1
|
Zheng Y, Chen M, Zhang R, Xue W. Design, synthesis, antimicrobial activity, and mechanism of novel 3-(2,4-dichlorophenyl)-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazole derivatives. PEST MANAGEMENT SCIENCE 2024; 80:5388-5399. [PMID: 38961685 DOI: 10.1002/ps.8266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/13/2024] [Accepted: 06/09/2024] [Indexed: 07/05/2024]
Abstract
BACKGROUND Plant pathogens cause substantial crop losses annually, posing a grave threat to global food security. Fungicides have usually been used for their control, but the rapid development of pesticide resistance renders many ineffective, therefore the search for novel and efficient green pesticides to prevent and control plant diseases has become the top priority in crop planting. RESULTS The results of bioassay studies indicated that most of the target compounds showed certain antimicrobial activity in vitro. In particular, compound X7 showed high inhibitory activity against Xanthomonas oryzae pv. oryzae (Xoo), with an EC50 value of 27.47 μg mL-1, surpassing conventional control agents such as thiazole zinc (41.55 μg mL-1) and thiodiazole copper (53.39 μg mL-1). Further studies on molecular docking showed that X7 had a strong binding affinity with 2FBW. The morphological change observed by scanning electron microscopy indicated that the surface of Xoo appears wrinkled and cracked under X7 treatment and a total of 2662 proteins were identified by label-free proteomic analysis. Three experiments have elucidated the mechanism whereby X7 induced considerable changes in the physiological and biochemical properties of Xoo, which in turn affected the reproduction and growth of bacteria. CONCLUSION This work represents a pivotal advancement, offering important reference for the research and development therapeutics in combating plant pathogens. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yuguo Zheng
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
- The Key Laboratory of Chemical Synthesis and Environmental Pollution Control-Remediation Technology of Guizhou Province, Minzu Normal University of Xingyi, Xingyi, China
| | - Mei Chen
- The Key Laboratory of Chemical Synthesis and Environmental Pollution Control-Remediation Technology of Guizhou Province, Minzu Normal University of Xingyi, Xingyi, China
| | - Renfeng Zhang
- The Key Laboratory of Chemical Synthesis and Environmental Pollution Control-Remediation Technology of Guizhou Province, Minzu Normal University of Xingyi, Xingyi, China
| | - Wei Xue
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| |
Collapse
|
2
|
Salem M, Mahrous EM, Ragab EA, Nafie MS, Dawood KM. Synthesis and Anti-Breast Cancer Potency of Mono- and Bis-(pyrazolyl[1,2,4]triazolo[3,4- b][1,3,4]thiadiazine) Derivatives as EGFR/CDK-2 Target Inhibitors. ACS OMEGA 2023; 8:35359-35369. [PMID: 37779952 PMCID: PMC10536063 DOI: 10.1021/acsomega.3c05309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 08/29/2023] [Indexed: 10/03/2023]
Abstract
The target mono- and bis-(6-pyrazolyltriazolo-thiadiazine) derivatives 4a-c and 6a-d were synthesized using a straightforward protocol via reaction of 3-bromoacetylpyrazole 2 with 4-amino-s-triazole-3-thiols 3a-c and bis(4-amino-5-mercapto-s-triazol-3-yl)alkanes 5a-d, respectively. The bis(6-pyrazolyl-s-triazolo[3,4-b][1,3,4]thiadiazine) derivatives 8a,b and 10 were also constructed by reaction of the triazolo[3,4-b][1,3,4]thiadiazine-3-thiol 4c with the proper dibromo compounds 7a,b and 9, respectively. Structures of the new substances were determined by spectroscopic and analytical data. Compounds 4b, 4c, and 6a showed potent cytotoxicity against MCF-7 (IC50 = 3.16, 2.74, and 0.39 μM, respectively) and were safe against the MCF-10A cells. Compounds 4b, 4c, and 6a also showed promising dual EGFR and CDK-2 inhibition activities, particularly 6a was the most effective (IC50 = 19.6 and 87.9 nM, respectively), better than Erlotinib and Roscovitine. Compound 6a treatment induced EGFR and CDK-2 enzyme inhibition by 97.18% and 94.11%, respectively, at 10 μM (the highest concentration). Compound 6a notably induced cell apoptosis in MCF-7 cells, increasing the cell population by total apoptosis 43.3% compared to 1.29% for the untreated control group, increasing the cell population at the S-phase by 39.2% compared to 18.6% (control).
Collapse
Affiliation(s)
- Mostafa
E. Salem
- Department
of Chemistry, Faculty of Science, Cairo
University, Giza 12613, Egypt
- Department
of Chemistry, College of Science, Imam Mohammad
Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Esraa M. Mahrous
- Department
of Chemistry, Faculty of Science, Cairo
University, Giza 12613, Egypt
| | - Eman A. Ragab
- Department
of Chemistry, Faculty of Science, Cairo
University, Giza 12613, Egypt
| | - Mohamed S. Nafie
- Chemistry
Department, College of Sciences, University
of Sharjah, P. O. Box 27272, Sharjah 27272, United Arab
Emirates
- Department
of Chemistry (Biochemistry Program), Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
| | - Kamal M. Dawood
- Department
of Chemistry, Faculty of Science, Cairo
University, Giza 12613, Egypt
| |
Collapse
|
3
|
Peng X, Ren Y, Pan W, Liu J, Chen J. Discovery of Novel Acridane-Based Tubulin Polymerization Inhibitors with Anticancer and Potential Immunomodulatory Effects. J Med Chem 2023; 66:627-640. [PMID: 36516438 DOI: 10.1021/acs.jmedchem.2c01566] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A series of novel acridane-based tubulin polymerization inhibitors were designed, synthesized, and bioevaluated as anticancer agents. The most potent compound NT-6 exhibited high tubulin polymerization inhibitory activity (IC50 = 1.5 μM) and remarkable antiproliferative potency against four cancer cell lines with an average IC50 of 30 nM, better than colchicine and the hit compound 1f (IC50 of 65 and 126 nM, respectively). In addition, NT-6 (10 mg/kg) exerted excellent antitumor efficacy in a melanoma tumor model with a tumor growth inhibition (TGI) of 65.1% without apparent toxicity. Importantly, the combination of NT-6 with a small-molecule PD-L1 inhibitor NP-19 decreased tumor burden significantly (TGI% = 77.6%). Moreover, the combination of NT-6 with NP-19 enhanced the antitumor immune response, mediated by a decrease of PD-L1 expression levels and increased infiltration of antitumor CD8+ effector T cells in tumor tissues. Collectively, NT-6 represents a novel tubulin polymerization inhibitor with immunopotentiating effects.
Collapse
Affiliation(s)
- Xiaopeng Peng
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Jiangxi Province Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, College of Pharmacy, Gannan Medical University, Ganzhou 314000, China
| | - Yichang Ren
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 516000, China
| | - Wanyi Pan
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Jiangxi Province Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, College of Pharmacy, Gannan Medical University, Ganzhou 314000, China
| | - Jin Liu
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 516000, China
| | - Jianjun Chen
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 516000, China
| |
Collapse
|
4
|
Thabet FM, Dawood KM, Ragab EA, Nafie MS, Abbas AA. Design and synthesis of new bis(1,2,4-triazolo[3,4- b][1,3,4]thiadiazines) and bis((quinoxalin-2-yl)phenoxy)alkanes as anti-breast cancer agents through dual PARP-1 and EGFR targets inhibition. RSC Adv 2022; 12:23644-23660. [PMID: 36090415 PMCID: PMC9389373 DOI: 10.1039/d2ra03549a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/10/2022] [Indexed: 12/01/2022] Open
Abstract
A number of new 1,ω-bis((acetylphenoxy)acetamide)alkanes 5a-f were prepared then their bromination using NBS furnished the novel bis(2-bromoacetyl)phenoxy)acetamides 6a-f. Reaction of 6a-f with 4-amino-5-substituted-4H-1,2,4-triazole-3-thiol 7a-d and with o-phenylenediamine derivatives 9a and b afforded the corresponding bis(1,2,4-triazolo[3,4-b][1,3,4]thiadiazine) derivatives 8a-l and bis(quinoxaline) derivatives 10a-e in good yields. The cytotoxicity of the synthesized compounds as well as apoptosis induction through PARP-1 and EGFR as molecular targets was evaluated. Three compounds, 8d, 8i and 8l, exhibited much better cytotoxic activities against MDA-MB-231 than the drug Erlotinib. Interestingly, compound 8i induced apoptosis in MDA-MB-231 cells by 38-fold compared to the control arresting the cell cycle at the G2/M phase, and its treatment upregulated P53, Bax, caspase-3, caspase-8, and caspase-9 gene levels, while it downregulated the Bcl2 level. Compound 8i exhibited promising dual enzyme inhibition of PARP-1 (IC50 = 1.37 nM) compared to Olaparib (IC50 = 1.49 nM), and EGFR (IC50 = 64.65 nM) compared to Erlotinib (IC50 = 80 nM). These results agreed with the molecular docking studies that highlighted the binding disposition of compound 8i inside the PARP-1 and EGFR protein active sites. Hence, compound 8i may serve as a potential anti-breast cancer agent.
Collapse
Affiliation(s)
- Fatma M Thabet
- Department of Chemistry, Faculty of Science, Cairo University Giza 12613 Egypt +202 35727556 +202 35676602
| | - Kamal M Dawood
- Department of Chemistry, Faculty of Science, Cairo University Giza 12613 Egypt +202 35727556 +202 35676602
| | - Eman A Ragab
- Department of Chemistry, Faculty of Science, Cairo University Giza 12613 Egypt +202 35727556 +202 35676602
| | - Mohamed S Nafie
- Department of Chemistry, Faculty of Science, Suez Canal University Ismailia 41522 Egypt
| | - Ashraf A Abbas
- Department of Chemistry, Faculty of Science, Cairo University Giza 12613 Egypt +202 35727556 +202 35676602
| |
Collapse
|
5
|
Tian C, Wang M, Shi X, Chen X, Wang X, Zhang Z, Liu J. Discovery of (2-(pyrrolidin-1-yl)thieno[3,2-d]pyrimidin-4-yl)(3,4,5-trimethoxyphenyl)methanone as a novel potent tubulin depolymerizing and vascular disrupting agent. Eur J Med Chem 2022; 238:114466. [DOI: 10.1016/j.ejmech.2022.114466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/03/2022] [Accepted: 05/12/2022] [Indexed: 11/15/2022]
|
6
|
Liu Z, Huang L, Zhou T, Chang X, Yang Y, Shi Y, Hao M, Li Z, Wu Y, Guan Q, Zhang W, Zuo D. A novel tubulin inhibitor, 6h, suppresses tumor-associated angiogenesis and shows potent antitumor activity against non-small cell lung cancers. J Biol Chem 2022; 298:102063. [PMID: 35618020 PMCID: PMC9218517 DOI: 10.1016/j.jbc.2022.102063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/18/2022] [Accepted: 05/18/2022] [Indexed: 11/22/2022] Open
Abstract
Tumor angiogenesis is closely associated with the metastasis and progression of non-small cell lung cancer (NSCLC), a highly vascularized solid tumor. However, novel therapeutics are lacking for the treatment of this cancer. Here, we developed a series of 2-aryl-4-(3,4,5-trimethoxy-benzoyl)-5-substituted-1,2,3-triazol analogs (6a-6x) as tubulin colchicine-binding site inhibitors, aiming to find a novel promising drug candidate for NSCLC treatment. We first identified 2-(2-fluorophenyl)-3-(3,4,5-trimethoxybenzoyl)-5-(3-hydroxyazetidin-1-yl)-2H-1,2,3-triazole (6h) as a hit compound, which inhibited angiogenesis induced by NSCLC cells both in vivo and in vitro. In addition, our data showed that 6h could tightly bind to the colchicine-binding site of tubulin and inhibit tubulin polymerization. We also found that 6h could effectively induce G2/M cell cycle arrest of A549 and H460 cells, inhibit cell proliferation, and induce apoptosis. Furthermore, we showed 6h had the potential to inhibit the migration and invasion of NSCLC cells, two basic characteristics of tumor metastasis. Finally, we found 6h could effectively inhibit tumor progression in A549 xenograft mouse models with minimal toxicity. Taken together, these findings provide strong evidence for the development of 6h as a promising microtubule colchicine-binding site inhibitor for NSCLC treatment.
Collapse
Affiliation(s)
- Zi Liu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Liancheng Huang
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Tianhao Zhou
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Xing Chang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Yuying Yang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Yani Shi
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Mingjing Hao
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Zengqiang Li
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Yingliang Wu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Qi Guan
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China.
| | - Weige Zhang
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China.
| | - Daiying Zuo
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China.
| |
Collapse
|
7
|
Gou R, Zheng M, Hu Y, Gao L, Wang S, Liu O, Li X, Zhu L, Liu J, Lin B. Identification and clinical validation of NUSAP1 as a novel prognostic biomarker in ovarian cancer. BMC Cancer 2022; 22:690. [PMID: 35739489 PMCID: PMC9229913 DOI: 10.1186/s12885-022-09753-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 06/10/2022] [Indexed: 12/15/2022] Open
Abstract
Background Nucleolar and spindle-associated protein 1 (NUSAP1) was shown to be involved in cell cycle regulation in cancer. However, its prognostic value and underlying mechanism in ovarian cancer remain unclear. Methods Oncomine, TCGA, CCLE, and UALCAN databases were used to analyze the expression level of NUSAP1 in ovarian cancer. The Kaplan–Meier plotter database was used to evaluate its prognostic value. The results from these analyses were further validated using immunohistochemical assay. The potential molecular mechanism of NUSAP1 in ovarian cancer was assessed with respect to homologous recombination repair, mismatch repair, and immunology using different databases. Results Database analyses and experimental results demonstrated that NUSAP1 was highly expressed in ovarian cancer, its levels being correlated with the FIGO stage. High NUSAP1 expression was an independent risk factor affecting the prognosis of patients with epithelial ovarian cancer. Moreover, NUSAP1 was associated with cell cycle, DNA replication, homologous recombination, and p53 signaling pathway. A positive correlation was identified between the expression of NUSAP1 and BRCA1/2 in ovarian cancer. In addition, NUSAP1 was associated with the expression of DNA mismatch repair genes and immune cell infiltration. Conclusions NUSAP1 may be a valuable prognostic marker, as well as a novel biomarker for evaluating the response to immunotherapy of patients with ovarian cancer.
Collapse
Affiliation(s)
- Rui Gou
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Liaoning, 110004, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China
| | - Mingjun Zheng
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Liaoning, 110004, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China.,Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr 15, 81377, Munich, Germany
| | - Yuexin Hu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Liaoning, 110004, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China
| | - Lingling Gao
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Liaoning, 110004, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China
| | - Shuang Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Liaoning, 110004, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China
| | - Ouxuan Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Liaoning, 110004, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China
| | - Xiao Li
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Liaoning, 110004, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China
| | - Liancheng Zhu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Liaoning, 110004, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China
| | - Juanjuan Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Liaoning, 110004, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China
| | - Bei Lin
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Liaoning, 110004, China. .,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China.
| |
Collapse
|
8
|
Liu Y, Meng Y, Bian J, Liu B, Li X, Guan Q, Li Z, Zhang W, Wu Y, Zuo D. 2-Methoxy-5((3,4,5-trimethosyphenyl) seleninyl) phenol causes G2/M cell cycle arrest and apoptosis in NSCLC cells through mitochondrial apoptotic pathway and MDM2 inhibition. J Biochem Mol Toxicol 2022; 36:e23066. [PMID: 35384151 DOI: 10.1002/jbt.23066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 11/15/2021] [Accepted: 03/23/2022] [Indexed: 12/30/2022]
Abstract
Nonsmall cell lung cancer (NSCLC) is one of the most common malignancies and needs novel and effective chemotherapy. In this study, our purpose is to explore the anticancer effects of 2-methoxy-5((3,4,5-trimethosyphenyl) seleninyl) phenol (SQ) on human NSCLC (A549 and H460) cells. We found that SQ suppressed the proliferation of NSCLC cells in time- and dose-dependent manners, and blocked the cells at G2/M phase, which was relevant to microtubule depolymerization. Additionally, SQ induced A549 and H460 cell apoptosis by activating the mitochondrial apoptotic pathway. Further, we demonstrated that SQ enhanced the generation of reactive oxygen species (ROS), and pretreatment with N-acetyl- L-cysteine (NAC) attenuated SQ-induced cell apoptosis. Meanwhile, SQ mediated-ROS generation caused DNA damage in A549 and H460 cells. Our data also revealed that SQ-induced apoptosis was correlated with the inhibition of mouse double minute 2 (MDM2) in A549 and H460 cells. In summary, our research indicates that the novel compound SQ has great potential for therapeutic treatment of NSCLC in future.
Collapse
Affiliation(s)
- Yang Liu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Yuting Meng
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Jiang Bian
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Bolin Liu
- College of Pharmacy, China Medical University, Shenyang, China
| | - Xuefen Li
- Department of Pharmacy, Inner Mongolia Hospital of Traditional Chinese Medicine, Hohhot, China
| | - Qi Guan
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Zengqiang Li
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Weige Zhang
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Yingliang Wu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Daiying Zuo
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
9
|
Aggarwal R, Hooda M, Kumar P, Sumran G. Vision on Synthetic and Medicinal Facets of 1,2,4-Triazolo[3,4-b][1,3,4]thiadiazine Scaffold. Top Curr Chem (Cham) 2022; 380:10. [PMID: 35122161 PMCID: PMC8816708 DOI: 10.1007/s41061-022-00365-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 01/11/2022] [Indexed: 11/28/2022]
Abstract
The present review article strives to compile the latest synthetic approaches for the synthesis of triazolothiadiazine and its derivatives, along with their diverse pharmacological activities, viz. anticancer, antimicrobial, analgesic and anti-inflammatory, antioxidant, antiviral, enzyme inhibitors (carbonic anhydrase inhibitors, cholinesterase inhibitors, alkaline phosphatase inhibitors, anti-lipase activity, and aromatase inhibitors) and antitubercular agents. The review focuses particularly on the structure–activity relationship of biologically important 1,2,4-triazolo[3,4-b][1,3,4]thiadiazines, which have profound importance in drug design, discovery and development. In silico pharmacokinetic and molecular modeling studies have also been summarized. It is hoped that this review article will be of help to researchers engaged in the development of new biologically active entities for the rational design and development of new target-oriented 1,2,4-triazolo[3,4-b][1,3,4]thiadiazine-based drugs for the treatment of multifunctional diseases.
Collapse
Affiliation(s)
- Ranjana Aggarwal
- Department of Chemistry, Kurukshetra University, Kurukshetra, 136 119, India. .,CSIR-National Institute of Science Communication and Policy Research, New Delhi, India.
| | - Mona Hooda
- Department of Chemistry, Kurukshetra University, Kurukshetra, 136 119, India
| | - Prince Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra, 136 119, India
| | - Garima Sumran
- Department of Chemistry, D. A. V. College (Lahore), Ambala City, Haryana, 134 003, India
| |
Collapse
|
10
|
Aytaç P, Sahin ID, Atalay RÇ, Tozkoparan B. Design, Synthesis, and Biological Evaluation of Novel Triazolothiadiazoles Derived From NSAIDs as Anticancer Agents. Anticancer Agents Med Chem 2021; 22:1340-1347. [PMID: 34165413 DOI: 10.2174/1871520621666210623093550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 04/27/2021] [Accepted: 05/17/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Although transplantation, surgical resection, and tumor ablation are treatment options available following early diagnosis of HCC, their efficacy is restricted due to poor prognosis and high recurrence rates. Hence, small molecules with high selectivity and bioactivity are urgently required. OBJECTIVE This study presents the synthesis of a series of new triazolothiadiazole derivatives (1a-3j) with NSAID moieties and their cytotoxic bioactivities. METHODS The new synthetic derivatives (1-3; 1a-3j) and NSAIDs ibuprofen, naproxen, and flurbiprofen that commonly used in clinics were screened against human liver (Huh7), breast (MCF7), and colon (HCT116) carcinoma cell lines under in vitro conditions via NCI-sulforhodamine B assay. RESULTS The 4-methoxyphenyl substituted condensed derivatives 1h, 2h, and 3h were the most active compounds. Based on its high potency, compound 3h was selected for the further biological evaluation of hepatocellular carcinoma cell lines, and the mechanisms underlying cell death induced by 3h were determined. The results revealed that compound 3h induced apoptosis and cell cycle arrest in the sub G1 phase in human liver cancer cells. CONCLUSION These new small molecules may be used for the development of new lead compounds.
Collapse
Affiliation(s)
- Peri Aytaç
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hacettepe University, 06100 Ankara, Turkey
| | | | - Rengül Çetin Atalay
- CanSyL, Bioinformatics Department, Graduate School of Informatics, ODTU, 06800, Ankara, Turkey
| | - Birsen Tozkoparan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hacettepe University, 06100 Ankara, Turkey
| |
Collapse
|
11
|
Gao M, Liu T, Li J, Guan Q, Wang H, Yan S, Li Z, Zuo D, Zhang W, Wu Y. YAN, a novel microtubule inhibitor, inhibits P-gp and MRP1 function and induces mitotic slippage followed by apoptosis in multidrug-resistant A549/Taxol cells. Toxicol In Vitro 2020; 69:104971. [DOI: 10.1016/j.tiv.2020.104971] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/09/2020] [Accepted: 08/13/2020] [Indexed: 01/05/2023]
|