1
|
Yuan H, Yi N, Li D, Xu C, Yin GR, Zhuang C, Wang YJ, Ni S. PPARγ regulates osteoarthritis chondrocytes apoptosis through caspase-3 dependent mitochondrial pathway. Sci Rep 2024; 14:11237. [PMID: 38755283 PMCID: PMC11099036 DOI: 10.1038/s41598-024-62116-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/14/2024] [Indexed: 05/18/2024] Open
Abstract
Osteoarthritis (OA) is the most prevalent form of arthritis, characterized by a complex pathogenesis. One of the key factors contributing to its development is the apoptosis of chondrocytes triggered by oxidative stress. Involvement of peroxisome proliferator-activated receptor gamma (PPARγ) has been reported in the regulation of oxidative stress. However, there remains unclear mechanisms that through which PPARγ influences the pathogenesis of OA. The present study aims to delve into the role of PPARγ in chondrocytes apoptosis induced by oxidative stress in the context of OA. Primary human chondrocytes, both relatively normal and OA, were isolated and cultured for the following study. Various assessments were performed, including measurements of cell proliferation, viability and cytotoxicity. Additionally, we examined cell apoptosis, levels of reactive oxygen species (ROS), nitric oxide (NO), mitochondrial membrane potential (MMP) and cytochrome C release. We also evaluated the expression of related genes and proteins, such as collagen type II (Col2a1), aggrecan, inducible nitric oxide synthase (iNOS), caspase-9, caspase-3 and PPARγ. Compared with relatively normal cartilage, the expression of PPARγ in OA cartilage was down-regulated. The proliferation of OA chondrocytes decreased, accompanied by an increase in the apoptosis rate. Down-regulation of PPARγ expression in OA chondrocytes coincided with an up-regulation of iNOS expression, leading to increased secretion of NO, endogenous ROS production, and decrease of MMP levels. Furthermore, we observed the release of cytochrome C, elevated caspase-9 and caspase-3 activities, and reduction of the components of extracellular matrix (ECM) Col2a1 and aggrecan. Accordingly, utilization of GW1929 (PPARγ Agonists) or Z-DEVD-FMK (caspase-3 inhibitor) can protect chondrocytes from mitochondrial-related apoptosis and alleviate the progression of OA. During the progression of OA, excessive oxidative stress in chondrocytes leads to apoptosis and ECM degradation. Activation of PPARγ can postpone OA by down-regulating caspase-3-dependent mitochondrial apoptosis pathway.
Collapse
Affiliation(s)
- Hang Yuan
- Graduate School of Bengbu Medical College, Bengbu, China
- Department of Orthopedics, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, China
- Laboratory of Clinical Orthopedics, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, China
| | - Ning Yi
- Department of Orthopedics, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, China
- Laboratory of Clinical Orthopedics, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, China
- Graduate School of Dalian Medical University, Dalian, China
| | - Dong Li
- Department of Orthopedics, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, China
- Laboratory of Clinical Orthopedics, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, China
| | - Chao Xu
- Department of Orthopedics, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, China
- Laboratory of Clinical Orthopedics, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, China
| | - Guang-Rong Yin
- Department of Orthopedics, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, China
- Laboratory of Clinical Orthopedics, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, China
| | - Chao Zhuang
- Graduate School of Bengbu Medical College, Bengbu, China.
- Department of Orthopedics, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, China.
- Laboratory of Clinical Orthopedics, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, China.
| | - Yu-Ji Wang
- Department of Orthopedics, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, China.
- Laboratory of Clinical Orthopedics, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, China.
| | - Su Ni
- Bone Disease Research and Clinical Rehabilitation Center, Changzhou Medical Center, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, China.
| |
Collapse
|
2
|
Barangi S, Hayes AW, Karimi G. The role of lncRNAs/miRNAs/Sirt1 axis in myocardial and cerebral injury. Cell Cycle 2023; 22:1062-1073. [PMID: 36703306 PMCID: PMC10081082 DOI: 10.1080/15384101.2023.2172265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/30/2022] [Accepted: 12/07/2022] [Indexed: 01/28/2023] Open
Abstract
In recent years, researchers have begun to realize the importance of the role of non-coding RNAs in the treatment of cancer and cardiovascular and neurological diseases. LncRNAs and miRNAs are important non-coding RNAs, which regulate gene expression and activate mRNA translation through binding to diverse target sites. Their involvement in the regulation of protein function and the modulation of physiological and pathological conditions continues to be investigated. Sirtuins, especially Sirt1, have a critical function in regulating a variety of physiological processes such as oxidative stress, inflammation, apoptosis, and autophagy. The lncRNAs/miRNAs/Sirt1 axis may be a novel regulatory mechanism, which is involved in the progression and/or prevention of numerous diseases. This review focuses on recent findings on the crosstalk between non-coding RNAs and Sirt1 in myocardial and cerebral injuries and may provide some insight into the development of novel approaches in the treatment of these disorders.Abbreviation: BMECs, brain microvascular endothelial cells; C2dat1, calcium/calmodulin-dependent protein kinase type II subunit delta (CAMK2D)-associated transcript 1; EPCs, endothelial progenitor cells; FOXOs, forkhead transcription factors; GAS5, growth arrest-specific 5; HAECs, human aortic endothelial cells; HAND2-AS1, HAND2 Antisense RNA 1; HIF-1α, hypoxia-inducible factor-1α; ILF3-AS1, interleukin enhancer-binding factor 3-antisense RNA 1; KLF3-AS1, KLF3 antisense RNA 1; LncRNA, long noncoding RNA; LUADT1, Lung Adenocarcinoma Associated Transcript 1; MALAT1, Metastasis-associated lung adenocarcinoma transcript 1; miRNA, microRNA; NEAT1, nuclear enriched abundant transcript 1; NF-κB, nuclear factor kappa B; OIP5-AS1, Opa-interacting protein 5-antisense transcript 1; Sirt1-AS, Sirt1 Antisense RNA; SNHG7, small nucleolar RNA host gene 7; SNHG8, small nucleolar RNA host gene 8; SNHG12, small nucleolar RNA host gene 12; SNHG15, small nucleolar RNA host gene 15; STAT3, signal transducers and activators of transcription 3; TUG1, taurine up-regulated gene 1; VSMCs, vascular smooth muscle cells; XIST, X inactive specific transcript; ZFAS1, ZNFX1 Antisense RNA 1.
Collapse
Affiliation(s)
- Samira Barangi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - A. Wallace Hayes
- Michigan State University, East Lansing, MI, USA
- University of South Florida, Tampa, FL, USA
| | - Gholamreza Karimi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
3
|
Yan S, Dong W, Li Z, Wei J, Han T, Wang J, Lin F. Metformin regulates chondrocyte senescence and proliferation through microRNA-34a/SIRT1 pathway in osteoarthritis. J Orthop Surg Res 2023; 18:198. [PMID: 36915137 PMCID: PMC10012483 DOI: 10.1186/s13018-023-03571-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 01/31/2023] [Indexed: 03/16/2023] Open
Abstract
BACKGROUND Osteoarthritis (OA) is the most common degenerative disease in joints among elderly patients. Senescence is deeply involved in the pathogenesis of osteoarthritis. Metformin is widely used as the first-line drug for Type 2 diabetes mellitus (T2DM), and has great potential for the treatment of other aging-related disorders, including OA. However, the role of metformin in OA is not fully elucidated. Therefore, our aim here was to investigate the effects of metformin on human chondrocytes. METHODS After metformin treatment, expression level of microRNA-34a and SIRT1 in chondrocyte were detected with quantitative real-time PCR and immunofluorescence staining. Then, microRNA-34a mimic and small interfering RNA (siRNA) against SIRT1 (siRNA-SIRT1) were transfected into chondrocyte. Senescence-associated β-galactosidase (SA-β-gal) staining was performed to assess chondrocyte senescence. Chondrocyte viability was illustrated with MTT and colony formation assays. Western blot was conducted to detect the expression of P16, IL-6, matrix metalloproteinase-13 (MMP-13), Collagen type II (COL2A1) and Aggrecan (ACAN). RESULTS We found that metformin treatment (1 mM) inhibited microRNA-34a while promoted SIRT1 expression in OA chondrocytes. Both miR-34a mimics and siRNA against SIRT1 inhibited SIRT1 expression in chondrocytes. SA-β-gal staining assay confirmed that metformin reduced SA-β-gal-positive rate of chondrocytes, while transfection with miR-34a mimics or siRNA-SIRT1 reversed it. MTT assay and colony formation assay showed that metformin accelerated chondrocyte proliferation, while miR-34a mimics or siRNA-SIRT1 weakened this effect. Furthermore, results from western blot demonstrated that metformin suppressed expression of senescence-associated protein P16, proinflammatory cytokine IL-6 and catabolic gene MMP-13 while elevated expression of anabolic proteins such as Collagen type II and Aggrecan, which could be attenuated by transfection with miR-34a mimics. CONCLUSION Overall, our data suggest that metformin regulates chondrocyte senescence and proliferation through microRNA-34a/SIRT1 pathway, indicating it could be a novel strategy for OA treatment.
Collapse
Affiliation(s)
- Shiju Yan
- Department of Orthopedics, Hainan Hospital of Chinese PLA General Hospital, 80 Jianglin Road, Sanya, Hainan, People's Republic of China
| | - Wenjing Dong
- Department of Gerontology, Hainan Hospital of Chinese PLA General Hospital, Sanya, People's Republic of China
| | - Zhirui Li
- Department of Orthopedics, Hainan Hospital of Chinese PLA General Hospital, 80 Jianglin Road, Sanya, Hainan, People's Republic of China
| | - Junqiang Wei
- Department of Orthopedics, Hainan Hospital of Chinese PLA General Hospital, 80 Jianglin Road, Sanya, Hainan, People's Republic of China
| | - Tao Han
- Department of Orthopedics, Hainan Hospital of Chinese PLA General Hospital, 80 Jianglin Road, Sanya, Hainan, People's Republic of China
| | - Junliang Wang
- Department of Orthopedics, Hainan Hospital of Chinese PLA General Hospital, 80 Jianglin Road, Sanya, Hainan, People's Republic of China
| | - Feng Lin
- Department of Orthopedics, Hainan Hospital of Chinese PLA General Hospital, 80 Jianglin Road, Sanya, Hainan, People's Republic of China.
| |
Collapse
|
4
|
Dong L, Cao Y, Yang H, Hou Y, He Y, Wang Y, Yang Q, Bi Y, Liu G. The hippo kinase MST1 negatively regulates the differentiation of follicular helper T cells. Immunology 2023; 168:511-525. [PMID: 36210514 DOI: 10.1111/imm.13590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 10/06/2022] [Indexed: 11/29/2022] Open
Abstract
Follicular helper T (TFH ) cells are essential for inducing germinal centre (GC) reactions to mediate humoral adaptive immunity and antiviral effects, but the mechanisms of TFH cell differentiation remain unclear. Here, we found that the hippo kinase MST1 is critical for TFH cell differentiation, GC formation, and antibody production under steady-state conditions and viral infection. MST1 deficiency intrinsically enhanced TFH cell differentiation and GC reactions in vivo and in vitro. Mechanistically, mTOR and HIF1α signalling is involved in glucose metabolism and increased glycolysis and decreased OXPHOS, which are critically required for MST1 deficiency-directed TFH cell differentiation. Moreover, upregulated Foxo3 expression is critically responsible for TFH cell differentiation induced by Mst1-/- . Thus, our findings identify a previously unrecognized relationship between hippo kinase MST1 signalling and mTOR-HIF1α-metabolic reprogramming coupled with Foxo3 signalling in reprogramming TFH cell differentiation.
Collapse
Affiliation(s)
- Lin Dong
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Yejin Cao
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Hui Yang
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yueru Hou
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Ying He
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Yufei Wang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Qiuli Yang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Yujing Bi
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Guangwei Liu
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| |
Collapse
|
5
|
Wang R, Shiu HT, Lee WYW. Emerging role of lncRNAs in osteoarthritis: An updated review. Front Immunol 2022; 13:982773. [PMID: 36304464 PMCID: PMC9593085 DOI: 10.3389/fimmu.2022.982773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/08/2022] [Indexed: 11/22/2022] Open
Abstract
Osteoarthritis (OA) is a prevalent joint disease, which is associated with progressive articular cartilage loss, synovial inflammation, subchondral sclerosis and meniscus injury. The molecular mechanism underlying OA pathogenesis is multifactorial. Long non-coding RNAs (lncRNAs) are non-protein coding RNAs with length more than 200 nucleotides. They have various functions such as modulating transcription and protein activity, as well as forming endogenous small interfering RNAs (siRNAs) and microRNA (miRNA) sponges. Emerging evidence suggests that lncRNAs might be involved in the pathogenesis of OA which opens up a new avenue for the development of new biomarkers and therapeutic strategies. The purpose of this review is to summarize the current clinical and basic experiments related to lncRNAs and OA with a focus on the extensively studied H19, GAS5, MALAT1, XIST and HOTAIR. The potential translational value of these lncRNAs as therapeutic targets for OA is also discussed.
Collapse
Affiliation(s)
- Rongliang Wang
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
- SH Ho Scoliosis Research Laboratory, Joint Scoliosis Research Center of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Hong Kong, China
| | - Hoi Ting Shiu
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Wayne Yuk Wai Lee
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
- SH Ho Scoliosis Research Laboratory, Joint Scoliosis Research Center of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Hong Kong, China
- *Correspondence: Wayne Yuk Wai Lee,
| |
Collapse
|
6
|
Okuyan HM, Begen MA. LncRNAs in Osteoarthritis. Clin Chim Acta 2022; 532:145-163. [PMID: 35667478 DOI: 10.1016/j.cca.2022.05.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/29/2022] [Accepted: 05/31/2022] [Indexed: 11/27/2022]
Abstract
Osteoarthritis (OA) is a progressive joint disease that affects millions of older adults around the world. With increasing rates of incidence and prevalence worldwide, OA has become an enormous global socioeconomic burden on healthcare systems. Long non-coding ribonucleic acids (lncRNAs), essential functional molecules in many biological processes, are a group of non-coding RNAs that are greater than approximately 200 nucleotides in length. Fast-growing and recent developments in lncRNA research are captivating and represent a novel and promising field in understanding the complexity of OA pathogenesis. The involvement of lncRNAs in OA's pathological processes and their altered expressions in joint tissues, blood and synovial fluid make them attractive candidates for the diagnosis and treatment of OA. We focus on the recent advances in major regulator mechanisms of lncRNAs in the pathophysiology of OA and discuss potential diagnostic and therapeutic uses of lncRNAs for OA. We investigate how upregulation or downregulation of lncRNAs influences the pathogenesis of OA and how we can use lncRNAs to elucidate the molecular mechanism of OA. Furthermore, we evaluate how we can use lncRNAs as a diagnostic marker or therapeutic target for OA. Our study not only provides a comprehensive review of lncRNAs regarding OA's pathogenesis but also contributes to the elucidation of its molecular mechanisms and to the development of diagnostic and therapeutic approaches for OA.
Collapse
Affiliation(s)
- Hamza Malik Okuyan
- Biomedical Engineering, Physiotherapy and Rehabilitation, Faculty of Health Sciences, Sakarya University of Applied Sciences, Sakarya, Turkey; Ivey Business School, Epidemiology and Biostatistics - Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada.
| | - Mehmet A Begen
- Ivey Business School, Epidemiology and Biostatistics - Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada.
| |
Collapse
|
7
|
SIRT1 restoration enhances chondrocyte autophagy in osteoarthritis through PTEN-mediated EGFR ubiquitination. Cell Death Dis 2022; 8:203. [PMID: 35428355 PMCID: PMC9012846 DOI: 10.1038/s41420-022-00896-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 01/29/2022] [Accepted: 02/09/2022] [Indexed: 01/15/2023]
Abstract
The pharmacological interventions aimed at activating pathways inducing chondrocyte autophagy or reversing extracellular matrix degradation may be promising approaches for the management of osteoarthritis (OA). Evidence exists suggesting that sirtuin 1 (SIRT1) is involved in the pathogenesis of OA. The present study aimed to explore the regulatory role and downstream mechanisms of SIRT1 in OA. Bioinformatics predictions identified downstream factors phosphatase and tensin homolog (PTEN) and epidermal growth factor receptor (EGFR) in OA. We validated poorly expressed SIRT1 and EGFR and highly expressed PTEN in cartilage tissues of OA patients. OA was induced in vitro by exposing human primary chondrocytes to IL-1β and in vivo by destabilization of the medial meniscus (DMM) in a mouse model. SIRT1 knockdown was found to augment IL-1β-stimulated inflammation and chondrocyte metabolic imbalance. Knockdown of SIRT1 diminished PTEN acetylation and then enhanced PTEN expression. PTEN inactivation decreased EGFR ubiquitination and promoted EGFR expression by destabilizing the EGFR-Cbl complex, which in turn inhibited extracellular matrix degradation in cartilage tissues and activated chondrocyte autophagy. In the DMM mouse model, knockdown of SIRT1 inhibited chondrocyte autophagy, promoted metabolic imbalance, thus accelerating osteoarthritic process. In conclusion, SIRT1 represses the ubiquitination of EGFR by down-regulating PTEN, inhibits extracellular matrix degradation and activates chondrocyte autophagy, thereby performing an OA-alleviating role.
Collapse
|
8
|
Li DY, Gao FH, Wu CF, Liang ZJ, Xiong WH. miR-34a/SIRT1 Axis Plays a Critical Role in Regulating Chondrocyte Senescence in Type 2 Diabetes Mellitus. EXPLORATORY RESEARCH AND HYPOTHESIS IN MEDICINE 2022; 7:1-7. [DOI: 10.14218/erhm.2021.00029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
9
|
Kong H, Sun ML, Zhang XA, Wang XQ. Crosstalk Among circRNA/lncRNA, miRNA, and mRNA in Osteoarthritis. Front Cell Dev Biol 2022; 9:774370. [PMID: 34977024 PMCID: PMC8714905 DOI: 10.3389/fcell.2021.774370] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022] Open
Abstract
Osteoarthritis (OA) is a joint disease that is pervasive in life, and the incidence and mortality of OA are increasing, causing many adverse effects on people's life. Therefore, it is very vital to identify new biomarkers and therapeutic targets in the clinical diagnosis and treatment of OA. ncRNA is a nonprotein-coding RNA that does not translate into proteins but participates in protein translation. At the RNA level, it can perform biological functions. Many studies have found that miRNA, lncRNA, and circRNA are closely related to the course of OA and play important regulatory roles in transcription, post-transcription, and post-translation, which can be used as biological targets for the prevention, diagnosis, and treatment of OA. In this review, we summarized and described the various roles of different types of miRNA, lncRNA, and circRNA in OA, the roles of different lncRNA/circRNA-miRNA-mRNA axis in OA, and the possible prospects of these ncRNAs in clinical application.
Collapse
Affiliation(s)
- Hui Kong
- College of Kinesiology, Shenyang Sport University, Shenyang, China
| | - Ming-Li Sun
- College of Kinesiology, Shenyang Sport University, Shenyang, China
| | - Xin-An Zhang
- College of Kinesiology, Shenyang Sport University, Shenyang, China
| | - Xue-Qiang Wang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China.,Department of Rehabilitation Medicine, Shanghai Shangti Orthopaedic Hospital, Shanghai, China
| |
Collapse
|
10
|
Ghafouri-Fard S, Poulet C, Malaise M, Abak A, Mahmud Hussen B, Taheriazam A, Taheri M, Hallajnejad M. The Emerging Role of Non-Coding RNAs in Osteoarthritis. Front Immunol 2021; 12:773171. [PMID: 34912342 PMCID: PMC8666442 DOI: 10.3389/fimmu.2021.773171] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/10/2021] [Indexed: 12/16/2022] Open
Abstract
Osteoarthritis (OS) is the most frequent degenerative condition in the joints, disabling many adults. Several abnormalities in the articular cartilage, subchondral bone, synovial tissue, and meniscus have been detected in the course of OA. Destruction of articular cartilage, the formation of osteophytes, subchondral sclerosis, and hyperplasia of synovial tissue are hallmarks of OA. More recently, several investigations have underscored the regulatory roles of non-coding RNAs (ncRNAs) in OA development. Different classes of non-coding RNAs, including long ncRNAs (lncRNAs), microRNAs (miRNAs), and circular RNAs (circRNAs), have been reported to affect the development of OA. The expression level of these transcripts has also been used as diagnostic tools in OA. In the present article, we aimed at reporting the role of these transcripts in this process. We need to give a specific angle on the pathology to provide meaningful thoughts on it.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Christophe Poulet
- Department of Rheumatology, University Hospital of Liège (CHULiege), Liège, Belgium
- Fibropôle Research Group, University Hospital of Liège (CHULiege), Liège, Belgium
- GIGA-I3 Research Group, GIGA Institute, University of Liège (ULiege) and University Hospital of Liège (CHULiege), Liège, Belgium
| | - Michel Malaise
- Department of Rheumatology, University Hospital of Liège (CHULiege), Liège, Belgium
- Fibropôle Research Group, University Hospital of Liège (CHULiege), Liège, Belgium
- GIGA-I3 Research Group, GIGA Institute, University of Liège (ULiege) and University Hospital of Liège (CHULiege), Liège, Belgium
| | - Atefe Abak
- Men’s Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq
- Center of Research and Strategic Studies, Lebanese French University, Erbil, Iraq
| | - Afshin Taheriazam
- Department of Orthopedics, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
- *Correspondence: Mohammad Taheri, ; Mohammad Hallajnejad,
| | - Mohammad Hallajnejad
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- *Correspondence: Mohammad Taheri, ; Mohammad Hallajnejad,
| |
Collapse
|
11
|
Ali SA, Peffers MJ, Ormseth MJ, Jurisica I, Kapoor M. The non-coding RNA interactome in joint health and disease. Nat Rev Rheumatol 2021; 17:692-705. [PMID: 34588660 DOI: 10.1038/s41584-021-00687-y] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2021] [Indexed: 02/07/2023]
Abstract
Non-coding RNAs have distinct regulatory roles in the pathogenesis of joint diseases including osteoarthritis (OA) and rheumatoid arthritis (RA). As the amount of high-throughput profiling studies and mechanistic investigations of microRNAs, long non-coding RNAs and circular RNAs in joint tissues and biofluids has increased, data have emerged that suggest complex interactions among non-coding RNAs that are often overlooked as critical regulators of gene expression. Identifying these non-coding RNAs and their interactions is useful for understanding both joint health and disease. Non-coding RNAs regulate signalling pathways and biological processes that are important for normal joint development but, when dysregulated, can contribute to disease. The specific expression profiles of non-coding RNAs in various disease states support their roles as promising candidate biomarkers, mediators of pathogenic mechanisms and potential therapeutic targets. This Review synthesizes literature published in the past 2 years on the role of non-coding RNAs in OA and RA with a focus on inflammation, cell death, cell proliferation and extracellular matrix dysregulation. Research to date makes it apparent that 'non-coding' does not mean 'non-essential' and that non-coding RNAs are important parts of a complex interactome that underlies OA and RA.
Collapse
Affiliation(s)
- Shabana A Ali
- Bone and Joint Center, Department of Orthopaedic Surgery, Henry Ford Health System, Detroit, MI, USA. .,Center for Molecular Medicine and Genetics, School of Medicine, Wayne State University, Detroit, MI, USA.
| | - Mandy J Peffers
- Department of Musculoskeletal Biology, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Michelle J Ormseth
- Department of Research and Development, Veterans Affairs Medical Center, Nashville, TN, USA.,Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Igor Jurisica
- Osteoarthritis Research Program, Division of Orthopaedics, Schroeder Arthritis Institute, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Data Science Discovery Centre for Chronic Diseases, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Mohit Kapoor
- Osteoarthritis Research Program, Division of Orthopaedics, Schroeder Arthritis Institute, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada. .,Department of Surgery and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
12
|
Li J, Zhang Z, Qiu J, Huang X. 8-Methoxypsoralen has Anti-inflammatory and Antioxidant Roles in Osteoarthritis Through SIRT1/NF-κB Pathway. Front Pharmacol 2021; 12:692424. [PMID: 34552480 PMCID: PMC8450503 DOI: 10.3389/fphar.2021.692424] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 08/12/2021] [Indexed: 12/22/2022] Open
Abstract
Osteoarthritis (OA) is mainly manifested by joint pain, stiffness and mobility disorder, which is the main cause of pain and disability in middle-aged and elderly people. In this study, we aimed to explore the role and mechanism of 8-Methoxypsoralen (8-MOP) in the OA model both in vitro and in vivo. The rat chondrocytes were treated with IL-1β, and the proliferation, apoptosis, inflammatory reactions and oxidative stress responses were determined after treatment with different concentrations of 8-MOP. Real-time quantitative polymerase chain reaction (qRT-PCR) and/or Western blot were implemented to check the AMPK/SIRT1/NF-κB expression in chondrocytes. The NF-κB activity was determined by dual luciferase experiment. The pain threshold of OA rat model dealt with 8-MOP and/or the SIRT1 inhibitor EX527 was measured. Our results revealed that 8-MOP evidently reduced IL-1β-mediated apoptosis and inhibition of proliferation, and mitigated the expression of inflammatory cytokines and oxidative stress factors in chondrocytes. Additionally, 8-MOP promoted phosphorylated level of AMPKα, enhanced SIRT1 expression and inhibited the phosphorylation of NF-κB. After treatment with EX527, 8-MOP-mediated protective effects on chondrocytes were mostly reversed. In vivo, 8-MOP obviously improved the pain threshold in the OA rat model and reduced the injury and apoptosis of chondrocytes in the joints. In addition, 8-MOP relieved inflammatory and oxidative stress responses in the articular cartilage via enhancing SIRT1 and repressing NF-κB activation. After the treatment with EX527, the 8-MOP-mediated protective effects were distinctly weakened. In summary, our study testified that 8-MOP alleviates pain, inflammatory and oxidative stress responses in OA rats through the SIRT1/NF-κB pathway, which is expected to become a new reagent for clinical treatment of OA.
Collapse
Affiliation(s)
- Jichao Li
- The Third Department of Knee Injury, Luoyang Orthopedic Hospital of Henan Province, Orthopedic Hospital of Henan Province, Luoyang, China
| | - Zeng Zhang
- Zhengzhou Orthopedic Hospital, Zhengzhou, China
| | - Jinan Qiu
- The Third Department of Knee Injury, Luoyang Orthopedic Hospital of Henan Province, Orthopedic Hospital of Henan Province, Luoyang, China
| | - Xiaohan Huang
- The Third Department of Knee Injury, Luoyang Orthopedic Hospital of Henan Province, Orthopedic Hospital of Henan Province, Luoyang, China
| |
Collapse
|
13
|
Guo G, Gou Y, Jiang X, Wang S, Wang R, Liang C, Yang G, Wang T, Yu A, Zhu G. Long Non-coding RNAs in Traumatic Brain Injury Accelerated Fracture Healing. Front Surg 2021; 8:663377. [PMID: 34150839 PMCID: PMC8211774 DOI: 10.3389/fsurg.2021.663377] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/28/2021] [Indexed: 11/13/2022] Open
Abstract
It is commonly observed that patients with bone fracture concomitant with traumatic brain injury (TBI) had significantly increased fracture healing, but the underlying mechanisms were not fully revealed. Long non-coding RNAs (lncRNAs) are known to play complicated roles in bone homeostasis, but their role in TBI accelerated fracture was rarely reported. The present study was designed to determine the role of lncRNAs in TBI accelerated fracture via transcriptome sequencing and further bioinformatics analyses. Blood samples from three fracture-only patients, three fracture concomitant with TBI patients, and three healthy controls were harvested and were subsequently subjected to transcriptome lncRNA sequencing. Differentially expressed genes were identified, and pathway enrichment was performed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. High-dimensional data visualization by self-organizing map (SOM) machine learning was applied to further interpret the data. An xCell method was then used to predict cellular behavior in all samples based on gene expression profiles, and an lncRNA-cell interaction network was generated. A total of 874 differentially expressed genes were identified, of which about 26% were lncRNAs. Those identified lncRNAs were mainly enriched on TBI-related and damage repair-related pathways. SOM analyses revealed that those differentially expressed lncRNAs could be divided into three major module implications and were mainly enriched on transcriptional regulation and immune-related signal pathways, which promote us to further explore cellular behaviors based on differentially expressed lncRNAs. We have predicted that basophils, CD8+ T effector memory cells, B cells, and naïve B cells were significantly downregulated, while microvascular endothelial cells were predicted to be significantly upregulated in the Fr/TBI group, was the lowest and highest, respectively. ENSG00000278905, ENSG00000240980, ENSG00000255670, and ENSG00000196634 were the most differentially expressed lncRNAs related to all changes of cellular behavior. The present study has revealed for the first time that several critical lncRNAs may participate in TBI accelerated fracture potentially via regulating cellular behaviors of basophils, cytotoxic T cells, B cells, and endothelial cells.
Collapse
Affiliation(s)
- Guoning Guo
- Department of Emergency, Affiliated Hospital of Zunyi Medical University, Guizhou, China
| | - Yajun Gou
- Department of Orthopedic, Shapingba District Hospital, Chongqing, China
| | - Xingyu Jiang
- Department of Emergency, Affiliated Hospital of Zunyi Medical University, Guizhou, China
| | - Shuhong Wang
- Department of Emergency, Affiliated Hospital of Zunyi Medical University, Guizhou, China
| | - Ruilie Wang
- Department of Emergency, Affiliated Hospital of Zunyi Medical University, Guizhou, China
| | - Changqiang Liang
- Department of Emergency, Affiliated Hospital of Zunyi Medical University, Guizhou, China
| | - Guang Yang
- Department of Emergency, Affiliated Hospital of Zunyi Medical University, Guizhou, China
| | - Tinggang Wang
- Department of Emergency, Affiliated Hospital of Zunyi Medical University, Guizhou, China
| | - Anyong Yu
- Department of Emergency, Affiliated Hospital of Zunyi Medical University, Guizhou, China
| | - Guoyan Zhu
- Department of Health Management, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|