1
|
LncRNA PART1 Stimulates the Development of Ovarian Cancer by Up-regulating RACGAP1 and RRM2. Reprod Sci 2022; 29:2224-2235. [PMID: 35553409 DOI: 10.1007/s43032-022-00905-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 02/25/2022] [Indexed: 10/18/2022]
Abstract
Ovarian cancer (OC) is a kind of gynecologic malignancy with a high mortality rate. Long non-coding RNAs (lncRNAs) have been reported to exert regulatory roles in multiple diseases. However, the role of lncRNA prostate androgen-regulated transcript 1 (PART1) has not been investigated in the development of OC. In this study, from RT-qPCR analysis, we discovered that PART1 demonstrated high expression in OC cells. Moreover, data from functional assays manifested that PART1 reduction hindered the proliferative, migratory, and invasive capabilities of OC cells. In vivo uncovered that PART1 knockdown impeded OC tumor growth. Furthermore, from the experimental results of RNA pull down, RIP, and luciferase reporter assays, we discovered that PART1 served as a sponge for microRNA-6884-5p (miR-6884-5p) to modulate the expression of Rac GTPase activating protein 1 (RACGAP1) and ribonucleotide reductase regulatory subunit M2 (RRM2). Finally, rescue assays proved that overexpression of RACGAP1 or RRM2 abrogated the suppressive role of PART1 knockdown on OC cell malignant behaviors. RACGAP1 and RRM2 were also revealed to act as oncogenes in OC cells. In summary, our research verified the PART1/miR-6884-5p/RACGAP1/RRM2 axis in OC cells, which signified that PART1 might act as a novel biomarker in OC.
Collapse
|
2
|
Milán-Rois P, Quan A, Slack FJ, Somoza Á. The Role of LncRNAs in Uveal Melanoma. Cancers (Basel) 2021; 13:cancers13164041. [PMID: 34439196 PMCID: PMC8392202 DOI: 10.3390/cancers13164041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/06/2021] [Accepted: 08/06/2021] [Indexed: 12/13/2022] Open
Abstract
Uveal melanoma (UM) is an intraocular cancer tumor with high metastatic risk. It is considered a rare disease, but 90% of affected patients die within 15 years. Non-coding elements (ncRNAs) such as long non-coding RNAs (lncRNAs) have a crucial role in cellular homeostasis maintenance, taking part in many critical cellular pathways. Their deregulation, therefore, contributes to the induction of cancer and neurodegenerative and metabolic diseases. In cancer, lncRNAs are implicated in apoptosis evasion, proliferation, invasion, drug resistance, and other roles because they affect tumor suppressor genes and oncogenes. For these reasons, lncRNAs are promising targets in personalized medicine and can be used as biomarkers for diseases including UM.
Collapse
Affiliation(s)
- Paula Milán-Rois
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), Unidad Asociada al Centro Nacional de Biotecnología (CSIC), 28049 Madrid, Spain;
| | - Anan Quan
- Department of Pathology, Beth Israel Deaconess Medical Center (BIDMC)/Harvard Medical School, Boston, MA 02215, USA; (A.Q.); (F.J.S.)
| | - Frank J. Slack
- Department of Pathology, Beth Israel Deaconess Medical Center (BIDMC)/Harvard Medical School, Boston, MA 02215, USA; (A.Q.); (F.J.S.)
| | - Álvaro Somoza
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), Unidad Asociada al Centro Nacional de Biotecnología (CSIC), 28049 Madrid, Spain;
- Correspondence: ; Tel.: +34-91-299-8856
| |
Collapse
|
3
|
Cui S, Li C. RHPN1‑AS1 promotes ovarian carcinogenesis by sponging miR‑485‑5p and releasing TPX2 mRNA. Oncol Rep 2021; 45:111. [PMID: 33907841 PMCID: PMC8082340 DOI: 10.3892/or.2021.8062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 02/05/2021] [Indexed: 12/27/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) play a crucial role in cancer development. However, researchers have yet to identify the underlying association between lncRNAs and ovarian cancer (OC). The aim of the present study was to examine the effect of lncRNA RHPN1-AS1 (RHPN1-AS1) on OC cells and tissues. Reverse transcriptase-quantitative PCR (RT-qPCR) was utilized to quantify RHPN1-AS1, miR-485-5p, and TPX2 mRNA expression in samples with OC. Luciferase-reporter assay, RNA immunoprecipitation (RIP) assay, and RNA pull-down assay were then employed to validate the target relationship among RHPN1-AS1, miR-485-5p and TPX2. Cell Counting Kit-8, BrdU, wound-healing, cell-adhesion, and flow cytometry assays were also employed to assess cell viability, proliferation, migration, adhesion and apoptosis, respectively, in SKOV3 and OVCAR3 cell lines. Findings revealed that RHPN1-AS1 demonstrated a higher expression level in OC cell lines and tissues. In addition, RHPN1-AS1 enhanced the adhesion, proliferation and migration of OC cell lines but decreased apoptosis of OC cells. It was also observed that the relationship between RHPN1-AS1 and miR-485-5p was negative and that RHPN1-AS1 could sponge miR-485-5p to regulate the proliferation, apoptosis, adhesion, and migration abilities of OC cells. Moreover, TPX2 was targeted by miR-485-5p and was significantly overexpressed in OC cell lines and tissues. Experimental investigations also revealed that TPX2 promoted the proliferation, adhesion, and migration of OC cells but suppressed the apoptosis of SKOV3 and OVCAR3 cells. In summary, RHPN1-AS1 played a tumor promotive role by sponging miR-485-5p to increase TPX2 expression in OC tumorigenesis.
Collapse
Affiliation(s)
- Shoubin Cui
- Department of Gynaecology and Obstetrics, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong 264100, P.R. China
| | - Cui Li
- Department of Gynaecology and Obstetrics, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong 264100, P.R. China
| |
Collapse
|
4
|
Ma E, Wang Q, Li J, Zhang X, Guo Z, Yang X. LINC01006 facilitates cell proliferation, migration and invasion in prostate cancer through targeting miR-34a-5p to up-regulate DAAM1. Cancer Cell Int 2020; 20:515. [PMID: 33088221 PMCID: PMC7574442 DOI: 10.1186/s12935-020-01577-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 09/25/2020] [Indexed: 02/06/2023] Open
Abstract
Background Prostate cancer (PCa) is a kind of malignancy occurring in the prostate gland. Substantial researches have proved the major role of long noncoding RNAs (lncRNAs) in PCa. However, the role of long intergenic non-protein coding RNA 1006 (LINC01006) in PCa has not been investigated yet. Methods RT-qPCR was used to examine the expression levels of LINC01006 and its downstream targets. The function of LINC01006 in PCa was tested by in vitro and in vivo assays. With application of RNA pull down, RNA immunoprecipitation (RIP) and luciferase reporter assays, the interaction among LINC01006, miR-34a-5p and disheveled associated activator of morphogenesis 1 (DAAM1) were verified. Results LINC01006 expression presented high in PCa cell lines. LINC01006 silencing suppressed cell proliferative, migratory, invasive capacities while accelerated apoptotic rate. Besides, LINC01006 knockdown also suppressed tumor growth and metastasis in vivo. Furthermore, miR-34a-5p, a tumor suppressor in PCa, was sponged by LINC01006. Moreover, DAAM1 was targeted by miR-34a-5p and promoted PCa progression. More intriguingly, rescue assays suggested that the inhibitory effect of LINC01006 knockdown on PCa development was offset by DAAM1 overexpression. Conclusions LINC01006 promoted PCa progression by sponging miR-34a-5p to up-regulate DAAM1, providing a novel target for PCa therapy.
Collapse
Affiliation(s)
- Enhui Ma
- Department of Urology, Southwest Shandong Hospital Co., Ltd, Liaocheng, 252300 Shandong China
| | - Qianqian Wang
- Department of Nephrology, Zaozhuang Municipal Hospital, Zaozhuang, 277100 Shandong China
| | - Jinhua Li
- Orthopeadic Surgery, Southwest Shandong Hospital Co., Ltd, Liaocheng, 252300 Shandong China
| | - Xinqi Zhang
- Department of Urology, Shandong Zibo Mining Group Central Hospital, Zibo, 255120 Shandong China
| | - Zhenjia Guo
- Department of Urology, Southwest Shandong Hospital Co., Ltd, Liaocheng, 252300 Shandong China
| | - Xiaofeng Yang
- Department of Urology, Zaozhuang Municipal Hospital, NO.41 Longtou Road, Shizhong District, Zaozhuang, 277100 Shandong China
| |
Collapse
|
5
|
Shen FF, Zhang F, Yang HJ, Li JK, Su JF, Yu PT, Zhou FY, Che GW. ADAMTS9-AS2 and CADM2 expression and association with the prognosis in esophageal squamous cell carcinoma. Biomark Med 2020; 14:1415-1426. [PMID: 32892630 DOI: 10.2217/bmm-2020-0432] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Background: We investigated whether ADAMTS9-AS2 and CADM2 were related to esophageal squamous cell carcinoma (ESCC). Methodology: ESCC microarray datasets and reverse transcriptase qualitative PCR were used to analyze ADAMTS9-AS2 and CADM2 expression. Results: The GSE120356 and GSE33810 datasets identified ADAMTS9-AS2 and CADM2 as the candidates and ADAMTS9-AS2 and CADM2 expression was downregulated in ESCC. ADAMTS9-AS2 and CADM2 were positively correlated with ESCC. ADAMTS9-AS2 and CADM2 expression could discriminate ESCC from normal tissue. Five-year overall survival was shorter in underexpressed ADAMTS9-AS2 patients, and CADM2 expression level was related to 5-year overall survival. ADAMTS9-AS2 and CADM2 expression were independent prognosis indicators in ESCC patients. Conclusion: Our findings shed new light on the clinical significance of ADAMTS9-AS2 and CADM2 in ESCC carcinogenesis.
Collapse
Affiliation(s)
- Fang-Fang Shen
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,The Key Laboratory for Tumor Translational Medicine, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Fan Zhang
- The Key Laboratory for Tumor Translational Medicine, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Hai-Jun Yang
- Anyang key Laboratory for Esophageal Cancer Research, Anyang Tumor Hospital, Anyang, Henan, China
| | - Jun-Kuo Li
- Anyang key Laboratory for Esophageal Cancer Research, Anyang Tumor Hospital, Anyang, Henan, China
| | - Jing-Fen Su
- Anyang key Laboratory for Esophageal Cancer Research, Anyang Tumor Hospital, Anyang, Henan, China
| | - Pan-Ting Yu
- The Key Laboratory for Tumor Translational Medicine, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Fu-You Zhou
- Anyang key Laboratory for Esophageal Cancer Research, Anyang Tumor Hospital, Anyang, Henan, China
| | - Guo-Wei Che
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
6
|
He Z, Chen Z, Tan M, Elingarami S, Liu Y, Li T, Deng Y, He N, Li S, Fu J, Li W. A review on methods for diagnosis of breast cancer cells and tissues. Cell Prolif 2020; 53:e12822. [PMID: 32530560 PMCID: PMC7377933 DOI: 10.1111/cpr.12822] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 03/10/2020] [Accepted: 03/30/2020] [Indexed: 02/06/2023] Open
Abstract
Breast cancer has seriously been threatening physical and mental health of women in the world, and its morbidity and mortality also show clearly upward trend in China over time. Through inquiry, we find that survival rate of patients with early‐stage breast cancer is significantly higher than those with middle‐ and late‐stage breast cancer, hence, it is essential to conduct research to quickly diagnose breast cancer. Until now, many methods for diagnosing breast cancer have been developed, mainly based on imaging and molecular biotechnology examination. These methods have great contributions in screening and confirmation of breast cancer. In this review article, we introduce and elaborate the advances of these methods, and then conclude some gold standard diagnostic methods for certain breast cancer patients. We lastly discuss how to choose the most suitable diagnostic methods for breast cancer patients. In general, this article not only summarizes application and development of these diagnostic methods, but also provides the guidance for researchers who work on diagnosis of breast cancer.
Collapse
Affiliation(s)
- Ziyu He
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China
| | - Zhu Chen
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China.,State Key Laboratory of Bioelectronics, School of Biological and Medical Engineering, Southeast University, Nanjing, China
| | - Miduo Tan
- Surgery Department of Galactophore, Central Hospital of Zhuzhou City, Zhuzhou, China
| | - Sauli Elingarami
- School of Life Sciences and Bioengineering (LiSBE), The Nelson Mandela African Institution of Science and Technology (NM-AIST), Arusha, Tanzania
| | - Yuan Liu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China.,State Key Laboratory of Bioelectronics, School of Biological and Medical Engineering, Southeast University, Nanjing, China
| | - Taotao Li
- Hunan Provincial Key Lab of Dark Tea and Jin-hua, School of Materials and Chemical Engineering, Hunan City University, Yiyang, China
| | - Yan Deng
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China
| | - Nongyue He
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China.,State Key Laboratory of Bioelectronics, School of Biological and Medical Engineering, Southeast University, Nanjing, China
| | - Song Li
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China
| | - Juan Fu
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Wen Li
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China
| |
Collapse
|