1
|
Tran TTT, Hung JJ. PTEN decreases NR2F1 expression to inhibit ciliogenesis during EGFR L858R-induced lung cancer progression. Cell Death Dis 2024; 15:225. [PMID: 38499532 PMCID: PMC10948910 DOI: 10.1038/s41419-024-06610-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/08/2024] [Accepted: 03/12/2024] [Indexed: 03/20/2024]
Abstract
Lung cancer is the major cause of death worldwide. Activation of oncogenes or inhibition of tumor suppressors causes cancer formation. Previous studies have indicated that PTEN, as a tumor suppressor, inhibits cancer formation. In this study, we studied the role of PTEN in EGFRL858R-induced lung cancer in vivo. Interestingly, loss of PTEN increased bronchial cell hyperplasia but decreased alveolar cell hyperplasia in EGFRL858R*PTEN-/--induced lung cancer. Systematic analysis of gene expression by RNA-seq showed that several genes related to ciliogenesis were upregulated in EGFRL858R*PTEN-/--induced lung cancer and subsequently showed that bronchial ciliated cells were hyperplastic. Several critical ciliogenesis-related genes, such as Mucin5A, DNAI2, and DNAI3, were found to be regulated by NR2F1. Next, NR2F1 was found to be inhibited by overexpression of PTEN, indicating that PTEN negatively regulates NR2F1, thereby inhibiting the expression of ciliogenesis-related genes and leading to the inhibition of bronchial cell hyperplasia during EGFRL858R-induced lung cancer progression. In addition, we also found that PTEN decreased AKT phosphorylation in A549, KRAS mutant, and H1299 cells but increased AKT phosphorylation in PC9, EGFRL858R, and H1299L858R cells, suggesting that PTEN may function as a tumor suppressor and an oncogene in lung cancers with KRAS mutation and EGFR mutation, respectively. PTEN acts as a double-edged sword that differentially regulates EGFRL858R-induced lung cancer progression in different genomic backgrounds. Understanding the PTEN in lung cancer with different genetic backgrounds will be beneficial for therapy in the future.
Collapse
Affiliation(s)
- Thi Thanh Truc Tran
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Jan-Jong Hung
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
2
|
Tang L, Liu QM, Zhang S, Zhou J. LncRNA NR2F1-AS1 as a potential biomarker for prognosis in cancer patients: meta and bioinformatics analysis. Expert Rev Mol Diagn 2023; 23:1263-1272. [PMID: 37902251 DOI: 10.1080/14737159.2023.2277521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 09/27/2023] [Indexed: 10/31/2023]
Abstract
BACKGROUND Previous studies have shown that the differential expression of lncRNA NR2F1-AS1 is closely related to the prognosis of cancer, but the conclusion is still controversial. Therefore, we conducted a meta-analysis and bioinformatics analysis to explore the correlation between LncRNA NR2F1-AS1 and cancer prognosis. METHODS From the beginning to January 25, 2023, we searched for correlational studies on PubMed, Embase, the Cochrane Library, and Web of Science. We used pooled hazard ratios (HRs) and odds ratios (ORs) with 95% confidence intervals (CIs) to determine the importance of LncRNA NR2F1-AS1 for survival and clinicopathological features of human cancers. RESULTS The meta-analysis of 637 patients in the 11 included articles showed that upregulation of LncRNA NR2F1-AS1 was associated with shorter overall survival (HR = 1.46,95%Cl 1.06-2.01, p = 0.02) in cancer patients. In addition, overexpression of LncRNA NR2F1-AS1 predicted TNM tumor stage (OR = 3.37, 95%Cl 2.07-5.48, p < 0.00001), and Distant metastasis (OR = 0.18, 95%Cl 0.06-0.48, p = 0.0007). However, the difference in age (OR = 1.10,95%Cl 0.71-1.71, p = 0.67), gender (OR = 1.26,95%Cl 0.79-2.00, p = 0.34), Lymph node metastasis (OR = 1.44,95%Cl 0.27-7.80, p = 0.67) or larger tumor size (OR = 1.56,95%Cl 0.48-5.08, p = 0.46) was not statistically significant. CONCLUSION Upregulation of LncRNA NR2F1-AS1 was associated with poor prognosis and advanced clinicopathologic features of tumor patients.
Collapse
Affiliation(s)
- Lu Tang
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Qing-Mei Liu
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Shuang Zhang
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Jun Zhou
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan Province, China
| |
Collapse
|
3
|
Hu C, Li S, Fu X, Zhao X, Peng J. LncRNA NR2F1-AS1 was involved in azacitidine resistance of THP-1 cells by targeting IGF1 with miR-483-3p. Cytokine 2023; 162:156105. [PMID: 36527891 DOI: 10.1016/j.cyto.2022.156105] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 11/25/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND The long noncoding RNAs' (lncRNAs) effect on cancer therapy resistance by targeting microRNA (miRNA) in the regulation of drug resistance genes has attracted more and more attention. This study attempted to explore the mechanism of "lncRNA NR2F1-AS1/miR-483-3p/IGF1″ axis in azacitidine resistance of THP-1 cells. METHODS THP-1 cells were treated with azacitidine to construct THP1-Aza cells. Cell number and morphological changes were observed by a microscope. CCK8, flow cytometry and transwell were used to detect cell proliferation, apoptosis, cycle, invasion and migration. The targeting relationships between NR2F1-AS1 and miR-483-3p, IGF1 and miR-483-3p were analyzed by dual-luciferase, respectively. RIP assay was applied to verify the interaction between NR2F1-AS1 and miR-483-3p. The relative mRNA expression levels of miR-483-3p, AKT1, PI3K, NR2F1-AS1 and IGF1 were detected by qRT-PCR. PI3K, p-PI3K, AKT, p-AKT and IGF1 protein expression were detected by western blot. RESULTS Compared with THP-1 cells, NR2F1-AS1 and IGF1 were highly expressed in THP1-Aza cells, and the miR-483-3p expression was significantly decreased in THP1-Aza cells. Knockdown of NR2F1-AS1 increased apoptosis and G1 phase, and reduced cells growth, invasion and migration ability of THP1-Aza cells. Dual-luciferase demonstrated that NR2F1-AS1 could bind to miR-483-3p, and miR-483-3p could bind to IGF1. RIP assay verified the interaction between NR2F1-AS1 and miR-483-3p. Compared with the si-NR2F1-AS1 group, miR-483-3p inhibitor or oe-IGF1 treatment reduced the apoptosis and cell cycle, and increased the cell growth, invasion and migration ability of THP-1-Aza cells. CONCLUSION LncRNA NR2F1-AS1 affects the sensitivity of THP-1 cells to azacitidine resistance by regulating the miR-483-3p/IGF1 axis, which may be a potential target for the treatment of acute monocytic leukemia.
Collapse
Affiliation(s)
- Changmei Hu
- Department of Gastroenterology, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Shujun Li
- Department of Haematology, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China
| | - Xiao Fu
- Department of Haematology, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China
| | - Xielan Zhao
- Department of Haematology, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China
| | - Jie Peng
- Department of Haematology, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China.
| |
Collapse
|
4
|
Ghafouri-Fard S, Khoshbakht T, Hussen BM, Baniahmad A, Taheri M, Samsami M. A review on the role of NR2F1-AS1 in the development of cancer. Pathol Res Pract 2022; 240:154210. [PMID: 36410172 DOI: 10.1016/j.prp.2022.154210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/05/2022] [Accepted: 11/08/2022] [Indexed: 11/10/2022]
Abstract
NR2F1-AS1 is a natural antisense transcript with prominent roles in the carcinogenesis. It acts as an oncogene in almost all types of cancers except for cervical and colorectal cancers. It can act as a molecular sponge for miR-17, miR-371a-3p, miR-363, miR-29a-3p, miR-493-5p, miR-190a, miR-140, miR-642a, miR-363, miR-493-5p, miR-483-3p, miR-485-5p, miR-146a-5p, miR-877-5p, miR-338-3 P and miR-423-5p to influence expression of several cancer-related genes. Thus, the sponging role of NR2F1-AS1 is the most appreciated route of its contribution in the carcinogenesis. In addition, NR2F1-AS1 affects activity of IGF-1/IGF-1R/ERK, PI3K/AKT/GSK-3β and Hedgehog pathways. The current narrative review aims at summarization of the results of studies that highlighted the role of NR2F1-AS1 in the carcinogenesis.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tayyebeh Khoshbakht
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq; Center of Research and Strategic Studies, Lebanese French University, Kurdistan Region, Erbil, Iraq
| | - Aria Baniahmad
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany; Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Majid Samsami
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Chen X, Luo Q, Xiao Y, Zhu J, Zhang Y, Ding J, Li J. LINC00467: an oncogenic long noncoding RNA. Cancer Cell Int 2022; 22:303. [PMID: 36203193 PMCID: PMC9541002 DOI: 10.1186/s12935-022-02733-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 09/28/2022] [Indexed: 11/10/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) have been found to play essential roles in the cell proliferation, fission and differentiation, involving various processes in humans. Recently, there is more and more interest in exploring the relationship between lncRNAs and tumors. Many latest evidences revealed that LINC00467, an oncogenic lncRNA, is highly expressed in lung cancer, gastric cancer, colorectal cancer, hepatocellular carcinoma, breast cancer, glioblastoma, head and neck squamous cell carcinoma, osteosarcoma, and other malignant tumors. Besides, LINC00467 expression was linked with proliferation, migration, invasion and apoptosis via the regulation of target genes and multiple potential pathways. We reviewed the existing data on the expression, downstream targets, molecular mechanisms, functions, relevant signaling pathways, and clinical implications of LINC00467 in various cancers. LINC00467 may serve as a novel biomarker or therapeutic target for the diagnosis and prognosis of various human tumors.
Collapse
Affiliation(s)
- Xuyu Chen
- The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Qian Luo
- The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Yanan Xiao
- The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Jing Zhu
- The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Yirao Zhang
- The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Jie Ding
- The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China.
| | - Juan Li
- The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China.
| |
Collapse
|
6
|
Huang X, Wang HF, Huang S. Integrated risk scores from N6-methyladenosine-related lncRNAs are potential biomarkers for predicting the overall survival of bladder cancer patients. Front Genet 2022; 13:906880. [PMID: 36061188 PMCID: PMC9428265 DOI: 10.3389/fgene.2022.906880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/30/2022] [Indexed: 11/18/2022] Open
Abstract
Background: N6-methyladenosine (m6A) is the most common form of mRNA- and long noncoding RNA (lncRNA)-specific internal modification encountered in eukaryotes, with important effects on mRNA stability, translation, and splicing. The role of m6A-modified lncRNAs (m6A-lncRNAs) in bladder cancer (BLCA) is rarely reported. This study aimed to evaluate an efficient prognostic model of BLCA in patients, based on m6A-lncRNAs, and to discover potential biological targets. Methods: Differentially expressed lncRNAs were investigated in 433 BLCA samples derived from The Cancer Genome Atlas (TCGA) database. Kaplan–Meier and univariate Cox regression analyses were performed to screen for m6A-lncRNAs with prognostic roles in BLCA. We implemented Pearson correlation analysis to analyze 18 potentially prognostic lncRNAs and 20 known m6A-associated genes. Next, the data were imputed using least absolute shrinkage and selection operator (LASSO) Cox regression to establish an m6A-lncRNA prognostic signature. Results: We established an integrated risk score (RS) containing five m6A-lncRNAs and constructed a nomogram that had the ability to forecast the overall survival (OS) of patients with BLCA. We showed that the predictive accuracy of the RS for BLCA prognosis was high, which was confirmed by the area under the receiver operating characteristic (ROC) curve. We analyzed the correlation between tumor immune infiltrating cells and RS in high- and low-risk patients with BLCA and used tumor immune dysfunction and exclusion to predict the effect of immunotherapy. We screened out the most relevant modules of RS through the weighted gene co-expression network analysis network and explored their potential biological functions using GO and KEGG analyses. Conclusion: Our findings demonstrate that, compared with nomograms constructed using a single prognostic factor, the integrated RS represents a superior model for predicting survival in patients with BLCA, which may improve the clinical management of BLCA.
Collapse
Affiliation(s)
- Xin Huang
- Department of Urology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hao-Fei Wang
- Department of Urology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- *Correspondence: Hao-Fei Wang, ; Shuang Huang,
| | - Shuang Huang
- Department of Urology, The General Hospital of the People’s Liberation Army, Beijing, China
- *Correspondence: Hao-Fei Wang, ; Shuang Huang,
| |
Collapse
|
7
|
Lee E, Park SY, Moon JY, Ko JY, Kim TK, Im GI. Metabolic Switch Under Glucose Deprivation Leading to Discovery of NR2F1 as a Stimulus of Osteoblast Differentiation. J Bone Miner Res 2022; 37:1382-1399. [PMID: 35462433 DOI: 10.1002/jbmr.4565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 04/13/2022] [Accepted: 04/20/2022] [Indexed: 12/13/2022]
Abstract
Poor survival of grafted cells is the major impediment of successful cell-based therapies for bone regeneration. Implanted cells undergo rapid death in an ischemic environment largely because of hypoxia and metabolic stress from glucose deficiency. Understanding the intracellular metabolic processes and finding genes that can improve cell survival in these inhospitable conditions are necessary to enhance the success of cell therapies. Thus, the purpose of this study was to investigate changes of metabolic profile in glucose-deprived human bone marrow stromal/stem cells (hBMSCs) through metabolomics analysis and discover genes that could promote cell survival and osteogenic differentiation in a glucose-deprived microenvironment. Metabolomics analysis was performed to determine metabolic changes in a glucose stress metabolic model. In the absence of glucose, expression levels of all metabolites involved in glycolysis were significantly decreased than those in a glucose-supplemented state. In glucose-deprived osteogenic differentiation, reliance on tricarboxylic acid cycle (TCA)-predicted oxidative phosphorylation instead of glycolysis as the main mechanism for energy production in osteogenic induction. By comparing differentially expressed genes between glucose-deprived and glucose-supplemented hBMSCs, NR2F1 (Nuclear Receptor Subfamily 2 Group F Member 1) gene was discovered to be associated with enhanced survival and osteogenic differentiation in cells under metabolic stress. Small, interfering RNA (siRNA) for NR2F1 reduced cell viability and osteogenic differentiation of hBMSCs under glucose-supplemented conditions whereas NR2F1 overexpression enhanced osteogenic differentiation and cell survival of hBMSCs in glucose-deprived osteogenic conditions via the protein kinase B (AKT)/extracellular signal-regulated kinase (ERK) pathway. NR2F1-transfected hBMSCs significantly enhanced new bone formation in a critical size long-bone defect of rats compared with control vector-transfected hBMSCs. In conclusion, the results of this study provide an understanding of the metabolic profile of implanted cells in an ischemic microenvironment and demonstrate that NR2F1 treatment may overcome this deprivation by enhancing AKT and ERK regulation. These findings can be utilized in regenerative medicine for bone regeneration. © 2022 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Eugene Lee
- Research Institute for Integrative Regenerative Biomedical Engineering, Dongguk University, Goyang, Republic of Korea
| | - Seo-Young Park
- Research Institute for Integrative Regenerative Biomedical Engineering, Dongguk University, Goyang, Republic of Korea
| | - Jae-Yeon Moon
- Research Institute for Integrative Regenerative Biomedical Engineering, Dongguk University, Goyang, Republic of Korea
| | - Ji-Yun Ko
- Research Institute for Integrative Regenerative Biomedical Engineering, Dongguk University, Goyang, Republic of Korea
| | - Tae Kyung Kim
- Research Institute for Integrative Regenerative Biomedical Engineering, Dongguk University, Goyang, Republic of Korea
| | - Gun-Il Im
- Research Institute for Integrative Regenerative Biomedical Engineering, Dongguk University, Goyang, Republic of Korea.,Department of Orthopaedics, Dongguk University Ilsan Hospital, Goyang, Republic of Korea
| |
Collapse
|
8
|
Luo D, Liu Y, Yuan S, Bi X, Yang Y, Zhu H, Li Z, Ji L, Yu X. The emerging role of NR2F1-AS1 in the tumorigenesis and progression of human cancer. Pathol Res Pract 2022; 235:153938. [DOI: 10.1016/j.prp.2022.153938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/27/2022] [Accepted: 05/04/2022] [Indexed: 11/29/2022]
|
9
|
Xue ST, Zheng B, Cao SQ, Ding JC, Hu GS, Liu W, Chen C. Long non-coding RNA LINC00680 functions as a ceRNA to promote esophageal squamous cell carcinoma progression through the miR-423-5p/PAK6 axis. Mol Cancer 2022; 21:69. [PMID: 35255921 PMCID: PMC8900330 DOI: 10.1186/s12943-022-01539-3] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 02/12/2022] [Indexed: 12/13/2022] Open
Abstract
Background Esophageal squamous cell carcinoma (ESCC) is a common invasive malignancy worldwide with poor clinical outcomes. Increasing amount of long non-coding RNAs (lncRNAs) have been reported to be involved in cancer development. However, lncRNAs that are functional in ESCC and the underlying molecular mechanisms remain largely unknown. Methods Transcriptomic analysis was performed to identify dysregulated lncRNAs in ESCC tissue samples. The high expression of LINC00680 in ESCC was validated by RT-qPCR, and the oncogenic functions of LINC00680 was investigated by cell proliferation, colony formation, migration and invasion assays in ESCC cells in vitro and xenografts derived from ESCC cells in mice. RNA-seq, competitive endogenous RNA (ceRNA) network analysis, and luciferase reporter assays were carried out to identify LINC00680 target genes and the microRNAs (miRNAs) bound to LINC00680. Antisense oligonucleotides (ASOs) were used for in vivo treatment. Results Transcriptome profiling revealed that a large number of lncRNAs was dysregulated in ESCC tissues. Notably, LINC00680 was highly expressed, and upregulation of LINC00680 was associated with large tumor size, advanced tumor stage, and poor prognosis. Functionally, knockdown of LINC00680 restrained ESCC cell proliferation, colony formation, migration, and invasion in vitro and inhibited tumor growth in vivo. Mechanistically, LINC00680 was found to act as a ceRNA by sponging miR-423-5p to regulate PAK6 (p21-activated kinase 6) expression in ESCC cells. The cell viability and motility inhibition induced by LINC00680 knockdown was significantly reversed upon PAK6 restoration and miR-423-5p inhibition. Furthermore, ASO targeting LINC00680 substantially suppressed ESCC both in vitro and in vivo. Conclusions An oncogenic lncRNA, LINC00680, was identified in ESCC, which functions as a ceRNA by sponging miR-423-5p to promote PAK6 expression and ESCC. LINC00680/miR-423-5p/PAK6 axis may serve as promising diagnostic and prognostic biomarkers and therapeutic targets for ESCC. Supplementary Information The online version contains supplementary material available at 10.1186/s12943-022-01539-3.
Collapse
|
10
|
Kim EJ, Kim JS, Lee S, Cheon I, Kim SR, Ko YH, Kang K, Tan X, Kurie JM, Ahn YH. ZEB1-regulated lnc-Nr2f1 promotes the migration and invasion of lung adenocarcinoma cells. Cancer Lett 2022; 533:215601. [PMID: 35176421 DOI: 10.1016/j.canlet.2022.215601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/11/2022] [Accepted: 02/11/2022] [Indexed: 11/25/2022]
Abstract
Numerous long non-coding RNAs (lncRNAs) are differentially expressed in cancer cells compared with normal cells and are involved in tumor progression and metastasis. Metastasis is initiated by the epithelial-to-mesenchymal transition (EMT) process, which can also be regulated by lncRNAs. Given that ZEB1 is an important transcription factor inducing EMT, we screened lncRNAs controlled by ZEB1 using RNA sequencing in murine lung adenocarcinoma cells. Among several lncRNAs regulated by ZEB1, we selected lnc-Nr2f1. Lnc-Nr2f1 is upregulated by ZEB1 and TGF-β, a potent EMT signal. Growth, migration, and invasion of lung adenocarcinoma cells were decreased after lnc-Nr2f1 knockdown and increased after lnc-Nr2f1 overexpression. Interestingly, lnc-Nr2f1 was transcriptionally controlled by NR2F1, a transcription factor that is transcribed in the antisense direction. NR2F1 was also upregulated and positively correlated with ZEB1, forming a ZEB1/NR2F1/lnc-Nr2f1 axis. Lnc-Nr2f1, in turn, promoted Twist2 transcription through direct binding to its genomic DNA region. Collectively, lnc-Nr2f1 was upregulated by ZEB1 and NR2F1, and promoted migration and invasion of lung adenocarcinoma cells via TWIST2 regulation.
Collapse
Affiliation(s)
- Eun Ju Kim
- Department of Molecular Medicine and Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, Seoul, 07804, South Korea
| | - Jeong Seon Kim
- Department of Molecular Medicine and Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, Seoul, 07804, South Korea; Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40536, USA
| | - Sieun Lee
- Department of Molecular Medicine and Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, Seoul, 07804, South Korea
| | - Inyoung Cheon
- Department of Molecular Medicine and Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, Seoul, 07804, South Korea
| | - Seo Ree Kim
- Division of Oncology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea
| | - Yoon Ho Ko
- Division of Oncology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea
| | - Keunsoo Kang
- Department of Microbiology, College of Science & Technology, Dankook University, Cheonan, Chungnam, 31116, South Korea
| | - Xiaochao Tan
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jonathan M Kurie
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Young-Ho Ahn
- Department of Molecular Medicine and Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, Seoul, 07804, South Korea.
| |
Collapse
|
11
|
Zhong Y, Zeng W. NR2F1-AS1 Acts as an Oncogene in Breast Cancer by Competitively Binding with miR-641. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:6778199. [PMID: 35083026 PMCID: PMC8786478 DOI: 10.1155/2022/6778199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 12/31/2021] [Indexed: 11/17/2022]
Abstract
BACKGROUND Long noncoding RNA (lncRNA) NR2F1-AS1 has been previously reported to be dysregulated in human cancers and implicated in the tumorigenesis and development of tumors. In this research, we detected the expression level and biological function of NR2F1-AS1 in breast cancer (BC). METHODS The expression of NR2F1-AS1 in BC tissues and cell lines was determined by qRT-PCR analysis. The associations of NR2F1-AS1 expression with clinical characteristics and survival rate of BC patients were also analyzed. Cell proliferation, migration, and invasion were measured by the CCK-8 and Transwell assay. RESULTS The results revealed that the total survival time of BC patients with high NR2F1-AS1 expression was lower than that of BC patients with low NR2F1-AS1 expression. Moreover, functional experiments demonstrated that knockdown of NR2F1-AS1 inhibited BC cell viability, migration, and invasion abilities, whereas overexpression of NR2F1-AS1 had the opposite effect. Mechanistic investigation revealed that NR2F1-AS1 can competitively bind with microRNA-641 (miR-641) in BC. These results revealed that NR2F1-AS1 functioned as an oncogene by sponging miR-641 expression in BC cell progression. Moreover, miR-641 was negatively correlated with NR2F1-AS1 in BC tissues. CONCLUSION Hence, NR2F1-AS1 was found to act as an oncogene in breast cancer by suppressing miR-641. We suggested that NR2F1-AS1 could be a potential biomarker for BC diagnosis and therapy.
Collapse
Affiliation(s)
- Yan Zhong
- Department of Breast and Thyroid Surgery, Shenzhen Baoan Women's and Children's Hospital, Shenzhen 518102, China
| | - Weiwei Zeng
- Department of Pharmacy, Shenzhen Baoan Women's and Children's Hospital, Shenzhen 518102, China
| |
Collapse
|
12
|
Zuo F, Zhang Y, Li J, Yang S, Chen X. Long noncoding RNA NR2F1-AS1 plays a carcinogenic role in gastric cancer by recruiting transcriptional factor SPI1 to upregulate ST8SIA1 expression. Bioengineered 2021; 12:12345-12356. [PMID: 34738863 PMCID: PMC8810033 DOI: 10.1080/21655979.2021.2001168] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/28/2021] [Accepted: 10/28/2021] [Indexed: 12/13/2022] Open
Abstract
Gastric cancer (GC) is a highly malignant solid tumor of the digestive tract, which is associated with a high mortality rate. Long non-coding RNA (lncRNA) nuclear receptor subfamily 2 group F member 1 antisense RNA 1 (NR2F1-AS1) has been reported to exert a tumor-promoting effect in some types of cancer. The present study aimed to investigate the role of NR2F1-AS1 in GC. The expression levels of NR2F1-AS1 and its potential target gene were measured in GC cell lines. Bioinformatics analysis, an RNA immunoprecipitation assay and a chromatin immunoprecipitation assay were used to determine the binding relationship between NR2F1-AS1 and downstream genes. The effect of NR2F1-AS1 regulatory axis on AGC cell viability, proliferation, migration, invasion and epithelial-mesenchymal transition was evaluated. The results of the present study revealed that the knockdown of NR2F1-AS1 inhibited the proliferation, invasion and migration of GC cells. NR2F1-AS1 also upregulated the expression levels of ST8SIA1 by recruiting transcriptional factor SPI1. Thus, the effects of the knockdown of NR2F1-AS1 on GC cell functions were suggested to occur via regulation of ST8SIA1. In conclusion, the findings of the current study indicated that NR2F1-AS1 may promote the proliferation, invasion and migration of GC cells by recruiting SPI1, to upregulate ST8SIA1 expression. Thus, the regulation of their expression levels may provide a novel direction for the treatment of GC.
Collapse
Affiliation(s)
- Fang Zuo
- Department of Health Care, Jinan Central Hospital, Jinan, Shandong, China
| | - Yong Zhang
- Department of Spleen and Stomach Diseases, Liaocheng Chinese Medicine Hospital, Liaocheng, Shandong, China
| | - Jianting Li
- Department of Health Care, Jinan Central Hospital, Jinan, Shandong, China
| | - Shaoxiang Yang
- Department of Health Care, Jinan Central Hospital, Jinan, Shandong, China
| | - Xiaolu Chen
- Department of Oncology, Jinan Central Hospital, Jinan, Shandong, China
| |
Collapse
|
13
|
Wen X, Du J, Wang X. Circ_0039411 promotes papillary thyroid carcinoma development through mediating the miR-423-5p/SOX4 signaling. Int J Biol Markers 2021; 36:10-20. [PMID: 34738852 DOI: 10.1177/17246008211043128] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Papillary thyroid carcinoma is the most frequent histological subtype of thyroid cancer with a high incidence. We aimed to explore the function of circular RNA_0039411 (circ_0039411) and its associated mechanism in papillary thyroid carcinoma progression. METHODS Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and Western blot assay were conducted to determine the expression of RNA and protein, respectively. The colony formation ability, migration, invasion, and apoptosis were analyzed by colony formation assay, transwell migration assay, transwell invasion assay, and flow cytometry. Cell glycolytic metabolism was analyzed using fluorescence-based glucose assay kit and fluorescence-based lactate assay kit. Dual-luciferase reporter assay and RNA-Pull-Down Assay were performed to validate the binding between microRNA-423-5p (miR-423-5p) and circ_0039411 or SRY-box transcription factor 4 (SOX4). The xenograft tumor model was used to assess the role of circ_0039411 in the tumor growth in vivo. RESULTS Circ_0039411 was highly expressed in papillary thyroid carcinoma tissues and cell lines compared with adjacent normal tissues and NTHY-ORI3.1 cells. Circ_0039411 interference suppressed the colony formation ability, migration, invasion, and glycolysis but promoted the apoptosis of papillary thyroid carcinoma cells. MiR-423-5p was a target of circ_0039411 in papillary thyroid carcinoma cells. Circ_0039411 knockdown-mediated effects in papillary thyroid carcinoma cells were largely overturned by the silence of miR-423-5p. MiR-423-5p bound to the 3' untranslated region (3'UTR) of SOX4. SOX4 overexpression largely reversed circ_0039411 silencing-mediated effects in papillary thyroid carcinoma cells. Circ_0039411 positively regulated SOX4 expression by sponging miR-423-5p in papillary thyroid carcinoma cells. Circ_0039411 silencing notably suppressed the growth of xenograft tumors in vivo. CONCLUSION Circ_0039411 promoted the malignant behaviors of papillary thyroid carcinoma cells partly depending on the regulation of the miR-423-5p/SOX4 axis.
Collapse
Affiliation(s)
- Xiaohui Wen
- Department of Otolarygology Head & Neck Surgery, Beijing Chao-yang Hospital, Capital Medical University, Beijing City, China
| | - Jingyan Du
- Department of Otolarygology Head & Neck Surgery, Beijing Chao-yang Hospital, Capital Medical University, Beijing City, China
| | - Xun Wang
- Department of Otolarygology Head & Neck Surgery, Beijing Chao-yang Hospital, Capital Medical University, Beijing City, China
| |
Collapse
|
14
|
Li H, Liu F, Wang X, Li M, Li Z, Xie Y, Guo Y. Identification of Hub lncRNAs Along With lncRNA-miRNA-mRNA Network for Effective Diagnosis and Prognosis of Papillary Thyroid Cancer. Front Pharmacol 2021; 12:748867. [PMID: 34721037 PMCID: PMC8548639 DOI: 10.3389/fphar.2021.748867] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/22/2021] [Indexed: 02/05/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) play important roles in tumorigenesis and progression of different cancers and they have been potential biomarkers for cancer diagnosis and prognosis. As the most common endocrine malignancy, precise diagnosis and prognosis of papillary thyroid cancer (PTC) is of great clinical significance. Here, we aim to identify new hub lncRNAs for marking PTC and constructed prognostics signatures based on lncRNA- miRNA-mRNA competing endogenous RNAs (ceRNA) network to predict overall survival (OS) and disease-free survival (DFS) respectively. Five reliable hub lncRNAs were identified by integrating differential genes of four Gene Expression Omnibus (GEO) gene chips using the RobustRankAggreg (RRA) method. Based on differential analyses and interaction prediction, a lncRNA-mRNA co-expression network and a lncRNA-miRNA-mRNA ceRNA network were established. Then a comprehensive function characterization of the five hub lncRNAs was performed, including validation dataset testing, receiver operating characteristic (ROC) curve analysis, and functional analysis on two networks. All results suggest that these five hub lncRNAs could be potential biomarkers for marking PTC. The ceRNA network was used to identify RNAs which were associated with PTC prognosis. Two prognostic signatures were developed using univariate and step-wise multivariate Cox regression analyses and both of them were independent prognostic indicators for PTC OS and DFS. Tumor microenvironment difference analysis between high and low-risk patients showed that dendritic cells activated and macrophages M0 may be a possible target for immunotherapy of PTC. In addition, disclosing the potential drugs that may reverse the expression of hub genes may improve the prognosis of patients with PTC. Here, connectivity map (CMap) analysis indicates that three bioactive chemicals (pioglitazone, benserazide, and SB-203580) are promising therapeutic agents for PTC. So, the paper presents a comprehensive study on diagnosis, prognosis, and potential drug screening for PTC based on the five hub lncRNAs identified by us.
Collapse
Affiliation(s)
- Haiyan Li
- College of Chemistry, Sichuan University, Chengdu, China
| | - Feng Liu
- Department of Thyroid Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Xiaoyang Wang
- College of Chemistry, Sichuan University, Chengdu, China
| | - Menglong Li
- College of Chemistry, Sichuan University, Chengdu, China
| | - Zhihui Li
- Department of Thyroid Surgery, West China Hospital of Sichuan University, Chengdu, China.,Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital of Sichuan University, Chengdu, China
| | - Yongmei Xie
- Department of Thyroid Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Yanzhi Guo
- College of Chemistry, Sichuan University, Chengdu, China
| |
Collapse
|
15
|
Luo D, Liu Y, Li Z, Zhu H, Yu X. NR2F1-AS1 Promotes Pancreatic Ductal Adenocarcinoma Progression Through Competing Endogenous RNA Regulatory Network Constructed by Sponging miRNA-146a-5p/miRNA-877-5p. Front Cell Dev Biol 2021; 9:736980. [PMID: 34650983 PMCID: PMC8505696 DOI: 10.3389/fcell.2021.736980] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/02/2021] [Indexed: 12/28/2022] Open
Abstract
The role of NR2F1-AS1 in pancreatic ductal adenocarcinoma (PDAC) remains unknown. Therefore, we aimed to investigate the biological mechanism of NR2F1-AS1 in PDAC. The expression of NR2F1-AS1 was measured by using microarray data and real-time PCR. The effects of NR2F1-AS1 knockdown on proliferation, cell cycle progression, invasion in vitro and tumorigenesis in vivo were investigated. The mechanism of competitive endogenous RNAs was determined from bioinformatics analyses and validated by a dual-luciferase reporter gene assay. Potential target mRNAs from TargetScan 7.2 were selected for subsequent bioinformatics analysis. Key target mRNAs were further identified by screening hub genes and coexpressed protein-coding genes (CEGs) of NR2F1-AS1. NR2F1-AS1 was highly expressed in PDAC, and the overexpression of NR2F1-AS1 was associated with overall survival and disease-free survival. The knockdown of NR2F1-AS1 impaired PDAC cell proliferation, migration, invasion and tumorigenesis. NR2F1-AS1 competitively sponged miR-146a-5p and miR-877-5p, and low expression of the two miRNAs was associated with a poor prognosis. An integrative expression and survival analysis of the hub genes and CEGs demonstrated that the NR2F1-AS1–miR-146a-5p/miR-877-5p–GALNT10/ZNF532/SLC39A1/PGK1/LCO3A1/NRP2/LPCAT2/PSMA4 and CLTC ceRNA networks were linked to the prognosis of PDAC. In conclusion, NR2F1-AS1 overexpression was significantly associated with poor prognosis. NR2F1-AS1 functions as an endogenous RNA to construct a novel ceRNA network by competitively binding to miR-146a-5p/miR-877-5p, which may contribute to PDAC pathogenesis and could represent a promising diagnostic biomarker or potential novel therapeutic target in PDAC.
Collapse
Affiliation(s)
- Dong Luo
- Department of Hepatopancreatobiliary Surgery, Third Xiangya Hospital, Central South University, Changsha, China
| | - Yunfei Liu
- Department of Hepatopancreatobiliary Surgery, Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhiqiang Li
- Department of Hepatopancreatobiliary Surgery, Third Xiangya Hospital, Central South University, Changsha, China
| | - Hongwei Zhu
- Department of Hepatopancreatobiliary Surgery, Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiao Yu
- Department of Hepatopancreatobiliary Surgery, Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
16
|
Wang X, Zheng J, Wen D, Li C, Li X. MiR-153 Enriched in Bone Marrow Mesenchymal Stem Cell-Derived Exosomes Promotes Chemotherapy Sensitivity of Papillary Thyroid Carcinoma. J BIOMATER TISS ENG 2021. [DOI: 10.1166/jbt.2021.2768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Our study assesses the effect of bone marrow mesenchymal stem cells (BMSCs) exosomes miR-153 on papillary thyroid carcinoma (PTC). Adipogenesis and osteogenic induction of MSCs was performed and labeled with Cy5 labeled miR inhibitor. Cells were transfected followed by analysis of miR-153
level by real-time PCR, P-gp level by immunoblotting, and cell viability. MSCs are non-hematopoietic bone marrow-derived cells and symmetrical fibroblasts have the same characteristics as MSCs. MSCs have the potential for adipogenesis and osteogenic differentiation; miR-Cy5 can only enter
PTC cells through vesicle transfer. TMZ treatment upregulated miR-153 in exosomes; MSC-derived exosomes can be directly transferred to PTC cells. miR-153-inhibitor-Cy5 can effectively inhibit miR-153 transcription and expression of resistance-related proteins. miR-153-inhibitor can promote
TMZ’s effect and lead to cell death as demonstrated by increased level of active caspase-3. Inhibiting the endogenous transcription of miR-153 by miR-153 inhibitor can significantly down-regulate cell resistance protein, thereby promoting cell apoptosis under the action of TMZ.
Collapse
Affiliation(s)
- Xiaoxin Wang
- Department of Nuclear Medicine, First Affiliated Hospital of Qiqihar Medical College, Qiqihar, Heilongjiang, 161041, China
| | - Jia Zheng
- Department of Ultrasound, First Affiliated Hospital of Qiqihar Medical College, Qiqihar, Heilongjiang, 161041, China
| | - Donghu Wen
- Department of Hematology, First Affiliated Hospital of Qiqihar Medical College, Qiqihar, Heilongjiang, 161041, China
| | - Chunxiang Li
- Department of Nuclear Medicine, First Affiliated Hospital of Qiqihar Medical College, Qiqihar, Heilongjiang, 161041, China
| | - Xingjiang Li
- Department of Thyroid Surgery, First Affiliated Hospital of Qiqihar Medical College, Qiqihar, Heilongjiang, 161041, China
| |
Collapse
|
17
|
Liu Y, Zhang P, Wu Q, Fang H, Wang Y, Xiao Y, Cong M, Wang T, He Y, Ma C, Tian P, Liang Y, Qin LX, Yang Q, Yang Q, Liao L, Hu G. Long non-coding RNA NR2F1-AS1 induces breast cancer lung metastatic dormancy by regulating NR2F1 and ΔNp63. Nat Commun 2021; 12:5232. [PMID: 34475402 PMCID: PMC8413371 DOI: 10.1038/s41467-021-25552-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 08/17/2021] [Indexed: 12/23/2022] Open
Abstract
Disseminated tumor cells often fall into a long term of dormant stage, characterized by decreased proliferation but sustained survival, in distant organs before awakening for metastatic growth. However, the regulatory mechanism of metastatic dormancy and awakening is largely unknown. Here, we show that the epithelial-like and mesenchymal-like subpopulations of breast cancer stem-like cells (BCSCs) demonstrate different levels of dormancy and tumorigenicity in lungs. The long non-coding RNA (lncRNA) NR2F1-AS1 (NAS1) is up-regulated in the dormant mesenchymal-like BCSCs, and functionally promotes tumor dissemination but reduces proliferation in lungs. Mechanistically, NAS1 binds to NR2F1 mRNA and recruits the RNA-binding protein PTBP1 to promote internal ribosome entry site (IRES)-mediated NR2F1 translation, thus leading to suppression of ΔNp63 transcription by NR2F1. Furthermore, ΔNp63 downregulatio results in epithelial-mesenchymal transition, reduced tumorigenicity and enhanced dormancy of cancer cells in lungs. Overall, the study links BCSC plasticity with metastatic dormancy, and reveals the lncRNA as an important regulator of both processes. Disseminated tumor cells often become dormant before awakening for metastatic growth. Here, the authors report that the lncRNA, NR2F1-AS1, is upregulated in dormant mesenchymal-like breast cancer stem-like cells and promotes dissemination but inhibits proliferation, leading to metastatic dormancy.
Collapse
Affiliation(s)
- Yingjie Liu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.,Shanghai Institute of Nutrition and Health, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Chinese Academy of Sciences, Shanghai, China
| | - Peiyuan Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qiuyao Wu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Houqin Fang
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Yuan Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yansen Xiao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Min Cong
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Tingting Wang
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Yunfei He
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Chengxin Ma
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Pu Tian
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yajun Liang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Lun-Xiu Qin
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Qingcheng Yang
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Qifeng Yang
- Department of Breast Surgery, Qilu Hospital of Shandong University, Ji'nan, China
| | - Lujian Liao
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Guohong Hu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China. .,Shanghai Institute of Nutrition and Health, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
18
|
Zhong W, Wang D, Yao B, Chen X, Wang Z, Qu H, Ma B, Ye L, Qiu J. Integrative analysis of prognostic long non-coding RNAs with copy number variation in bladder cancer. J Zhejiang Univ Sci B 2021; 22:664-681. [PMID: 34414701 DOI: 10.1631/jzus.b2000494] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Copy number variations (CNVs), which can affect the role of long non-coding RNAs (lncRNAs), are important genetic changes seen in some malignant tumors. We analyzed lncRNAs with CNV to explore the relationship between lncRNAs and prognosis in bladder cancer (BLCA). Messenger RNA (mRNA) expression levels, DNA methylation, and DNA copy number data of 408 BLCA patients were subjected to integrative bioinformatics analysis. Cluster analysis was performed to obtain different subtypes and differently expressed lncRNAs and coding genes. Weighted gene co-expression network analysis (WGCNA) was performed to identify the co-expression gene and lncRNA modules. CNV-associated lncRNA data and their influence on cancer prognosis were assessed with Kaplan-Meier survival curve. Multi-omics integration analysis revealed five prognostic lncRNAs with CNV, namely NR2F1-AS1, LINC01138, THUMPD3-AS1, LOC101928489,and TMEM147-AS1,and a risk-score signature related to overall survival in BLCA was identified. Moreover, validated results in another independent Gene Expression Omnibus (GEO) dataset, GSE31684, were consistent with these results. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed that the mitogen-activated protein kinase (MAPK) signaling pathway, focal adhesion pathway, and Janus kinase-signal transducers and activators of transcription (JAK-STAT) signaling pathway were enriched in a high-risk score pattern, suggesting that imbalance in these pathways is closely related to tumor development. We revealed the prognosis-related lncRNAs by analyzing the expression profiles of lncRNAs and CNVs, which can be used as prognostic biomarkers for BLCA.
Collapse
Affiliation(s)
- Wenwen Zhong
- Department of Urology, the Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou 510655, China
| | - Dejuan Wang
- Department of Urology, the Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou 510655, China
| | - Bing Yao
- Department of Urology, the Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou 510655, China
| | - Xiaoxia Chen
- Department of Medical Record Management Section, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Zhongyang Wang
- Department of Urology, the Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou 510655, China
| | - Hu Qu
- Department of Urology, the Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou 510655, China
| | - Bo Ma
- Department of Urology, the Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou 510655, China
| | - Lei Ye
- Department of Urology, the Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou 510655, China
| | - Jianguang Qiu
- Department of Urology, the Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou 510655, China.
| |
Collapse
|
19
|
The Effect and Mechanism of lncRNA NR2F1-As1/miR-493-5p/MAP3K2 Axis in the Progression of Gastric Cancer. JOURNAL OF ONCOLOGY 2021; 2021:3881932. [PMID: 34335755 PMCID: PMC8294992 DOI: 10.1155/2021/3881932] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 07/02/2021] [Indexed: 02/07/2023]
Abstract
Background LncRNA NR2F1-AS1 has been identified as an oncogene in some human tumors, such as breast cancer, nonsmall cell lung cancer, and esophageal squamous cell carcinoma. Nonetheless, whether NR2F1-AS1 is involved in the progression of gastric cancer (GC) remains unknown. Methods The expression patterns of NR2F1-AS1, MAP3K2, and miR-493-5p in GC tissues and cells were detected by RT-qPCR. The protein expression of MAP3K2 was assessed by the Western blotting assay. The MTT assay and flow cytometry were performed to measure cell proliferation and cell apoptosis in GC cells. The transwell assay was adopted to assess cell migration in GC cells. The relationship between NR2F1-AS1, MAP3K2, and miR-493-5p was verified by a dual-luciferase reporter assay. Results The increased NR2F1-AS1 and MAP3K2 expressions were discovered in GC tissues and cells compared with control groups. Knockdown of NR2F1-AS1 and MAP3K2 dramatically suppressed cell proliferation and migration, while it enhanced cell apoptosis in GC cells. In addition, NR2F1-AS1 was found to be a sponge of miR-493-5p, and MAP3K2 was a downstream gene of miR-493-5p. Moreover, the expression of MAP3K2 was notably reduced by miR-493-5p, and NR2F1-AS1 counteracted the inhibition of miR-493-5p. Conclusion Thus, NR2F1-AS1 was verified to regulate GC cell progression by sponging miR-493-5p to upregulate MAP3K2 expression.
Collapse
|
20
|
Bai M, Wu ZZ, Huang YL, Ke J, Xu Q, Wang X. STAT3 activates the transcription of lncRNA NR2F1-AS1 to promote the progression of melanoma via regulating the miR-493-5p/GOLM1 axis. J Gene Med 2021; 23:e3338. [PMID: 33822440 DOI: 10.1002/jgm.3338] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/01/2021] [Accepted: 04/02/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) are vital regulators during the biological processes of melanoma. The present study aimed to uncover biological functions of lncRNA termed NR2F1 antisense RNA 1 (NR2F1-AS1) in melanoma and the potential mechanisms. METHODS Relative levels of NR2F1-AS1 and miR-493-5p in a total of 137 paired primary melanoma tissues and corresponding non-tumor tissues, as well as three melanoma cell lines, were examined by a real-time polymerase chain reaction. The clinical significance of NR2F1-AS1 expression was analyzed statistically. The STAT3 binding motif in the promoter region of NR2F1-AS1 was identified by JASPAR (http://jaspar.genereg.net). The association between STAT3 and NR2F1-AS1 was determined by dual-luciferase reporter and chromatin immunoprecipitation assays. The effects of NR2F1-AS1 on cell proliferation, migration and were measured by cell counting kit-8 (CCK-8), Edu, transwell and wound healing assays. Dual-luciferase reporter and RNA pull-down assays were applied to validate the interaction among NR2F1-AS1, miR-493-5p and GOLM1. Furthermore, in vivo experiments were conducted to demonstrate the oncogenic role of NR2F1-AS1 in melanoma. RESULTS Up-regulated NR2F1-AS1 and down-regulated miR-493-5p were detected in melanoma tumors and cells. The overexpression of NR2F1-AS1 was induced by STAT3. High NR2F1-AS1 expression was correlated to advanced tumor stage and poor prognosis of melanoma. Functional studies using CCK-8, Edu, transwell and wound healing assays revealed that the proliferative, migratory and invasive capacities of melanoma cells were attenuated by the by inhibition of NR2F1-AS1. Moreover, NR2F1-AS1 was able to up-regulate GOLM1 through recognizing and binding miR-493-5p. Furthermore, knockdown of miR-493-5p distinctly reversed these inhibitory effects of NR2F1-AS1 down-regulation on the tumorigenesis and progression of melanoma. CONCLUSIONS Our findings demonstrate a key role for NR2F1-AS1 in melanoma progression via targeting miR-493-5p/GOLM1 axis.
Collapse
Affiliation(s)
- Mei Bai
- Department of Dermatology, The Sixth People's Hospital affiliated to Shanghai Jiaotong University, Xuhui District, Shanghai, China
| | - Zong-Zhou Wu
- Department of Medical Cosmetic, Shanghai Dermatology Hospital, Xuhui, Shanghai, China
| | - Yan-Li Huang
- Department of Dermatology, The Sixth People's Hospital affiliated to Shanghai Jiaotong University, Xuhui District, Shanghai, China
| | - Jin Ke
- Department of Dermatology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Pudong, Shanghai, China
| | - Qing Xu
- Department of Medical Cosmetic, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei, China
| | - Xiong Wang
- Department of Dermatology, The Sixth People's Hospital affiliated to Shanghai Jiaotong University, Xuhui District, Shanghai, China
| |
Collapse
|
21
|
Zhao H, De Souza C, Kumar VE, Nambiar R, Hao D, Zhu X, Luo Y, Liu S, Zhang L, Zhu J. Long non-coding RNA signatures as predictors of prognosis in thyroid cancer: a narrative review. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:359. [PMID: 33708986 PMCID: PMC7944284 DOI: 10.21037/atm-20-8191] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/26/2021] [Indexed: 02/05/2023]
Abstract
Thyroid cancer (TC) is the most common endocrine malignancy, with high incidence rates in recent decades. Most TC cases have good prognoses, but a high risk of recurrence and metastases poses challenges, especially for patients with high-risk factors. Currently used prognostic markers for TC involve a combination of genetic factors and overexpressed proteins. Long non-coding RNAs (lncRNAs) regulate several integral biologic processes by playing key roles in the transcription of several downstream targets maintaining cellular behavior. Prior studies have revealed that lncRNAs promote tumor cell proliferation, invasion, metastasis, and angiogenesis, making them important targets for therapeutic intervention in cancer. While the exact molecular mechanisms underlying the role of lncRNAs in modulating TC progression and recurrence is still unclear, it is important to note that some lncRNAs are upregulated in certain cancers, while others are downregulated. In the present study, we review several key lncRNAs, their association with cancer progression, and the important roles they may play as tumor suppressors or tumor promoters in tumorigenesis. We discuss the potential mechanisms of lncRNA-mediated pathogenesis that can be targeted for the treatment of TC, the existing and potential benefits of using lncRNAs as diagnostic and prognostic measures for cancer detection, and tumor burden in patients.
Collapse
Affiliation(s)
- Hongyuan Zhao
- Department of Thyroid and Parathyroid Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Cristabelle De Souza
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Sacramento, CA, USA
- Institute for Regenerative Medicine and Stem Cell Research, Stanford University, Stanford, CA, USA
| | - Vigneshwari Easwar Kumar
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Sacramento, CA, USA
| | - Roshni Nambiar
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Sacramento, CA, USA
| | - Dake Hao
- Department of Surgery, School of Medicine, University of California, Sacramento, CA, USA
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA, USA
| | - Xiaofeng Zhu
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yi Luo
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Shengshan Liu
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Lingyun Zhang
- Department of Thyroid and Parathyroid Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Jingqiang Zhu
- Department of Thyroid and Parathyroid Surgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
22
|
Li X, Li Y, Bai S, Zhang J, Liu Z, Yang J. NR2F1-AS1/miR-140/HK2 Axis Regulates Hypoxia-Induced Glycolysis and Migration in Hepatocellular Carcinoma. Cancer Manag Res 2021; 13:427-437. [PMID: 33488124 PMCID: PMC7815091 DOI: 10.2147/cmar.s266797] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 09/09/2020] [Indexed: 12/12/2022] Open
Abstract
Background Hypoxia is an important feature for the progression of hepatocellular carcinoma (HCC). Long noncoding RNA nuclear receptor subfamily 2 group F member 1 antisense RNA 1 (NR2F1-AS1) is dysregulated in HCC. However, the role and mechanism of N2RF1-AS1 in hypoxia-induced glycolysis and migration remain unclear. Materials and Methods Tumor tissues and adjacent samples were harvested from 40 HCC patients. HCC cells were treated by hypoxia. The levels of NR2F1-AS1, microRNA (miR)-140, and hexokinase 2 (HK2) were examined via quantitative reverse transcription polymerase chain reaction or Western blot. Glycolysis was analyzed via glucose uptake, lactate production, and adenosine triphosphate (ATP) levels. Cell migration was analyzed via transwell assay. The target association was analyzed via dual-luciferase reporter assay and RNA immunoprecipitation. Results NR2F1-AS1 level was enhanced in HCC tissues and cells. High expression of NR2F1-AS1 indicated poor overall survival. Silence of NR2F1-AS1 repressed hypoxia-induced glycolysis and migration in HCC cells. NR2F1-AS1 could regulate HK2 expression by modulating miR-140. miR-140 down-regulation or HK2 up-regulation mitigated the influence of NR2F1-AS1 silence on hypoxia-induced glycolysis and migration in HCC cells. Conclusion NR2F1-AS1 knockdown restrained hypoxia-induced glycolysis and migration in HCC cells via increasing miR-140 and decreasing HK2.
Collapse
Affiliation(s)
- Xiao Li
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xian 710032, People's Republic of China
| | - Yize Li
- Department of Clinical Oncology, Xijing Hospital, Fourth Military Medical University, Xian 710032, People's Republic of China
| | - Shuang Bai
- Department of Clinical Oncology, Xijing Hospital, Fourth Military Medical University, Xian 710032, People's Republic of China
| | - Jing Zhang
- Department of Clinical Oncology, Xijing Hospital, Fourth Military Medical University, Xian 710032, People's Republic of China
| | - Zhengcai Liu
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xian 710032, People's Republic of China
| | - Jingyue Yang
- Department of Clinical Oncology, Xijing Hospital, Fourth Military Medical University, Xian 710032, People's Republic of China
| |
Collapse
|
23
|
Lin QY, Qi QL, Hou S, Chen Z, Zhang L, Zhao HG, Lin CH. LncRNA PVT1 Acts as a Tumor Promoter in Thyroid Cancer and Promotes Tumor Progression by Mediating miR-423-5p-PAK3. Cancer Manag Res 2021; 12:13403-13413. [PMID: 33408513 PMCID: PMC7779291 DOI: 10.2147/cmar.s283443] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 11/05/2020] [Indexed: 01/05/2023] Open
Abstract
Introduction Thyroid cancer (TC) is an endocrine tumor whose risk of onset has been rising, so the deep understanding of its molecular mechanism helps formulate new treatment strategies. Methods This paper was aimed at exploring the regulatory mechanism of long non-coding RNA (LncRNA) plasmacytoma variant translocation 1 (PVT1) in TC. The expression of PVT1, miR-423-5p and p21-activated kinase 3 (PAK3) in TC tissues and cell lines was detected by real-time PCR. PAK3 levels were detected by Western blot. Regulatory relationships between target genes and the proliferation, invasion and apoptosis of cells and genes were analyzed. Results PVT1 and PAK3 upregulated while miR-423-5p downregulated in the tissues and cell lines. PVT1 downregulation inhibited TC cells from malignantly proliferating and invading, and promoted their apoptosis. PVT1 specifically regulated miR-423-5p, and its overexpression could weaken the anti-tumor effect of this miR on TC cells. In addition, miR-423-5p directly targeted PAK3, and knocking down its expression could weaken the inhibitory effect of PAK3 downregulation on TC progression. Besides, PVT1 acted as a competitive endogenous RNA to sponge this miR and thus regulate PAK3 expression. Discussion In conclusion, PVT1 can mediate the molecular mechanism of the miR-423-5p-PAK3 axis regulatory network on regulating TC, so it is a new direction of treating the disease.
Collapse
Affiliation(s)
- Qiu-Yu Lin
- Nuclear Medicine Department, The First Hospital of Jilin University, Changchun City 130000, Jilin Province, People's Republic of China
| | - Qian-Le Qi
- Nuclear Medicine Department, The First Hospital of Jilin University, Changchun City 130000, Jilin Province, People's Republic of China
| | - Sen Hou
- Nuclear Medicine Department, The First Hospital of Jilin University, Changchun City 130000, Jilin Province, People's Republic of China
| | - Zhen Chen
- Chengdu Xinke Pharmaceutical Co., LTD, Chengdu City 610000, Sichuan Province, People's Republic of China
| | - Laney Zhang
- Biological Sciences at Cornell University (2022), Ithaca, NY, USA
| | - Hong-Guang Zhao
- Nuclear Medicine Department, The First Hospital of Jilin University, Changchun City 130000, Jilin Province, People's Republic of China
| | - Cheng-He Lin
- Nuclear Medicine Department, The First Hospital of Jilin University, Changchun City 130000, Jilin Province, People's Republic of China
| |
Collapse
|
24
|
Wei L, Liu Y, Zhang H, Ma Y, Lu Z, Gu Z, Ding C. TMPO-AS1, a Novel E2F1-Regulated lncRNA, Contributes to the Proliferation of Lung Adenocarcinoma Cells via Modulating miR-326/SOX12 Axis. Cancer Manag Res 2020; 12:12403-12414. [PMID: 33293866 PMCID: PMC7719338 DOI: 10.2147/cmar.s269269] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022] Open
Abstract
Background TMPO-AS1, an antisense lncRNA located at human chromosome 12p23.1, has been identified as an oncogene involved in cell proliferation in various cancers, including LUAD. In this study, we aimed to explore the novel molecular mechanism of TMPO-AS1 underlying LUAD growth. Materials and Methods The transcription levels of TMPO-AS1, miR-326, and SOX12 in LUAD tissues and cell lines were detected by quantitative real-time PCR (qRT-PCR). The cell proliferation ability was evaluatect 3d by cell counting kit-8 (CCK-8) assay. Cell cycle and apoptosis analysis was assessed by flow cytometry. The target relationship among TMPO-AS1, miR-326, and SOX12 and promoter activity of TMPO-AS1 was measured using dual-luciferase reporter assay. The protein levels of SOX12 in LUAD cells were determined by Western blot. ChIP-qPCR assay was performed to validate the direct binding between E2F1 and TMPO-AS1 promoter. Results TMPO-AS1 was up-regulated in LUAD tissues as well as cell lines. Boosted TMPO-AS1 expression was positively correlated with poor prognosis and pathological stage in LUAD. Down-regulation of TMPO-AS1 could restrain the proliferation of LUAD cells through arresting the cell cycle at G0/G1 phase and inducing apoptosis in vitro. Mechanically, we demonstrated that TMPO-AS1 could modulate the proliferation of LUAD cells through increasing SOX12 expression level via sponging miR-326 in accordance with bioinformatics analysis and experimental validation. Furthermore, we identified that TMPO-AS1 could be activated by E2F transcription factor 1 (E2F1) as a novel target gene. Conclusion TMPO-AS1 can modulate LUAD cell proliferation through E2F1/miR-326/SOX12 pathway.
Collapse
Affiliation(s)
- Lin Wei
- Department of Thoracic Surgery, Xi'an Chest Hospital, Xi'an 710100, People's Republic of China
| | - Yugang Liu
- Department of Thoracic Surgery, Xi'an Chest Hospital, Xi'an 710100, People's Republic of China
| | - Huijun Zhang
- Department of Thoracic Surgery, Xi'an Chest Hospital, Xi'an 710100, People's Republic of China
| | - Yuefeng Ma
- Department of Thoracic Surgery, The Second Affiliated Hospital of Xi'an Jiao Tong University, Xi'an 710004, People's Republic of China
| | - Zenghui Lu
- Department of Thoracic Surgery, Xi'an Chest Hospital, Xi'an 710100, People's Republic of China
| | - Zhenning Gu
- Department of Thoracic Surgery, Xi'an Chest Hospital, Xi'an 710100, People's Republic of China
| | - Chao Ding
- Department of Thoracic Surgery, Xi'an Chest Hospital, Xi'an 710100, People's Republic of China
| |
Collapse
|
25
|
Ke R, Lv L, Zhang S, Zhang F, Jiang Y. Functional mechanism and clinical implications of MicroRNA-423 in human cancers. Cancer Med 2020; 9:9036-9051. [PMID: 33174687 PMCID: PMC7724490 DOI: 10.1002/cam4.3557] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 08/16/2020] [Accepted: 09/21/2020] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs play a vital role in the regulatory mechanisms of tumorigenesis. Current research indicates that microRNA-423 (miR-423) is abnormally expressed in various human tumors and participates in multiple signaling pathways of cancer progression. In most studies, miR-423 was confirmed as oncomiR, while a few contradictory reports considered miR-423 as an anticancer miRNA. The paradoxical role in cancer may hinder the application of miR-423 as a diagnostic and therapeutic target. Simultaneously, the interaction mechanism between miR-423 and lncRNA also needs attention. In this review, we have summarized the dual role of aberrant miR-423 expression and its mechanisms in tumorigenesis, and the therapeutic potential of miR-423 in human tumors.
Collapse
Affiliation(s)
- RuiSheng Ke
- Department of General Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, China.,The Fuzong Clinical Medical College of Fujian Medical University, Fuzhou City, China
| | - LiZhi Lv
- The Fuzong Clinical Medical College of Fujian Medical University, Fuzhou City, China.,Department of Hepatobiliary Surgery, 900 Hospital of the Joint Logistics Team, Fuzhou City, China
| | - SiYu Zhang
- Department of General Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - FuXing Zhang
- Department of General Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Yi Jiang
- The Fuzong Clinical Medical College of Fujian Medical University, Fuzhou City, China.,Department of Hepatobiliary Surgery, 900 Hospital of the Joint Logistics Team, Fuzhou City, China
| |
Collapse
|
26
|
MicroRNA in Papillary Thyroid Carcinoma: A Systematic Review from 2018 to June 2020. Cancers (Basel) 2020; 12:cancers12113118. [PMID: 33113852 PMCID: PMC7694051 DOI: 10.3390/cancers12113118] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/19/2020] [Accepted: 10/21/2020] [Indexed: 02/06/2023] Open
Abstract
Simple Summary The most common form of endocrine cancer - papillary thyroid carcinoma, has an increasing incidence. Although this disease usually has an indolent behavior, there are cases when it can evolve more aggressively. It has been known for some time that it is possible to use microRNAs for the diagnosis, prognosis and even treatment monitoring of papillary thyroid cancer. The purpose of this study is to summarize the latest information provided by publications regarding the involvement of microRNAs in papillary thyroid cancer, underling the new clinical perspectives offered by these publications. Abstract The involvement of micro-ribonucleic acid (microRNAs) in metabolic pathways such as regulation, signal transduction, cell maintenance, and differentiation make them possible biomarkers and therapeutic targets. The purpose of this review is to summarize the information published in the last two and a half years about the involvement of microRNAs in papillary thyroid carcinoma (PTC). Another goal is to understand the perspective offered by the new findings. Main microRNA features such as origin, regulation, targeted genes, and metabolic pathways will be presented in this paper. We interrogated the PubMed database using several keywords: “microRNA” + “thyroid” + “papillary” + “carcinoma”. After applying search filters and inclusion criteria, a selection of 137 articles published between January 2018–June 2020 was made. Data regarding microRNA, metabolic pathways, gene/protein, and study utility were selected and included in the table and later discussed regarding the matter at hand. We found that most microRNAs regularly expressed in the normal thyroid gland are downregulated in PTC, indicating an important tumor-suppressor action by those microRNAs. Moreover, we showed that one gene can be targeted by several microRNAs and have nominally described these interactions. We have revealed which microRNAs can target several genes at once.
Collapse
|
27
|
Zhang C, Wu S, Song R, Liu C. Long noncoding RNA NR2F1-AS1 promotes the malignancy of non-small cell lung cancer via sponging microRNA-493-5p and thereby increasing ITGB1 expression. Aging (Albany NY) 2020; 13:7660-7675. [PMID: 32784268 PMCID: PMC7993723 DOI: 10.18632/aging.103564] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 06/05/2020] [Indexed: 02/07/2023]
Abstract
Several studies have reported that the long noncoding ribonucleic acid (lncRNA) NR2F1 antisense RNA 1 (NR2F1-AS1) affects multiple cellular pathways that are involved in tumorigenesis and tumor progression. The present study aimed to detect NR2F1-AS1 expression in non-small cell lung cancer (NSCLC), investigate the role of NR2F1-AS1 in promoting the tumorigenic behavior of NSCLC cells, and elucidate the mechanism underlying the effect of NR2F1-AS1 on NSCLC progression. Our results showed that NR2F1-AS1 expression was upregulated in NSCLC cells, and notably, its upregulation was correlated with adverse clinical characteristics and shorter overall survival in patients with NSCLC. The absence of NR2F1-AS1 functionally decreased NSCLC cell proliferation, migration, and invasion and promoted tumor cell apoptosis. In addition, the tumor growth of NSCLC cells in vivo was inhibited after NR2F1-AS1 silencing. Mechanistically, NR2F1-AS1 functioned as a competing endogenous RNA for miR-493-5p and consequently increased ITGB1 expression. Rescue assays further validated that an increased output of the miR-493-5p/ITGB1 axis could neutralize the regulatory impact of NR2F1-AS1 knockdown on the malignant phenotype of NSCLC cells. In summary, the NR2F1-AS1/miR-493-5p/ITGB1 pathway initiates pro-oncogenic behavior in NSCLC tumor progression, and the NR2F1-AS1/miR-493-5p/ITGB1 axis may provide new molecular targets for anticancer therapy against NSCLC.
Collapse
Affiliation(s)
- Chan Zhang
- Department of Respiratory Medicine, The Second Xiangya Hospital of Central South University, Changsha 410000, Hunan, China
- Department of Respiratory Medicine, The Fourth Hospital of Changsha, Changsha 410006, Hunan, China
| | - Shangjie Wu
- Department of Respiratory Medicine, The Second Xiangya Hospital of Central South University, Changsha 410000, Hunan, China
| | - Rong Song
- Department of Anesthesiology, The Second Xiangya Hospital of Central South University, Changsha 410000, Hunan, China
| | - Changming Liu
- Department of Infectious Diseases, The First Hospital of Changsha, Changsha 410000, Hunan, China
| |
Collapse
|
28
|
Jia G, Wang Y, Yu Y, Li Z, Wang X. Long non‑coding RNA NR2F1‑AS1 facilitates the osteosarcoma cell malignant phenotype via the miR‑485‑5p/miR‑218‑5p/BIRC5 axis. Oncol Rep 2020; 44:1583-1595. [PMID: 32945459 PMCID: PMC7448419 DOI: 10.3892/or.2020.7698] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 06/17/2020] [Indexed: 12/18/2022] Open
Abstract
Long non-coding RNA (lncRNA) NR2F1 antisense RNA 1 (NR2F1-AS1) has been reported to be an oncogene in several cancer types, including osteosarcoma (OS). However, the underlying fundamental molecular mechanism of NR2F1-AS1 in OS remains largely unknown, which the present study aimed to elucidate. The present study demonstrated that NR2F1-AS1 expression is markedly increased in OS, and NR2F1-AS1 was shown to exert oncogenic functions in OS. Further molecular mechanistic studies revealed that microRNA (miR)-485-5p and miR-218-5p were direct targets of NR2F1-AS1. More importantly, miR-485-5p and miR-218-5p exhibited low expression levels and were negatively correlated with NR2F1-AS1 expression in OS tissues. It was then identified that baculoviral inhibitor of apoptosis repeat-containing 5 (BIRC5) was a direct target of miR-485-5p and miR-218-5p in OS cells. Furthermore, a series of experiments suggested that NR2F1-AS1 affects the proliferation, migration, invasion and apoptosis of OS cells by regulating BIRC5. Finally, it was revealed that silencing of NR2F1-AS1 repressed the OS cell malignant phenotype by binding with miR-485-5p and miR-218-5p, and then downregulating BIRC5 expression, which suggests that the NR2F1-AS1/miR-485-5p/miR-218-5p/BIRC5 axis could be a potential target for treating OS.
Collapse
Affiliation(s)
- Guanghui Jia
- Department of Foot and Ankle Surgery, Zhengzhou Orthopedics Hospital, Zhengzhou, Henan 450052, P.R. China
| | - Yalei Wang
- Department of Foot and Ankle Surgery, Zhengzhou Orthopedics Hospital, Zhengzhou, Henan 450052, P.R. China
| | - Yali Yu
- Department of Laboratory, Zhengzhou Orthopedics Hospital, Zhengzhou, Henan 450052, P.R. China
| | - Zijun Li
- Department of Laboratory, Zhengzhou Orthopedics Hospital, Zhengzhou, Henan 450052, P.R. China
| | - Xiangyu Wang
- Department of Foot and Ankle Surgery, Zhengzhou Orthopedics Hospital, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
29
|
Wu J, Huang H, Huang W, Wang L, Xia X, Fang X. Analysis of exosomal lncRNA, miRNA and mRNA expression profiles and ceRNA network construction in endometriosis. Epigenomics 2020; 12:1193-1213. [PMID: 32462942 DOI: 10.2217/epi-2020-0084] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Aim: To investigate exosomal RNAs (long noncoding RNAs (lncRNAs), microRNAs (miRNAs) and messenger RNAs (mRNAs)) profiling and their related networks in endometriosis (EMs). Materials & methods: RNA sequence was performed in exosomes from ovarian endometriomas (EC), eutopic endometria (EU) and normal endometria (Control) stromal cells. The bioinformatics algorithms evaluated competing endogenous RNA (ceRNA) networks. The top-ranked ceRNA networks were confirmed by RT-PCR. Results: Overlapped differentially expressed 938 lncRNAs, 39 miRNAs and 1449 mRNAs were identified. 13 co-expression modules and 61 ceRNA networks were constructed. Conclusion: This study for the first time shows exosomal RNA biomarkers and lncRNA-related networks in EMs, which reveals a novel molecular mechanism of EMs and provides new resources for EM diagnosis and treatment.
Collapse
Affiliation(s)
- Jingni Wu
- Department of Obstetrics & Gynecology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Hongyan Huang
- Department of Obstetrics & Gynecology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Wei Huang
- Research Center of Carcinogenesis & Targeted Therapy, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.,China The Higher Educational Key Laboratory for Cancer Proteomics & Translational Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Lei Wang
- NHC Key Laboratory of Carcinogenesis & The Key Laboratory of Carcinogenesis & Cancer Invasion of The Chinese Ministry of Education, Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China
| | - Xiaomeng Xia
- Department of Obstetrics & Gynecology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Xiaoling Fang
- Department of Obstetrics & Gynecology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| |
Collapse
|
30
|
Xu H, Ji L, Yu C, Chen Q, Ge Q, Lu Y. MiR-423-5p Regulates Cells Apoptosis and Extracellular Matrix Degradation via Nucleotide-Binding, Leucine-Rich Repeat Containing X1 (NLRX1) in Interleukin 1 beta (IL-1β)-Induced Human Nucleus Pulposus Cells. Med Sci Monit 2020; 26:e922497. [PMID: 32467560 PMCID: PMC7254941 DOI: 10.12659/msm.922497] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Disc degeneration is characterized partly by the degradation in the extracellular matrix (ECM) and excess apoptosis of nucleus pulposus (NP) cells. NLRX1 (nucleotide-binding, leucine-rich repeat containing X1) is different from the other nucleotide-binding-domain and leucine-rich-repeat proteins and mainly located to the mitochondrial. It negatively regulates NF-κB (nuclear factor kappa B) and apoptosis inhibition. However, how NLRX1 is regulated and exerts effects in disc degeneration is unclear. Thus, the study aimed to analyze the effects of NLRX1 on NP cells. MATERIAL AND METHODS NLRX1 expression was detected in interleukin (IL)-1β-induced NP cells by western blot and quantitative real-time polymerase chain reaction (qRT-PCR). Then, NLRX1 was overexpressed in IL-1β-induced NP cells to detect apoptosis-related proteins and the extracellular matrix (ECM) by western blot, along with the detection of apoptosis levels using flow cytometry. StarBase predicted miR-423-5p target 3'UTR of NLRX1. Dual luciferase reporter assay showed that miR-423-5p could bind to the 3'UTR of NLRX1. Besides, miR-423-5p significantly affected NLRX1 levels detected by qRT-qPCR. RESULTS The miR-423-5p overexpression markedly, and negatively regulated the protective effects of NLRX1 on IL-1β induced NP cells. Thus, our results suggested that miR-423-5p mediated the regulation of NLRX1 to affect apoptosis and ECM levels in IL-1β induced NP cells. CONCLUSIONS miR-423-5p and NLRX1 could be potential therapeutic targets for patients with disc degeneration.
Collapse
Affiliation(s)
- Hanrong Xu
- Department of Orthopaedics, Shangyu People's Hospital of Shaoxing, Shaoxing, Zhejiang, China (mainland)
| | - Liefeng Ji
- Department of Orthopaedics, Shangyu People's Hospital of Shaoxing, Shaoxing, Zhejiang, China (mainland)
| | - Chunhua Yu
- Department of Orthopaedics, Shangyu People's Hospital of Shaoxing, Shaoxing, Zhejiang, China (mainland)
| | - Qiming Chen
- Department of Orthopaedics, Shangyu People's Hospital of Shaoxing, Shaoxing, Zhejiang, China (mainland)
| | - Qiangqiang Ge
- Department of Orthopaedics, Shangyu People's Hospital of Shaoxing, Shaoxing, Zhejiang, China (mainland)
| | - Yinjiang Lu
- Department of Orthopaedics, Shangyu People's Hospital of Shaoxing, Shaoxing, Zhejiang, China (mainland)
| |
Collapse
|
31
|
Gao H, Sun X, Wang H, Zheng Y. Long noncoding RNA SNHG22 increases ZEB1 expression via competitive binding with microRNA-429 to promote the malignant development of papillary thyroid cancer. Cell Cycle 2020; 19:1186-1199. [PMID: 32306838 PMCID: PMC7217354 DOI: 10.1080/15384101.2020.1749466] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 12/28/2019] [Accepted: 03/08/2020] [Indexed: 02/07/2023] Open
Abstract
Long noncoding RNA termed small nucleolar RNA host gene 22 (SNHG22) is a crucial regulator in epithelial ovarian carcinoma. Nevertheless, the regulatory functions of SNHG22 in papillary thyroid cancer (PTC) progression and its mechanisms of action remain poorly defined. Therefore, the present study aimed to investigate the role of SNHG22 in the malignant phenotype of PTC and determine whether SNHG22 regulates PTC progression via a ceRNA mechanism. SNHG22 expression in PTC was detected using reverse transcription-quantitative polymerase chain reaction analysis. The biological actions of SNHG22 silencing in PTC cells were evaluated both in vitro (using Cell Counting Kit-8 assay, flow cytometry analysis, and cell migration and invasion assays) and in vivo (using tumorigenicity assay). Herein, high SNHG22 expression was observed in PTC tissues and cell lines. This high SNHG22 level was closely associated with unfavorable clinicopathological characteristics and worse overall survival in patients with PTC. SNHG22 knockdown effectively suppressed PTC cell proliferation, migration, and invasion in vitro; accelerated cell apoptosis; and hindered tumor growth in vivo. Mechanistic experiments revealed that SNHG22 directly interacts with microRNA-429 (miR-429) as an miRNA sponge and positively modulates ZEB1 expression. Rescue assays found that miR-429 inhibition or ZEB1 upregulation can offset the actions of SNHG22 knockdown in PTC cells. In sum, SNHG22, miR-429, and ZEB1 form an interactive regulatory network with cancer-promoting roles in PTC cells, suggesting that the SNHG22/miR-429/ZEB1 pathway is a novel diagnostic and therapeutic target.
Collapse
Affiliation(s)
- Hong Gao
- Department of Thyroid-Head and Neck Surgery, Jilin Cancer Hospital, Changchun, Jilin, P.R. China
| | - Xiaosong Sun
- Department of Thyroid-Head and Neck Surgery, Jilin Cancer Hospital, Changchun, Jilin, P.R. China
| | - Hongdong Wang
- Department of Thyroid-Head and Neck Surgery, Jilin Cancer Hospital, Changchun, Jilin, P.R. China
| | - Ying Zheng
- Department of Thyroid-Head and Neck Surgery, Jilin Cancer Hospital, Changchun, Jilin, P.R. China
| |
Collapse
|