratory, Cleveland Clinic Abu Dhabi, Abu Dhabi 92323, United Arab Emirates; Department of Pathology, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai 505055, United Arab Emirates
| | - Ali A Rabaan
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia; Department of Public Health and Nutrition, The University of Haripur, Haripur 22610, Pakistan
| |
Collapse
|
4
|
Ibrahim HM, Abdelrahman AE, Elwan A, Gharieb SA, Refaat M, Elmesallamy W, Salem AA. Clinicopathological Impact of FOXM1 and MMP-9 Immunohistochemical Expression in Different Grades of Intracranial Meningioma. Appl Immunohistochem Mol Morphol 2024; 32:292-304. [PMID: 38863278 DOI: 10.1097/pai.0000000000001205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 04/05/2024] [Indexed: 06/13/2024]
Abstract
OBJECTIVES To find predictive biomarkers for recurrence and progression of meningioma. BACKGROUND Despite great advances in meningioma treatment, the prognosis remained unfavorable due to the high recurrence rate. METHODS In this study, we evaluated the immunohistochemical expression of FOXM1, MMP-9, and Ki67 in 50 cases of intracranial meningioma to detect its potential role in meningioma progression, recurrence, and patients' survival. RESULTS Strong FOXM1 expression was detected in 20% of the cases and was significantly associated with meningioma grade ( P = 0.002) and peritumoral brain edema (PTBE; P <0.001). Strong MMP-9 expression was noted in 32% of the cases and was significantly associated with meningioma grade and PTBE ( P <0.001, P <0.001, respectively). High Ki67 was noted in 50% and significantly associated with tumor grade and PTBE ( P <0.001, P = 0.002, respectively). The follow-up period revealed that meningiomas with strong FOXM1, strong MMP-9, and high Ki67 expression were associated with tumor recurrence, shorter OS, and recurrence-free survival. Furthermore, up-regulation of FOXM1 and MMP-9 expression had a significant relation with poor clinical response to the therapy ( P = 0.010, P = 0. 001, respectively). However, high Ki67 cases were more sensitive to clinical therapy ( P = 0.005). CONCLUSION Strong FOXM1, strong MMP-9, and high Ki67 in meningiomas indicate highly aggressive tumors with a shortened survival rate, dismal outcome, and high risk of recurrence after the standard protocol of therapy.
Collapse
Affiliation(s)
| | | | - Amira Elwan
- Department of Clinical Oncology and Nuclear Medicine
| | | | | | - Wael Elmesallamy
- Department of Neurosurgery, Faculty of Medicine, Zagazig University, Egypt
| | | |
Collapse
|
5
|
Tahmasebi Dehkordi H, Khaledi F, Ghasemi S. Immunological processes of enhancers and suppressors of long non-coding RNAs associated with brain tumors and inflammation. Int Rev Immunol 2024; 43:178-196. [PMID: 37974420 DOI: 10.1080/08830185.2023.2280581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 11/02/2023] [Indexed: 11/19/2023]
Abstract
Immunological processes, such as inflammation, can both cause tumor suppression and cancer progression. Moreover, deregulated levels of long non-coding RNA (lncRNA) expression in the brain may cause inflammation and lead to the growth of tumors. Like other biological processes, the immune system's role in cancer is complicated, varies, and can help or hurt the cancer's maintenance. According to research, inflammation and brain cancer are correlated via several signaling pathways. A variety of lncRNAs have recently been revealed to influence cancer by modulating inflammatory pathways. As a result, lncRNAs have the potential to influence carcinogenesis, tumor formation, or tumor suppression via an increase or decrease in inflammation functions. Although the study and targeting of lncRNAs have made great progress in the treatment of cancer, there are definitely limitations and challenges. Using new technologies like nanocarriers and cell-penetrating peptides (CPPs) to target treatments without hurting healthy body tissues has shown to be very effective. In this review article, we have collected significantly related lncRNAs and their inhibitory or stimulating roles in inflammation and brain cancer for the first time. However, there are limitations, such as side effects and damage to normal tissues. With the advancement of new targeting technologies, these lncRNAs may be candidates for the specific targeting therapy of brain cancers by limiting inflammation or stimulating the immune system against them in the future.
Collapse
Affiliation(s)
- Hossein Tahmasebi Dehkordi
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Fatemeh Khaledi
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Sorayya Ghasemi
- Cancer Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
6
|
Lu C, Wu J, Li X, Huang W, Fang Y, Huang Y. Hsa_circ_0003356 suppresses gastric cancer progression via miR-556-5p/FKBP5 axis. Toxicol In Vitro 2024; 97:105787. [PMID: 38401744 DOI: 10.1016/j.tiv.2024.105787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 12/23/2023] [Accepted: 01/29/2024] [Indexed: 02/26/2024]
Abstract
BACKGROUND CircRNAs are implicated in the tumorigenesis of various human cancers. This study aims to explore how circ_0003356 contributes to the development of gastric cancer (GC). METHODS Circ_0003356 expression was analyzed in GSE184882 dataset and validated in our cohort of GC patients and human GC cell lines. The correlations between circ_0003356 levels and prognostic parameters were analyzed. The contribution of circ_0003356 in GC cell malignant behaviors such as cell survival, apoptosis and invasion were investigated by circ_0003356 overexpression in GC cell lines. The downstream targets of circ_0003356 were predicted and verified in vitro and in vivo. The in vivo function of circ_0003356 was studied as well in a xenograft mouse model. RESULTS Circ_0003356 expressed at a low level in human GC tissues and cells, which was closely associated with poor outcome of GC patients. Circ_0003356 overexpression induced GC cell apoptosis while depressed the growing, migration and invasive abilities through miR-556-5p/FKBP5 axis. In vivo model showed retarded tumor growth when circ_0003356-overexpressed cells were inoculated. CONCLUSION Circ_0003356 is identified as a potential biomarker of the prognosis of human gastric cancer, and circ_0003356/miR-556-5p/FKBP5 axis could be a promising target in gastric cancer treatment.
Collapse
Affiliation(s)
- Chuanhui Lu
- Department of Colorectal Cancer Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine. The School of Clinical Medicine,Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Jing Wu
- Department of the Oncology, The Fifth Hospital of Wuhan, Wuhan, HuBei 430050, China
| | - Xiaoguang Li
- Department of the Oncology, The Fifth Hospital of Wuhan, Wuhan, HuBei 430050, China
| | - Wei Huang
- Department of General Surgery, The Second People's Hospital of Wuhu, Wuhu, Anhui 241000, China
| | - Yongmu Fang
- Department of General Surgery, The Third Hospital of Xiamen(The Third Hospital of Xiamen Affiliated with Fujian University of Traditional Chinese Medicine), Xiamen, Fujian 361000, China.
| | - Ying Huang
- Department of the Oncology, The Fifth Hospital of Wuhan, Wuhan, HuBei 430050, China.
| |
Collapse
|
7
|
Joshi R, Sharma A, Kulshreshtha R. Noncoding RNA landscape and their emerging roles as biomarkers and therapeutic targets in meningioma. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200782. [PMID: 38596289 PMCID: PMC10951709 DOI: 10.1016/j.omton.2024.200782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Meningiomas are among the most prevalent primary CNS tumors in adults, accounting for nearly 38% of all brain neoplasms. The World Health Organization (WHO) grade assigned to meningiomas guides medical care in patients and is primarily based on tumor histology and malignancy potential. Although often considered benign, meningiomas with complicated histology, limited accessibility for surgical resection, and/or higher malignancy potential (WHO grade 2 and WHO grade 3) are harder to combat, resulting in significant morbidity. With limited treatment options and no systemic therapies, it is imperative to understand meningioma tumorigenesis at the molecular level and identify novel therapeutic targets. The last decade witnessed considerable progress in understanding the noncoding RNA landscape of meningioma, with microRNAs (miRNAs) and long noncoding RNAs (lncRNAs) emerging as molecular entities of interest. This review aims to highlight the commonly dysregulated miRNAs and lncRNAs in meningioma and their correlation with meningioma progression, malignancy, recurrence, and radioresistance. The role of "key" miRNAs as biomarkers and their therapeutic potential has also been reviewed in detail. Furthermore, current and emerging therapeutic modalities for meningioma have been discussed, with emphasis on the need to identify and subsequently employ clinically relevant miRNAs and lncRNAs as novel therapeutic targets and biomarkers.
Collapse
Affiliation(s)
- Ritanksha Joshi
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Anuja Sharma
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Ritu Kulshreshtha
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi 110016, India
| |
Collapse
|
8
|
Wang JZ, Nassiri F, Aldape K, von Deimling A, Sahm F. The Epigenetic Landscape of Meningiomas. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1416:175-188. [PMID: 37432627 DOI: 10.1007/978-3-031-29750-2_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
Epigenetic changes have been found to be increasingly important in tumor development and progression. These alterations can be present in tumors such as meningiomas in the absence of any gene mutations and alter gene expression without affecting the sequence of the DNA itself. Some examples of these alterations that have been studied in meningiomas include DNA methylation, microRNA interaction, histone packaging, and chromatin restructuring. In this chapter we will describe in detail each of these mechanisms of epigenetic modification in meningiomas and their prognostic significance.
Collapse
Affiliation(s)
- Justin Z Wang
- Division of Neurosurgery, Department of Surgery, The University of Toronto, Toronto, ON, Canada
| | - Farshad Nassiri
- Division of Neurosurgery, Department of Surgery, The University of Toronto, Toronto, ON, Canada.
| | - Kenneth Aldape
- Laboratory of Pathology, Center Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Andreas von Deimling
- CCU Neuropathology, German Cancer Research Center (DKFZ), University Heidelberg, Heidelberg, Germany
| | - Felix Sahm
- CCU Neuropathology, German Cancer Research Center (DKFZ), University Heidelberg, Heidelberg, Germany
| |
Collapse
|
9
|
Matched Paired Primary and Recurrent Meningiomas Points to Cell-Death Program Contributions to Genomic and Epigenomic Instability along Tumor Progression. Cancers (Basel) 2022; 14:cancers14164008. [PMID: 36011000 PMCID: PMC9406329 DOI: 10.3390/cancers14164008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/08/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022] Open
Abstract
Meningioma (MN) is an important cause of disability, and predictive tools for estimating the risk of recurrence are still scarce. The need for objective and cost-effective techniques addressed to this purpose is well known. In this study, we present methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA) as a friendly method for deepening the understanding of the mechanisms underlying meningioma progression. A large follow-up allowed us to obtain 50 samples, which included the primary tumor of 20 patients in which half of them are suffering one recurrence and the other half are suffering more than one. We histologically characterized the samples and performed MS-MLPA assays validated by FISH to assess their copy number alterations (CNA) and epigenetic status. Interestingly, we determined the increase in tumor instability with higher values of CNA during the progression accompanied by an increase in epigenetic damage. We also found a loss of HIC1 and the hypermethylation of CDKN2B and PTEN as independent prognostic markers. Comparison between grade 1 and higher primary MN's self-evolution pointed to a central role of GSTP1 in the first stages of the disease. Finally, a high rate of alterations in genes that are related to apoptosis and autophagy, such as DAPK1, PARK2, BCL2, FHIT, or VHL, underlines an important influence on cell-death programs through different pathways.
Collapse
|
10
|
Slavik H, Balik V, Kokas FZ, Slavkovsky R, Vrbkova J, Rehulkova A, Lausova T, Ehrmann J, Gurska S, Uberall I, Hajduch M, Srovnal J. Transcriptomic Profiling Revealed Lnc-GOLGA6A-1 as a Novel Prognostic Biomarker of Meningioma Recurrence. Neurosurgery 2022; 91:360-369. [PMID: 35551164 PMCID: PMC9287111 DOI: 10.1227/neu.0000000000002026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 03/10/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Meningioma is the most common primary central nervous system neoplasm, accounting for about a third of all brain tumors. Because their growth rates and prognosis cannot be accurately estimated, biomarkers that enable prediction of their biological behavior would be clinically beneficial. OBJECTIVE To identify coding and noncoding RNAs crucial in meningioma prognostication and pathogenesis. METHODS Total RNA was purified from formalin-fixed and paraffin-embedded tumor samples of 64 patients with meningioma with distinct clinical characteristics (16 recurrent, 30 nonrecurrent with follow-up of >5 years, and 18 with follow-up of <5 years without recurrence). Transcriptomic sequencing was performed using the HiSeq 2500 platform (Illumina), and biological and functional differences between meningiomas of different types were evaluated by analyzing differentially expression of messenger RNA (mRNA) and long noncoding RNA (IncRNA). The prognostic value of 11 differentially expressed RNAs was then validated in an independent cohort of 90 patients using reverse transcription quantitative (real-time) polymerase chain reaction. RESULTS In total, 69 mRNAs and 108 lncRNAs exhibited significant differential expression between recurrent and nonrecurrent meningiomas. Differential expression was also observed with respect to sex (12 mRNAs and 59 lncRNAs), World Health Organization grade (58 mRNAs and 98 lncRNAs), and tumor histogenesis (79 mRNAs and 76 lncRNAs). Lnc-GOLGA6A-1, ISLR2, and AMH showed high prognostic power for predicting meningioma recurrence, while lnc-GOLGA6A-1 was the most significant factor for recurrence risk estimation (1/hazard ratio = 1.31; P = .002). CONCLUSION Transcriptomic sequencing revealed specific gene expression signatures of various clinical subtypes of meningioma. Expression of the lnc-GOLGA61-1 transcript was found to be the most reliable predictor of meningioma recurrence.
Collapse
Affiliation(s)
- Hanus Slavik
- Laboratory of Experimental Medicine, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University and University Hospital Olomouc, Olomouc, Czech Republic;
- Department of Neurology, University Hospital Olomouc, Olomouc, Czech Republic;
| | - Vladimir Balik
- Laboratory of Experimental Medicine, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University and University Hospital Olomouc, Olomouc, Czech Republic;
- Department of Neurosurgery, Svet Zdravia Hospital Michalovce, Michalovce, Slovak Republic;
- Department of Neurosurgery, Faculty of Medicine and Dentistry, Palacky University and University Hospital Olomouc, Olomouc, Czech Republic;
| | - Filip Zavadil Kokas
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic;
| | - Rastislav Slavkovsky
- Laboratory of Experimental Medicine, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University and University Hospital Olomouc, Olomouc, Czech Republic;
| | - Jana Vrbkova
- Laboratory of Experimental Medicine, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University and University Hospital Olomouc, Olomouc, Czech Republic;
| | - Alona Rehulkova
- Laboratory of Experimental Medicine, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University and University Hospital Olomouc, Olomouc, Czech Republic;
| | - Tereza Lausova
- Laboratory of Experimental Medicine, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University and University Hospital Olomouc, Olomouc, Czech Republic;
| | - Jiri Ehrmann
- Department of Clinical and Molecular Pathology, Faculty of Medicine and Dentistry, Palacky University and University Hospital Olomouc, Olomouc, Czech Republic
| | - Sona Gurska
- Laboratory of Experimental Medicine, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University and University Hospital Olomouc, Olomouc, Czech Republic;
| | - Ivo Uberall
- Department of Clinical and Molecular Pathology, Faculty of Medicine and Dentistry, Palacky University and University Hospital Olomouc, Olomouc, Czech Republic
| | - Marian Hajduch
- Laboratory of Experimental Medicine, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University and University Hospital Olomouc, Olomouc, Czech Republic;
| | - Josef Srovnal
- Laboratory of Experimental Medicine, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University and University Hospital Olomouc, Olomouc, Czech Republic;
| |
Collapse
|
11
|
miR-127-5p Targets JAM3 to Regulate Ferroptosis, Proliferation, and Metastasis in Malignant Meningioma Cells. DISEASE MARKERS 2022; 2022:6423237. [PMID: 35818586 PMCID: PMC9271006 DOI: 10.1155/2022/6423237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/09/2022] [Accepted: 06/02/2022] [Indexed: 11/18/2022]
Abstract
Objective Meningiomas are one of the most common primary tumors of the central nervous system. Most of them are benign and can be cured by surgery, while a few meningiomas are malignant. Ferroptosis gene characteristics might be associated with drug therapy and survival in patients with clinically aggressive, unresectable meningiomas. This study explored the mechanism of differentially expressed miRNAs and ferroptosis in meningioma to provide a new reference to treat meningioma. Methods Bioinformatics analysis of differential miRNA profiles and functions in patients with meningioma was performed. The contents of lactate dehydrogenase (LDH), malondialdehyde (MDA), and Fe2+ were determined. Reactive oxygen species (ROS) values, as well as cell cycle changes, were analyzed by flow cytometry. The targets of miR-127-5p and JAM3 were detected by dual luciferase assays. Cell counting kit-8 (CCK8) and Transwell assays were used to analyze cell activity. Ki67 expression was analyzed by immunohistochemistry. Expression levels of miR-127-5p and JAM3 were analyzed by RT-qPCR. GPX4 expression was quantified by western blotting. Results miR-127-5p was expressed at low levels in IOMM-Lee cells, while JAM3 was highly expressed in IOMM-Lee cells. A dual luciferase assay demonstrated that miR-127-5p could target JAM3. Upregulation of miR-127-5p in IOMM-Lee cells resulted in cell cycle arrest and inhibition of cell activity. Upregulation of miR-127-5p increased LDH, MDA, and ROS levels and Fe2+ content and inhibited the expression of GPX4 protein. Upregulation of JAM3 reversed the results of miR-127-5p upregulation. Conclusion miR-127-5p regulated meningioma formation and ferroptosis through JAM3, providing insights for the development of new treatments for meningioma.
Collapse
|
12
|
Ding Y, Ge Y, Wang D, Liu Q, Sun S, Hua L, Deng J, Luan S, Cheng H, Xie Q, Gong Y, Zhang T. LncRNA-IMAT1 Promotes Invasion of Meningiomas by Suppressing KLF4/hsa-miR22-3p/Snai1 Pathway. Mol Cells 2022; 45:388-402. [PMID: 35680373 PMCID: PMC9200663 DOI: 10.14348/molcells.2022.2232] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 12/18/2021] [Accepted: 12/26/2021] [Indexed: 11/27/2022] Open
Abstract
Malignant meningiomas often show invasive growth that makes complete tumor resection challenging, and they are more prone to recur after radical resection. Invasive meningioma associated transcript 1 (IMAT1) is a long noncoding RNA located on Homo sapiens chromosome 17 that was identified by our team based on absolute expression differences in invasive and non-invasive meningiomas. Our studies indicated that IMAT1 was highly expressed in invasive meningiomas compared with non-invasive meningiomas. In vitro studies showed that IMAT1 promoted meningioma cell invasion through the inactivation of the Krüppel-like factor 4 (KLF4)/hsa-miR22-3p/Snai1 pathway by acting as a sponge for hsa-miR22-3p, and IMAT1 knockdown effectively restored the tumor suppressive properties of KLF4 by preserving its tumor suppressor pathway. In vivo experiments confirmed that IMAT1 silencing could significantly inhibit the growth of subcutaneous tumors and prolong the survival period of tumor-bearing mice. Our findings demonstrated that the high expression of IMAT1 is the inherent reason for the loss of the tumor suppressive properties of KLF4 during meningioma progression. Therefore, we believe that IMAT1 may be a potential biological marker and treatment target for meningiomas.
Collapse
Affiliation(s)
- Yaodong Ding
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yu Ge
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Daijun Wang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Qin Liu
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Shuchen Sun
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Lingyang Hua
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jiaojiao Deng
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Shihai Luan
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Haixia Cheng
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Qing Xie
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Ye Gong
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Tao Zhang
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| |
Collapse
|
13
|
Peng W, Wu P, Yuan M, Yuan B, Zhu L, Zhou J, Li Q. Potential Molecular Mechanisms of Recurrent and Progressive Meningiomas: A Review of the Latest Literature. Front Oncol 2022; 12:850463. [PMID: 35712491 PMCID: PMC9196588 DOI: 10.3389/fonc.2022.850463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 04/28/2022] [Indexed: 11/17/2022] Open
Abstract
Meningiomas, the most frequent primary intracranial tumors of the central nervous system in adults, originate from the meninges and meningeal spaces. Surgical resection and adjuvant radiation are considered the preferred treatment options. Although most meningiomas are benign and slow-growing, some patients suffer from tumor recurrence and disease progression, eventually resulting in poorer clinical outcomes, including malignant transformation and death. It is thus crucial to identify these "high-risk" tumors early; this requires an in-depth understanding of the molecular and genetic alterations, thereby providing a theoretical foundation for establishing personalized and precise treatment in the future. Here, we review the most up-to-date knowledge of the cellular biological alterations involved in the progression of meningiomas, including cell proliferation, neo-angiogenesis, inhibition of apoptosis, and immunogenicity. Focused genetic alterations, including chromosomal abnormalities and DNA methylation patterns, are summarized and discussed in detail. We also present latest therapeutic targets and clinical trials for meningiomas' treatment. A further understanding of cellular biological and genetic alterations will provide new prospects for the accurate screening and treatment of recurrent and progressive meningiomas.
Collapse
Affiliation(s)
- Wenjie Peng
- Department of Pediatrics, Army Medical Center, Army Medical University, Chongqing, China
| | - Pei Wu
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Minghao Yuan
- Department of Neurology, Chongqing Medical University, Chongqing, China
| | - Bo Yuan
- Department of Nephrology, The Dazu District People’s Hospital, Chongqing, China
| | - Lian Zhu
- Department of Pediatrics, Army Medical Center, Army Medical University, Chongqing, China
| | - Jiesong Zhou
- Department of Plastic Surgery, Changhai Hospital Affiliated to Naval Medical University, Shanghai, China
| | - Qian Li
- Department of Pediatrics, Army Medical Center, Army Medical University, Chongqing, China
| |
Collapse
|
14
|
Chong X, Chen J, Zheng N, Zhou Z, Hai Y, Chen S, Zhang Y, Yu Q, Yu S, Chen Z, Bao W, Quan M, Chen ZS, Zhan Y, Gao Y. PIK3CA mutations-mediated downregulation of circLHFPL2 inhibits colorectal cancer progression via upregulating PTEN. Mol Cancer 2022; 21:118. [PMID: 35619132 PMCID: PMC9134670 DOI: 10.1186/s12943-022-01531-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 02/05/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND PIK3CA mutation and PTEN suppression lead to tumorigenesis and drug resistance in colorectal cancer (CRC). There is no research on the role of circular RNAs (circRNAs) in regulating PIK3CA mutation and MEK inhibitor resistance in CRC. METHODS The expression of circLHFPL2 in PIK3CA-mutant and wild-type cells and tissues was quantified by RNA-sequencing and qRT-PCR. CCK-8 assay and colony formation assay were used to evaluate cell viability. Annexin V/PI staining was implemented to assess cell apoptosis. Luciferase assay, biotin-coupled microRNA capture, and RIP assay were used to validate the interaction among potential targets. Western blotting and qRT-PCR assays were used to evaluate the expression of involved targets. Xenograft tumor in a nude mouse model was used to explore the role of circRNAs in vivo. RESULTS RNA sequencing defined downregulated expression of circLHFPL2 in both PIK3CAH1047R (HCT116) and PIK3CAE545K (DLD1) cells. CircLHFPL2 was also downregulated in PIK3CA-mutant CRC primary cells and tissues, which was correlated with poor prognosis. CircLHFPL2 was mainly localized in the cytoplasm and its downregulation was attributed to the PI3K/AKT signaling pathway activated by phosphorylating Foxo3a. CircLHFPL2 inhibited PI3KCA-Mut CRC progression both in vitro and in vivo. Furthermore, our work indicated that circLHFPL2 acts as a ceRNA to sponge miR-556-5p and miR-1322 in CRC cells and in turn modulate the expression of PTEN. Importantly, circLHFPL2 was able to overcome PIK3CA-mediated MEK inhibitor resistance in CRC cells. CONCLUSIONS Downregulation of circLHFPL2 sustains the activation of the PI3K/AKT signaling pathway via a positive feedback loop in PIK3CA-mutant CRC. In addition, downregulation of circLHFPL2 leads to MEK inhibitor resistance in CRC. Therefore, targeting circLHFPL2 could be an effective approach for the treatment of CRC patients harboring oncogenic PIK3CA mutations.
Collapse
Affiliation(s)
- Xiaodan Chong
- Clinical Oncology Institute, Translational Medicine Center, Navy Military Medical University, 800 Xiangyin Road, Yangpu District, Shanghai, 200433, China
| | - Jingde Chen
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Pudong District, Shanghai, 200120, China
| | - Nanxin Zheng
- Department of Colorectal Surgery, Changhai Hospital, Navy Military Medical University, 168 Changhai Road, Yangpu District, Shanghai, 200433, China
| | - Zhuqing Zhou
- Department of Gastrointestinal Surgery, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Pudong District, Shanghai, 200120, China
| | - Yanan Hai
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Pudong District, Shanghai, 200120, China
| | - Shiqing Chen
- The Medical Department, 3D Medicines Inc., Shanghai, 201114, China
| | - Yu Zhang
- Clinical Oncology Institute, Translational Medicine Center, Navy Military Medical University, 800 Xiangyin Road, Yangpu District, Shanghai, 200433, China
| | - Qingzhuo Yu
- Clinical Oncology Institute, Translational Medicine Center, Navy Military Medical University, 800 Xiangyin Road, Yangpu District, Shanghai, 200433, China
| | - Shijun Yu
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Pudong District, Shanghai, 200120, China
| | - Zhiqin Chen
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Pudong District, Shanghai, 200120, China
| | - Wenfang Bao
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Pudong District, Shanghai, 200120, China
| | - Ming Quan
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Pudong District, Shanghai, 200120, China.
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA.
| | - Yangyang Zhan
- Clinical Oncology Institute, Translational Medicine Center, Navy Military Medical University, 800 Xiangyin Road, Yangpu District, Shanghai, 200433, China. .,Department of Pharmacy, Shanghai Eastern Hepatobiliary Surgery Hospital, Navy Military Medical University, 225 Changhai Road, Yangpu District, Shanghai, 200433, China.
| | - Yong Gao
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Pudong District, Shanghai, 200120, China.
| |
Collapse
|
15
|
Robert SM, Vetsa S, Nadar A, Vasandani S, Youngblood MW, Gorelick E, Jin L, Marianayagam N, Erson-Omay EZ, Günel M, Moliterno J. The integrated multiomic diagnosis of sporadic meningiomas: a review of its clinical implications. J Neurooncol 2022; 156:205-214. [PMID: 34846640 PMCID: PMC8816740 DOI: 10.1007/s11060-021-03874-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/09/2021] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Meningiomas are generally considered "benign," however, these tumors can demonstrate variability in behavior and a surprising aggressiveness with elevated rates of recurrence. The advancement of next-generation molecular technologies have led to the understanding of the genomic and epigenomic landscape of meningiomas and more recent correlations with clinical characteristics and behavior. METHODS Based on a thorough review of recent peer-reviewed publications (PubMed) and edited texts, we provide a molecular overview of meningiomas with a focus on relevant clinical implications. RESULTS The identification of specific somatic driver mutations has led to the classification of several major genomic subgroups, which account for more than 80% of sporadic meningiomas, and can be distinguished using noninvasive clinical variables to help guide management decisions. Other somatic genomic modifications, including non-coding alterations and copy number variations, have also been correlated with tumor characteristics. Furthermore, epigenomic modifications in meningiomas have recently been described, with DNA methylation being the most widely studied and potentially most clinically relevant. Based on these molecular insights, several clinical trials are currently underway in an effort to establish effective medical therapeutic options for meningioma. CONCLUSION As we enhance our multiomic understanding of meningiomas, our ability to care for patients with these tumors will continue to improve. Further biological insights will lead to additional progress in precision medicine for meningiomas.
Collapse
Affiliation(s)
- Stephanie M Robert
- Department of Neurosurgery, Yale School of Medicine, 15 York St, LLCI 810, New Haven, CT, 06520-8082, USA
| | - Shaurey Vetsa
- Department of Neurosurgery, Yale School of Medicine, 15 York St, LLCI 810, New Haven, CT, 06520-8082, USA
- The Chenevert Family Brain Tumor Center, Smilow Cancer Hospital, New Haven, CT, USA
| | - Arushii Nadar
- Department of Neurosurgery, Yale School of Medicine, 15 York St, LLCI 810, New Haven, CT, 06520-8082, USA
- The Chenevert Family Brain Tumor Center, Smilow Cancer Hospital, New Haven, CT, USA
| | - Sagar Vasandani
- Department of Neurosurgery, Yale School of Medicine, 15 York St, LLCI 810, New Haven, CT, 06520-8082, USA
- The Chenevert Family Brain Tumor Center, Smilow Cancer Hospital, New Haven, CT, USA
| | - Mark W Youngblood
- Department of Neurological Surgery, Northwestern University, Chicago, IL, USA
| | - Evan Gorelick
- Department of Neurosurgery, Yale School of Medicine, 15 York St, LLCI 810, New Haven, CT, 06520-8082, USA
- The Chenevert Family Brain Tumor Center, Smilow Cancer Hospital, New Haven, CT, USA
| | - Lan Jin
- Department of Neurosurgery, Yale School of Medicine, 15 York St, LLCI 810, New Haven, CT, 06520-8082, USA
| | - Neelan Marianayagam
- Department of Neurosurgery, Yale School of Medicine, 15 York St, LLCI 810, New Haven, CT, 06520-8082, USA
- The Chenevert Family Brain Tumor Center, Smilow Cancer Hospital, New Haven, CT, USA
| | - E Zeynep Erson-Omay
- Department of Neurosurgery, Yale School of Medicine, 15 York St, LLCI 810, New Haven, CT, 06520-8082, USA
- The Chenevert Family Brain Tumor Center, Smilow Cancer Hospital, New Haven, CT, USA
| | - Murat Günel
- Department of Neurosurgery, Yale School of Medicine, 15 York St, LLCI 810, New Haven, CT, 06520-8082, USA
- The Chenevert Family Brain Tumor Center, Smilow Cancer Hospital, New Haven, CT, USA
| | - Jennifer Moliterno
- Department of Neurosurgery, Yale School of Medicine, 15 York St, LLCI 810, New Haven, CT, 06520-8082, USA.
- The Chenevert Family Brain Tumor Center, Smilow Cancer Hospital, New Haven, CT, USA.
| |
Collapse
|
16
|
Mu W, Guo L, Liu Y, Yang H, Ning S, Lv G. Long Noncoding RNA SNHG1 Regulates LMNB2 Expression by Sponging miR-326 and Promotes Cancer Growth in Hepatocellular Carcinoma. Front Oncol 2021; 11:784067. [PMID: 34917510 PMCID: PMC8670182 DOI: 10.3389/fonc.2021.784067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/09/2021] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE The purpose of the study is to explore the potential competing endogenous RNA (ceRNA) network and investigate the molecular mechanism of long noncoding RNA (lncRNA) small nucleolar RNA host gene 1 (SNHG1) in hepatocellular carcinoma (HCC) development. METHODS By analyzing the data of HCC in The Cancer Genome Atlas (TCGA) database, we included differentially expressed lncRNA and microRNA (miRNA) profiles and constructed ceRNA networks related to the prognosis of HCC patients. qRT-PCR, Western blotting, 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), transwell assay, and the nude mouse model were employed to test the effects of SNHG1 and LMNB2 on tumor proliferation and growth in vitro and in vivo. RESULTS In the study, we identified 115 messenger RNAs (mRNAs), 12 lncRNAs, and 37 miRNAs by intersecting differentially expressed genes (DEGs) in TCGA and StarBase databases. Then, SNHG1-miR-326-LMNB2 pathway came into notice after further survival analysis and hub gene screening. Our results showed that SNHG1 expression was upregulated significantly in HCC tissues and cell lines. Downregulation of both LMNB2, the target of miR-326 in HCC, and SNHG1 inhibited tumor proliferation and growth in vitro and in vivo. Furthermore, SNHG1 could regulate LMNB2 expression through binding to miR-326 in HCC cell lines. CONCLUSION SNHG1 is a promising prognostic factor in HCC, and the SNHG1-miR-326-LMNB2 axis may be a potential therapeutic target for HCC.
Collapse
Affiliation(s)
- Wentao Mu
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, China
- Department of Hepatobiliary Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Lingyu Guo
- Department of Urology, Second Affiliated Hospital of Xi’an Jiaotong University, Xi'an, China
| | - Yang Liu
- Department of Hepatobiliary Surgery, Taian City Central Hospital of Shandong Province, Tai'an, China
| | - Hui Yang
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Shanglei Ning
- Department of Hepatobiliary Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Guoyue Lv
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
17
|
Ghafouri-Fard S, Abak A, Hussen BM, Taheri M, Sharifi G. The Emerging Role of Non-Coding RNAs in Pituitary Gland Tumors and Meningioma. Cancers (Basel) 2021; 13:cancers13235987. [PMID: 34885097 PMCID: PMC8656547 DOI: 10.3390/cancers13235987] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 02/07/2023] Open
Abstract
Long non-coding RNAs (lncRNAs), microRNAs (miRNAs), and circular RNAs (circRNAs) are non-coding transcripts which are involved in the pathogenesis of pituitary gland tumors. LncRNAs that participate in the pathogenesis of pituitary gland tumors mainly serve as sponges for miRNAs. CLRN1-AS1/miR-217, XIST/miR-424-5p, H19/miR-93a, LINC00473/miR-502-3p, SNHG7/miR-449a, MEG8/miR-454-3p, MEG3/miR-23b-3p, MEG3/miR-376B-3P, SNHG6/miR-944, PCAT6/miR-139-3p, lncRNA-m433s1/miR-433, TUG1/miR-187-3p, SNHG1/miR-187-3p, SNHG1/miR-302, SNHG1/miR-372, SNHG1/miR-373, and SNHG1/miR-520 are identified lncRNA/miRNA pairs that are involved in this process. Hsa_circ_0001368 and circOMA1 are two examples of circRNAs that contribute to the pathogenesis of pituitary gland tumors. Meanwhile, SNHG1, LINC00702, LINC00460, and MEG3 have been found to partake in the pathogenesis of meningioma. In the current review, we describe the role of non-coding RNAs in two types of brain tumors, i.e., pituitary tumors and meningioma.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran 19835-35511, Iran;
| | - Atefe Abak
- Men’s Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran 19835-35511, Iran;
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil 44001, Iraq;
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, 07743 Jena, Germany
- Correspondence: (M.T.); (G.S.)
| | - Guive Sharifi
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran 19835-35511, Iran
- Correspondence: (M.T.); (G.S.)
| |
Collapse
|
18
|
Xu K, Jiang X, Ariston Gabriel AN, Li X, Wang Y, Xu S. Evolving Landscape of Long Non-coding RNAs in Cerebrospinal Fluid: A Key Role From Diagnosis to Therapy in Brain Tumors. Front Cell Dev Biol 2021; 9:737670. [PMID: 34692695 PMCID: PMC8529119 DOI: 10.3389/fcell.2021.737670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 08/31/2021] [Indexed: 11/23/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are a type of non-coding RNAs that act as molecular fingerprints and modulators of many pathophysiological processes, particularly in cancer. Specifically, lncRNAs can be involved in the pathogenesis and progression of brain tumors, affecting stemness/differentiation, replication, invasion, survival, DNA damage response, and chromatin dynamics. Furthermore, the aberrations in the expressions of these transcripts can promote treatment resistance, leading to tumor recurrence. The development of next-generation sequencing technologies and the creation of lncRNA-specific microarrays have boosted the study of lncRNA etiology. Cerebrospinal fluid (CSF) directly mirrors the biological fluid of biochemical processes in the brain. It can be enriched for small molecules, peptides, or proteins released by the neurons of the central nervous system (CNS) or immune cells. Therefore, strategies that identify and target CSF lncRNAs may be attractive as early diagnostic and therapeutic options. In this review, we have reviewed the studies on CSF lncRNAs in the context of brain tumor pathogenesis and progression and discuss their potential as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Kanghong Xu
- School of Public Health, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
| | - Xinquan Jiang
- School of Public Health, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
| | | | - Xiaomeng Li
- Department of Hematology, Jining First People's Hospital, Jining, China
| | - Yunshan Wang
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, China
| | - Shuo Xu
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China.,Key Laboratory of Brain Function Remodeling, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
19
|
Shi F, Zhang L, Liu X, Wang Y. Knock-down of microRNA miR-556-5p increases cisplatin-sensitivity in non-small cell lung cancer (NSCLC) via activating NLR family pyrin domain containing 3 (NLRP3)-mediated pyroptotic cell death. Bioengineered 2021; 12:6332-6342. [PMID: 34488537 PMCID: PMC8806686 DOI: 10.1080/21655979.2021.1971502] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that are closely associated with cancer progression and drug resistance, however, up until now, the involvement of miR-556-5p in regulating cisplatin-sensitivity in non-small cell lung cancer (NSCLC) has not been studied. In the present study, we found that miR-556-5p was significantly upregulated in the cisplatin-resistant NSCLC (CR-NSCLC) patients’ tissues and cells, instead of the corresponding cisplatin-sensitive NSCLC (CS-NSCLC) tissues and cells. Further experiments validated that knock-down of miR-556-5p suppressed cell viability and tumorigenesis, and induced cell apoptosis in the cisplatin-treated CR-NSCLC cells, and conversely, upregulation of miR-556-5p increased cisplatin-resistance in CS-NSCLC cells. Interestingly, miR-556-5p ablation triggered pyroptotic cell death in cisplatin-treated CR-NSCLC cells via upregulating NLRP3, and the promoting effects of miR-556-5p silence on cisplatin-sensitivity in CR-NSCLC cells were abrogated by both cell pyroptosis inhibitor NSA and NLRP3 downregulation. Taken together, this study firstly evidenced that induction of NLRP3-mediated cell pyroptosis by miR-556-5p downregulation was effective to increase cisplatin-sensitivity in NSCLC, which provided new therapy strategies to overcome chemo-resistance for NSCLC patients in clinic.
Collapse
Affiliation(s)
- Feng Shi
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Luquan Zhang
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xing Liu
- Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yue Wang
- Department of Pharmacology and Toxicology, Wright State University, Dayton, OH, USA
| |
Collapse
|
20
|
CircDIP2C ameliorates oxidized low-density lipoprotein-induced cell dysfunction by binding to miR-556-5p to induce TET2 in human umbilical vein endothelial cells. Vascul Pharmacol 2021; 139:106887. [PMID: 34147657 DOI: 10.1016/j.vph.2021.106887] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/24/2021] [Accepted: 06/15/2021] [Indexed: 12/20/2022]
Abstract
Circular RNAs (circRNAs) are a group of conserved noncoding RNAs. Recent reports reveal that circRNAs play vital parts in cardiovascular system, including atherosclerosis (AS). The present study is designed to reveal the role of circRNA DIP2C-disco interacting protein 2 homolog C (circDIP2C) in oxidized low-density lipoprotein (ox-LDL)-triggered damage of human umbilical vein endothelial cells (HUVECs). The expression levels of circDIP2C, microRNA-556-5p (miR-556-5p) and tet methylcytosine dioxygenase 2 (TET2) were detected by quantitative real-time polymerase chain reaction (qRT-PCR). Protein expression was determined by western blot analysis. Cell viability and angiogenesis were demonstrated by cell counting kit-8 and tube formation assays, respectively. The levels of reactive oxygen species (ROS) and malondialdehyde (MDA) were checked by ROS and MDA determination assays. Superoxide dismutase (SOD) and lactate dehydrogenase (LDH) activity assays were performed to detect the activity of SOD and LDH. The binding sites of miR-556-5p in circDIP2C or TET2 were predicted by online databases, and identified by dual-luciferase reporter, RNA immunoprecipitation and RNA pull-down assays. CircDIP2C and TET2 expression were obviously decreased, while miR-556-5p expression was increased in ox-LDL-induced HUVECs in comparison with untreated HUVECs. Ox-LDL treatment inhibited cell viability and angiogenesis, promoted oxidative stress, enhanced cytotoxicity and activated NLR family pyrin domain containing 3 (NLRP3) inflammasome pathway. CircDIP2C upregulation protected HUVECs from ox-LDL-induced injury. Additionally, circDIP2C directly bound to miR-556-5p, which was further found to target TET2. MiR-556-5p mimics or TET2 silencing could attenuate the effect of circDIP2C overexpression on ox-LDL-induced cell disorder. Thus, we came a conclusion that circDIP2C protected against ox-LDL-induced HUVEC damage by upregulating TET2 expression through sponging miR-556-5p, which provided a strategy for the therapy of AS.
Collapse
|
21
|
Yu X, Wang M, Zhao H, Cao Z. Targeting a novel hsa_circ_0000520/miR-556-5p/NLRP3 pathway-mediated cell pyroptosis and inflammation attenuates ovalbumin (OVA)-induced allergic rhinitis (AR) in mice models. Inflamm Res 2021; 70:719-729. [PMID: 34028600 DOI: 10.1007/s00011-021-01472-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 05/09/2021] [Accepted: 05/11/2021] [Indexed: 01/09/2023] Open
Abstract
OBJECTIVES The circRNAs-miRNAs-mRNAs competing endogenous RNA (ceRNA) networks involve in regulating the development of various inflammation-associated diseases, including allergic rhinitis (AR), and the present study aimed to identify novel AR-associated ceRNA networks. METHODS The mRNA and protein levels of the associated genes were, respectively, examined by real-time qPCR and western blot analysis. The targeting sites in miR-556-5p and NLRP3 were validated by performing dual-luciferase reporter gene system assay. ELISA was used to measure inflammatory cytokines secretion, and CCK-8 assay was conducted to determine cell proliferation. RESULTS Here, we first identified a hsa_circ_0000520/miR-556-5p/NLRP3 signaling cascade triggered epithelium pyroptosis and inflammation to regulate the development of AR in cellular and mice models. Specifically, the pyroptosis-associated biomarkers (NLRP3, ASC, IL-1β and IL-18) and pro-inflammatory cytokines (OVA-specific IgE, TNF-α, IL-4 and IL-5) were upregulated in the nasal subjects collected from AR patients and ovalbumin (OVA)-induced AR mice models, compared to their normal counterparts. Next, using the ceRNA networks analysis software, we screened out a hsa_circ_0000520/miR-556-5p axis that potentially regulated NLRP3 in the human nasal epithelial cell line. Mechanistically, miR-556-5p targeted both hsa_circ_0000520 and 3' untranslated region (3'UTR) of NLRP3, and knock-down of hsa_circ_0000520 inactivated NLRP3-mediated epithelium pyroptosis through miR-556-5p in a ceRNA-dependent manner. Furthermore, we proved that both hsa_circ_0000520 ablation and miR-556-5p overexpression suppressed NLRP3-mediated cell pyroptosis to attenuate AR in mice models. CONCLUSIONS Taken together, we evidenced that targeting the hsa_circ_0000520/miR-556-5p/NLRP3 signaling pathway was a novel AQ1strategy to ameliorate AR progression; however, future clinical data are still required to validate our preliminary results.
Collapse
Affiliation(s)
- Xiaofeng Yu
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Sanhao Street No. 36, Shenyang, 110004, China
| | - Meng Wang
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Sanhao Street No. 36, Shenyang, 110004, China
| | - He Zhao
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Sanhao Street No. 36, Shenyang, 110004, China
| | - Zhiwei Cao
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Sanhao Street No. 36, Shenyang, 110004, China.
| |
Collapse
|
22
|
Xu Y, Gao P, Wang Z, Su Z, Liao G, Han Y, Cui Y, Yao Y, Zhong X. Circ-LAMP1 contributes to the growth and metastasis of cholangiocarcinoma via miR-556-5p and miR-567 mediated YY1 activation. J Cell Mol Med 2021; 25:3226-3238. [PMID: 33675150 PMCID: PMC8034453 DOI: 10.1111/jcmm.16392] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 01/29/2021] [Accepted: 02/08/2021] [Indexed: 12/11/2022] Open
Abstract
Dysregulation of circular RNAs (circRNAs) executes important regulatory roles in carcinogenesis. Nonetheless, few studies focused on the mechanisms of circRNAs in cholangiocarcinoma (CCA). qRT‐PCR was applied to verify the dysregulated circRNAs in CCA. Fisher's exact test, Kaplan‐Meier analysis and Cox regression model were utilized to investigate the clinical implications of circ‐LAMP1 in the patients with CCA. The viability, apoptosis, migration and invasion of CCA cells were detected after silencing/overexpression of circ‐LAMP1. Xenograft and lung metastasis assays were performed to verify the in vitro results. The regulatory networks of circ‐LAMP1 were unveiled by bioinformatic analysis, RNA immunoprecipitation (RIP), RNA pulldown and luciferase reporter assays. Up‐regulation of circ‐LAMP1 was found in CCA tissue samples and cell lines. Enhanced level of circ‐LAMP1 was linked to clinical severity, high post‐operative recurrence and poor prognosis for the patients with CCA. Gain/loss‐of‐function assays confirmed the oncogenic role of circ‐LAMP1 in mediating cell growth, apoptosis, migration and invasion. Nevertheless, the level of circ‐LAMP1 had no effect on normal biliary epithelium proliferation and apoptosis. Animal study further verified the in vitro data. Mechanistically, circ‐LAMP1 directly sponged miR‐556‐5p and miR‐567, thereby releasing their suppression on YY1 at post‐transcriptional level. Rescue assay indicated that the oncogenic role of circ‐LAMP1 is partially dependent on its modulation of YY1 in CCA. In summary, this study suggested that circ‐LAMP1 might be used as a promising biomarker/therapeutic target for CCA.
Collapse
Affiliation(s)
- Yi Xu
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Young Scholar of General Surgery Climbing Program of China, China
| | - Ping Gao
- Department of Endocrinology and Metabolism, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhidong Wang
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhilei Su
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Guanqun Liao
- Department of Interventional Radiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Yi Han
- Department for Visceral, Thoracic and Vascular Surgery at the University Hospital, Technical University Dresden, Dresden, Germany
| | - Yifeng Cui
- Department of Hepatic Surgery, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yue Yao
- Department of Endocrinology and Metabolism, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiangyu Zhong
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
23
|
Pei ML, Zhao ZX, Shuang T. Dysregulation of lnc-SNHG1 and miR-216b-5p correlate with chemoresistance and indicate poor prognosis of serous epithelial ovarian cancer. J Ovarian Res 2020; 13:144. [PMID: 33302997 PMCID: PMC7731520 DOI: 10.1186/s13048-020-00750-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 12/03/2020] [Indexed: 01/08/2023] Open
Abstract
Aim This study aimed to explore whether the dysregulation of lnc-small nucleolar RNA host gene 1 (SNHG1) and miR-216b-5p correlated with chemoresistance and indicated poor prognosis of serous epithelial ovarian cancer (EOC). Methods and results The expression of lnc-SNHG1 was upregulated, while miR-216b-5p showed low expression in patients with chemoresistant EOC compared with patients with chemosensitive EOC. The multivariate Cox regression analysis showed that the expression of miR-216b-5p and FIGO stage were independent prognostic factors for the overall survival (OS) of patients with serous EOC. Kaplan–Meier curves revealed a significant association of the increased expression level of lnc-SNHG1 with shorter OS and disease-free survival (DFS). Patients with a low expression level of miR-216b-5p also had shorter OS and DFS. The biological functions were tested using CCK-8 assay, colony formation assay, wound healing assay, and cell apoptosis. The knockdown of SNHG1 and the overexpression of miR-216b-5p stimulated paclitaxel sensitivity in A2780/Taxol cells through inhibiting cell growth and migration and promoting apoptosis. The inhibition of miR-216b-5p could rescue the effect of lnc-SNHG1 inhibition on the sensitivity of A2780/Taxol cells to paclitaxel. Luciferase reporter assay, RNA Binding Protein Immunoprecipitation Assay (RIP), and quantitative reverse transcription–polymerase chain reaction (qRT-PCR) indicated that lnc-SNHG1 acted as a sponge of miR-216b-5p in A2780/Taxol cells. Conclusions This study showed that the overexpression of lnc-SNHG1 and decreased expression level of miR-216b-5p correlated with the chemoresistance of patients with serous EOC and indicated shorter OS and DFS. Lnc-SNHG1 functioned as a ceRNA with miR-216b-5p, which was critical in modulating the paclitaxel sensitivity of ovarian cancer cells. Supplementary Information The online version contains supplementary material available at 10.1186/s13048-020-00750-4.
Collapse
Affiliation(s)
- Mei Li Pei
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, 710061, China
| | - Zong Xia Zhao
- Department of Gynecology and Obstetrics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.,Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Xi'an Medical University, Xi'an, 710038, China
| | - Ting Shuang
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, 710061, China. .,Department of Gynecology and Obstetrics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
24
|
Hussein D, Dallol A, Quintas R, Schulten HJ, Alomari M, Baeesa S, Bangash M, Alghamdi F, Khan I, ElAssouli MZM, Saka M, Carracedo A, Chaudhary A, Abuzenadah A. Overlapping variants in the blood, tissues and cell lines for patients with intracranial meningiomas are predominant in stem cell-related genes. Heliyon 2020; 6:e05632. [PMID: 33305042 PMCID: PMC7710648 DOI: 10.1016/j.heliyon.2020.e05632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/19/2020] [Accepted: 11/25/2020] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE Bulk tissue genomic analysis of meningiomas identified common somatic mutations, however, it often excluded blood-related variants. In contrast, genomic characterisation of primary cell lines that can provide critical information regarding growth and proliferation, have been rare. In our work, we identified the variants that are present in the blood, tissues and corresponding cell lines that are likely to be predictive, tumorigenic and progressive. METHOD Whole-exome sequencing was used to identify variants and distinguish related pathways that exist in 42 blood, tissues and corresponding cell lines (BTCs) samples for patients with intracranial meningiomas. Conventional sequencing was used for the confirmation of variants. Integrative analysis of the gene expression for the corresponding samples was utilised for further interpretations. RESULTS In total, 926 BTC variants were detected, implicating 845 genes. A pathway analysis of all BTC genes with damaging variants indicated the 'cell morphogenesis involved in differentiation' stem cell-related pathway to be the most frequently affected pathway. Concordantly, five stem cell-related genes, GPRIN2, ALDH3B2, ASPN, THSD7A and SIGLEC6, showed BTC variants in at least five of the patients. Variants that were heterozygous in the blood and homozygous in the tissues or the corresponding cell lines were rare (average: 1.3 ± 0.3%), and included variants in the RUNX2 and CCDC114 genes. An analysis comparing the variants detected only in tumours with aggressive features indicated a total of 240 BTC genes, implicating the 'homophilic cell adhesion via plasma membrane adhesion molecules' pathway, and identifying the stem cell-related transcription coactivator NCOA3/AIB1/SRC3 as the most frequent BTC gene. Further analysis of the possible impact of the poly-Q mutation present in the NCOA3 gene indicated associated deregulation of 15 genes, including the up-regulation of the stem cell related SEMA3D gene and the angiogenesis related VEGFA gene. CONCLUSION Stem cell-related pathways and genes showed high prevalence in the BTC variants, and novel variants in stem cell-related genes were identified for meningioma. These variants can potentially be used as predictive, tumorigenic and progressive biomarkers for meningioma.
Collapse
Affiliation(s)
- Deema Hussein
- Neurooncology Translational Group, King Fahd Medical Research Center, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, P.O. Box 80216, Jeddah, 21589, Saudi Arabia
| | - Ashraf Dallol
- Centre of Innovation for Personalized Medicine, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center of Excellence in Genomic Medicine Research, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Rita Quintas
- Galician Foundation of Genomic Medicine-SERGAS, University of Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - Hans-Juergen Schulten
- Center of Excellence in Genomic Medicine Research, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mona Alomari
- Neurooncology Translational Group, King Fahd Medical Research Center, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, P.O. Box 80216, Jeddah, 21589, Saudi Arabia
| | - Saleh Baeesa
- Division of Neurosurgery, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohammed Bangash
- Division of Neurosurgery, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Fahad Alghamdi
- Pathology Department, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ishaq Khan
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar 25100, Pakistan
| | - M-Zaki Mustafa ElAssouli
- Neurooncology Translational Group, King Fahd Medical Research Center, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, P.O. Box 80216, Jeddah, 21589, Saudi Arabia
| | - Mohamad Saka
- Neurooncology Translational Group, King Fahd Medical Research Center, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, P.O. Box 80216, Jeddah, 21589, Saudi Arabia
| | - Angel Carracedo
- Center of Excellence in Genomic Medicine Research, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Galician Foundation of Genomic Medicine-SERGAS, University of Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - Adeel Chaudhary
- Neurooncology Translational Group, King Fahd Medical Research Center, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, P.O. Box 80216, Jeddah, 21589, Saudi Arabia
- Centre of Innovation for Personalized Medicine, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center of Excellence in Genomic Medicine Research, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Adel Abuzenadah
- Neurooncology Translational Group, King Fahd Medical Research Center, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, P.O. Box 80216, Jeddah, 21589, Saudi Arabia
- Centre of Innovation for Personalized Medicine, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center of Excellence in Genomic Medicine Research, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
25
|
Shao Z, Liu L, Zheng Y, Tu S, Pan Y, Yan S, Wei Q, Shao A, Zhang J. Molecular Mechanism and Approach in Progression of Meningioma. Front Oncol 2020; 10:538845. [PMID: 33042832 PMCID: PMC7518150 DOI: 10.3389/fonc.2020.538845] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 08/17/2020] [Indexed: 12/20/2022] Open
Abstract
Meningioma is the most common tumor of the central nervous system, most of which is benign. Even after complete resection, a high rate of recurrence of meningioma is observed. From in-depth study of its pathogenesis, it has been found that a number of chromosomal variations and abnormal molecular signals are closely related to the occurrence and development of malignancy in meningioma, which may provide the theoretical basis and potential direction for accurate and targeted treatment. We have reviewed advances in chromosomal variations and molecular mechanisms involved in the progression of meningioma, and have highlighted the association with malignant biological behavior including cell proliferation, angiogenesis, increased invasiveness, and inhibition of apoptosis. In addition, the chemotherapy of meningioma is summarized and discussed.
Collapse
Affiliation(s)
- Zhiwei Shao
- Department of Hepatobiliary and Pancreatic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lihong Liu
- Department of Radiation Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yanghao Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Sheng Tu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yuanbo Pan
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Sheng Yan
- Department of Hepatobiliary and Pancreatic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Qichun Wei
- Department of Radiation Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Anwen Shao
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jianmin Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Brain Research Institute, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Brain Science, Zhejiang University, Hangzhou, China
| |
Collapse
|