1
|
Marcotulli M, Barbetta A, Scarpa E, Bini F, Marinozzi F, Ruocco G, Casciola CM, Scognamiglio C, Carugo D, Cidonio G. Jingle Cell Rock: Steering Cellular Activity With Low-Intensity Pulsed Ultrasound (LIPUS) to Engineer Functional Tissues in Regenerative Medicine. ULTRASOUND IN MEDICINE & BIOLOGY 2024; 50:1973-1986. [PMID: 39289118 DOI: 10.1016/j.ultrasmedbio.2024.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 08/15/2024] [Accepted: 08/23/2024] [Indexed: 09/19/2024]
Abstract
Acoustic manipulation or perturbation of biological soft matter has emerged as a promising clinical treatment for a number of applications within regenerative medicine, ranging from bone fracture repair to neuromodulation. The potential of ultrasound (US) endures in imparting mechanical stimuli that are able to trigger a cascade of molecular signals within unscathed cells. Particularly, low-intensity pulsed ultrasound (LIPUS) has been associated with bio-effects such as activation of specific cellular pathways and alteration of cell morphology and gene expression, the extent of which can be modulated by fine tuning of LIPUS parameters including intensity, frequency and exposure time. Although the molecular mechanisms underlying LIPUS are not yet fully elucidated, a number of studies clearly define the modulation of specific ultrasonic parameters as a means to guide the differentiation of a specific set of stem cells towards adult and fully differentiated cell types. Herein, we outline the applications of LIPUS in regenerative medicine and the in vivo and in vitro studies that have confirmed the unbounded clinical potential of this platform. We highlight the latest developments aimed at investigating the physical and biological mechanisms of action of LIPUS, outlining the most recent efforts in using this technology to aid tissue engineering strategies for repairing tissue or modelling specific diseases. Ultimately, we detail tissue-specific applications harnessing LIPUS stimuli, offering insights over the engineering of new constructs and therapeutic modalities. Overall, we aim to lay the foundation for a deeper understanding of the mechanisms governing LIPUS-based therapy, to inform the development of safer and more effective tissue regeneration strategies in the field of regenerative medicine.
Collapse
Affiliation(s)
- Martina Marcotulli
- 3D Microfluidic Bioprinting Lab, Center for Life Nano- & Neuro-Science (CLN2S), Italian Institute of Technology (IIT), Rome, Italy; Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy; Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, UK
| | - Andrea Barbetta
- Department of Chemistry, Sapienza University of Rome, Rome, Italy
| | - Edoardo Scarpa
- Infection Dynamics Laboratory, Department of Pharmaceutical Sciences, University of Milan, Milan, Italy; National Institute of Molecular Gentics (INGM), Milan, Italy; Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Institute of Developmental Sciences, University of Southampton, Southampton, UK
| | - Fabiano Bini
- Department of Mechanical and Aerospace Engineering (DIMA), Sapienza University of Rome, Rome, Italy
| | - Franco Marinozzi
- Department of Mechanical and Aerospace Engineering (DIMA), Sapienza University of Rome, Rome, Italy
| | - Giancarlo Ruocco
- 3D Microfluidic Bioprinting Lab, Center for Life Nano- & Neuro-Science (CLN2S), Italian Institute of Technology (IIT), Rome, Italy
| | - Carlo Massimo Casciola
- Department of Mechanical and Aerospace Engineering (DIMA), Sapienza University of Rome, Rome, Italy
| | - Chiara Scognamiglio
- 3D Microfluidic Bioprinting Lab, Center for Life Nano- & Neuro-Science (CLN2S), Italian Institute of Technology (IIT), Rome, Italy
| | - Dario Carugo
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, UK
| | - Gianluca Cidonio
- 3D Microfluidic Bioprinting Lab, Center for Life Nano- & Neuro-Science (CLN2S), Italian Institute of Technology (IIT), Rome, Italy; Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Institute of Developmental Sciences, University of Southampton, Southampton, UK; Department of Mechanical and Aerospace Engineering (DIMA), Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
2
|
Wu L, Xiao X, Deng J, Zhou Y, Li J, He S, Wang Y. Effects of Low-Intensity Pulsed Ultrasound on the Regulation of Free Fatty Acid Release in 3T3-L1 Cells. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2024; 43:1449-1460. [PMID: 38654492 DOI: 10.1002/jum.16468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/11/2024] [Accepted: 04/13/2024] [Indexed: 04/26/2024]
Abstract
OBJECTIVES To investigate the effects of low-intensity pulsed ultrasound (LIPUS) on the proliferation, differentiation, and tumor necrosis factor-α (TNF-α)-induced lipolysis of 3T3-L1 cells, and to explore the feasibility of regulating the release of free fatty acids (FFA) to prevent lipotoxicity. METHODS Different intensities (30, 60, 90, and 120 mW/cm2) of LIPUS were applied to 3T3-L1 preadipocytes for different durations (5, 10, 15, 20, 25, and 30 minutes). Appropriate parameters for subsequent experiments were selected by assessing cell viability. The effect of LIPUS on the proliferation and differentiation of 3T3-L1 cells was evaluated by microscope observation, flow cytometry, and lipid content determination. After treated with LIPUS and TNF-α (50 ng/mL), the degree of lipolysis was assessed by measuring the extracellular FFA content. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to detect the mRNA expression of relevant genes. RESULTS Different parameters of LIPUS significantly enhance the viability of 3T3-L1 cells (P < .05), with 20 minutes and 30 mW/cm2 as the most suitable settings. After LIPUS treatment, 3T3-L1 cell proliferation accelerated, apoptosis rate and G1 phase cell proportion decreased, the content of lipid droplets and TG was increased in differentiated cells, while FFA release decreased (P < .05). The expression of PCNA, PPARγ, C/EBPα, Perilipin A mRNA increased, and the expression of TNF-α, ATGL, HSL mRNA decreased (P < .05). CONCLUSIONS LIPUS could promote the proliferation and differentiation of 3T3-L1 cells and inhibit TNF-α-induced lipolysis, indicating its potential as a therapy for mitigating lipotoxicity caused by decompensated adipocytes.
Collapse
Affiliation(s)
- Liu Wu
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Xinfang Xiao
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Juan Deng
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Yiqing Zhou
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Junfen Li
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Sicheng He
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Yan Wang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| |
Collapse
|
3
|
Pan C, Hao X, Deng X, Lu F, Liu J, Hou W, Xu T. The roles of Hippo/YAP signaling pathway in physical therapy. Cell Death Discov 2024; 10:197. [PMID: 38670949 PMCID: PMC11053014 DOI: 10.1038/s41420-024-01972-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Cellular behavior is regulated by mechanical signals within the cellular microenvironment. Additionally, changes of temperature, blood flow, and muscle contraction also affect cellular state and the development of diseases. In clinical practice, physical therapy techniques such as ultrasound, vibration, exercise, cold therapy, and hyperthermia are commonly employed to alleviate pain and treat diseases. However, the molecular mechanism about how these physiotherapy methods stimulate local tissues and control gene expression remains unknow. Fortunately, the discovery of YAP filled this gap, which has been reported has the ability to sense and convert a wide variety of mechanical signals into cell-specific programs for transcription, thereby offering a fresh perspective on the mechanisms by which physiotherapy treat different diseases. This review examines the involvement of Hippo/YAP signaling pathway in various diseases and its role in different physical therapy approaches on diseases. Furthermore, we explore the potential therapeutic implications of the Hippo/YAP signaling pathway and address the limitations and controversies surrounding its application in physiotherapy.
Collapse
Affiliation(s)
- Chunran Pan
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoxia Hao
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaofeng Deng
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fan Lu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiawei Liu
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenjie Hou
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Xu
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
4
|
Hochi H, Kubota S, Takigawa M, Nishida T. Dual roles of cellular communication network factor 6 (CCN6) in the invasion and metastasis of oral cancer cells to bone via binding to BMP2 and RANKL. Carcinogenesis 2023; 44:695-707. [PMID: 37590989 PMCID: PMC10692700 DOI: 10.1093/carcin/bgad057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/28/2023] [Accepted: 08/16/2023] [Indexed: 08/19/2023] Open
Abstract
The acquisition of motility via epithelial-mesenchymal transition (EMT) and osteoclast induction are essential for the invasion and metastasis of oral squamous cell carcinoma (OSCC) to bone. However, the molecule suppressing both EMT and osteoclastogenesis is still unknown. In this study, we found that cellular communication network factor 6 (CCN6) was less produced in a human OSCC cell line, HSC-3 with mesenchymal phenotype, than in HSC-2 cells without it. Notably, CCN6 interacted with bone morphogenetic protein 2 (BMP2) and suppressed the cell migration of HSC-3 cells stimulated by BMP2. Moreover, knockdown of CCN6 in HSC-2 cells led to the promotion of EMT and enhanced the effect of transforming growth factor-β (TGF-β) on the promotion of EMT. Furthermore, CCN6 combined with BMP2 suppressed EMT. These results suggest that CCN6 strongly suppresses EMT in cooperation with BMP2 and TGF-β. Interestingly, CCN6 combined with BMP2 increased the gene expression of receptor activator of nuclear factor-κB ligand (RANKL) in HSC-2 and HSC-3 cells. Additionally, CCN6 interacted with RANKL, and CCN6 combined with RANKL suppressed RANKL-induced osteoclast formation. In metastatic lesions, increasing BMP2 due to the bone destruction led to interference with binding of CCN6 to RANKL, which results in the promotion of bone metastasis of OSCC cells due to continuous osteoclastogenesis. These findings suggest that CCN6 plays dual roles in the suppression of EMT and in the promotion of bone destruction of OSCC in primary and metastatic lesions, respectively, through cooperation with BMP2 and interference with RANKL.
Collapse
Affiliation(s)
- Hiroaki Hochi
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama 700-8525, Japan
| | - Satoshi Kubota
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama 700-8525, Japan
| | - Masaharu Takigawa
- Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama 700-8525, Japan
| | - Takashi Nishida
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama 700-8525, Japan
| |
Collapse
|
5
|
Han J, Li X, Liang B, Ma S, Pu Y, Yu F, Lu J, Ma Y, MacHugh DE, Jiang L. Transcriptome profiling of differentiating adipose-derived stem cells across species reveals new genes regulating adipogenesis. Biochim Biophys Acta Mol Cell Biol Lipids 2023; 1868:159378. [PMID: 37572997 DOI: 10.1016/j.bbalip.2023.159378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/31/2023] [Accepted: 08/02/2023] [Indexed: 08/14/2023]
Abstract
Adipose-derived stem cells (ADSCs) that are enriched in adipose tissue with multilineage differentiation potential have become an important tool in therapeutic research and tissue engineering. Certain breeds of sheep exhibit a unique fat tail trait such that tail tissue accounts for approximately 10 % of body weight and can provide an excellent source of ADSCs. Here, we describe isolation of primary ADSCs from ovine embryonic fat tail tissues that displayed high self-renewal capacity, multilineage differentiation and excellent adipogenic ability. Through transcriptome analysis covering ADSCs differentiating into adipocytes, 37 transcription factors were involved in early transcriptional events that initiate a regulatory cascade of adipogenesis; the entire adipogenic activity consists of a reduction in proliferation ability and upregulation of genes related to lipid generation and energy metabolism, as well as several genes associated with myogenesis. Furthermore, Comparative transcriptome analysis across species (sheep, human, and mouse) revealed enhanced basal metabolic ability in differentiating ovine ADSCs, which may relate to the excellent adipogenic capability of these cells. We also identified a small evolutionarily conserved gene set, consisting of 21 and 22 genes exhibiting increased and decreased expression, respectively. Almost half (20) of these genes have not previously been reported to regulate adipogenesis in mammals. In this study, we identified important regulators that trigger ovine adipocyte differentiation, main biological pathways involved in adipogenesis as well as the evolutionarily conserved genes governing adipogenic process across species. Our study provides a novel excellent biomaterial and novel genes regulating adipogenesis for cellular transplantation therapy and investigations of fat metabolism.
Collapse
Affiliation(s)
- Jiangang Han
- Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China; Animal Genomics Laboratory, UCD School of Agriculture and Food Science, UCD College of Health and Agricultural Sciences, University College Dublin, Belfield, Dublin D04 V1W8, Ireland
| | - Xiaojie Li
- Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China; National Germplasm Center of Domestic Animal Resources, Ministry of Technology, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Benmeng Liang
- Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China; National Germplasm Center of Domestic Animal Resources, Ministry of Technology, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Sijia Ma
- Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China; Agricultural College, Ningxia University, Yinchuan, Ningxia, China
| | - Yabin Pu
- Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China; National Germplasm Center of Domestic Animal Resources, Ministry of Technology, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Fuqing Yu
- National Animal Husbandry Service, Beijing 100193, China
| | - Jian Lu
- National Animal Husbandry Service, Beijing 100193, China
| | - Yuehui Ma
- Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China; National Germplasm Center of Domestic Animal Resources, Ministry of Technology, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - David E MacHugh
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, UCD College of Health and Agricultural Sciences, University College Dublin, Belfield, Dublin D04 V1W8, Ireland; UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin D04 V1W8, Ireland.
| | - Lin Jiang
- Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China; National Germplasm Center of Domestic Animal Resources, Ministry of Technology, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China.
| |
Collapse
|
6
|
Lin Z, Gao L, Hou N, Zhi X, Zhang Y, Che Z, Deng A. Application of low-intensity pulsed ultrasound on tissue resident stem cells: Potential for ophthalmic diseases. Front Endocrinol (Lausanne) 2023; 14:1153793. [PMID: 37008913 PMCID: PMC10063999 DOI: 10.3389/fendo.2023.1153793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/07/2023] [Indexed: 03/19/2023] Open
Abstract
INTRODUCTION Tissue-resident stem cells (TRSCs) have the ability to self-renew and differentiate throughout an individual's lifespan, and they utilize both mechanisms to maintain homeostasis and regenerate damaged tissues. Several studies suggest that these stem cells can serve as a potential source for cell-replacement-based therapy by promoting differentiation or expansion. In recent years, low-intensity pulsed ultrasound (LIPUS) has been demonstrated to effectively stimulate stem cell proliferation and differentiation, promote tissue regeneration, and inhibit inflammatory responses. AIMS To present a comprehensive overview of current application and mechanism of LIPUS on tissue resident stem cells. METHODS We searched PubMed, Web of Science for articles on the effects of LIPUS on tissue resident stem cells and its application. RESULTS The LIPUS could modulate cellular activities such as cell viability, proliferation and differentiation of tissue resident stem cells and related cells through various cellular signaling pathways. Currently, LIPUS, as the main therapeutic ultrasound, is being widely used in the treatment of preclinical and clinical diseases. CONCLUSION The stem cell research is the hot topic in the biological science, while in recent years, increasing evidence has shown that TRSCs are good targets for LIPUS-regulated regenerative medicine. LIPUS may be a novel and valuable therapeutic approach for the treatment of ophthalmic diseases. How to further improve its efficiency and accuracy, as well as the biological mechanism therein, will be the focus of future research.
Collapse
|
7
|
Kubota S, Kawata K, Hattori T, Nishida T. Molecular and Genetic Interactions between CCN2 and CCN3 behind Their Yin-Yang Collaboration. Int J Mol Sci 2022; 23:ijms23115887. [PMID: 35682564 PMCID: PMC9180607 DOI: 10.3390/ijms23115887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/19/2022] [Accepted: 05/19/2022] [Indexed: 12/15/2022] Open
Abstract
Cellular communication network factor (CCN) 2 and 3 are the members of the CCN family that conduct the harmonized development of a variety of tissues and organs under interaction with multiple biomolecules in the microenvironment. Despite their striking structural similarities, these two members show contrastive molecular functions as well as temporospatial emergence in living tissues. Typically, CCN2 promotes cell growth, whereas CCN3 restrains it. Where CCN2 is produced, CCN3 disappears. Nevertheless, these two proteins collaborate together to execute their mission in a yin–yang fashion. The apparent functional counteractions of CCN2 and CCN3 can be ascribed to their direct molecular interaction and interference over the cofactors that are shared by the two. Recent studies have revealed the mutual negative regulation systems between CCN2 and CCN3. Moreover, the simultaneous and bidirectional regulatory system of CCN2 and CCN3 is also being clarified. It is of particular note that these regulations were found to be closely associated with glycolysis, a fundamental procedure of energy metabolism. Here, the molecular interplay and metabolic gene regulation that enable the yin–yang collaboration of CCN2 and CCN3 typically found in cartilage development/regeneration and fibrosis are described.
Collapse
|
8
|
Effect of Angiotensin II on Chondrocyte Degeneration and Protection via Differential Usage of Angiotensin II Receptors. Int J Mol Sci 2021; 22:ijms22179204. [PMID: 34502113 PMCID: PMC8430521 DOI: 10.3390/ijms22179204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/20/2021] [Accepted: 08/23/2021] [Indexed: 11/17/2022] Open
Abstract
The renin–angiotensin system (RAS) controls not only systemic functions, such as blood pressure, but also local tissue-specific events. Previous studies have shown that angiotensin II receptor type 1 (AT1R) and type 2 (AT2R), two RAS components, are expressed in chondrocytes. However, the angiotensin II (ANG II) effects exerted through these receptors on chondrocyte metabolism are not fully understood. In this study, we investigated the effects of ANG II and AT1R blockade on chondrocyte proliferation and differentiation. Firstly, we observed that ANG II significantly suppressed cell proliferation and glycosaminoglycan content in rat chondrocytic RCS cells. Additionally, ANG II decreased CCN2, which is an anabolic factor for chondrocytes, via increased MMP9. In Agtr1a-deficient RCS cells generated by the CRISPR-Cas9 system, Ccn2 and Aggrecan (Acan) expression increased. Losartan, an AT1R antagonist, blocked the ANG II-induced decrease in CCN2 production and Acan expression in RCS cells. These findings suggest that AT1R blockade reduces ANG II-induced chondrocyte degeneration. Interestingly, AT1R-positive cells, which were localized on the surface of the articular cartilage of 7-month-old mice expanded throughout the articular cartilage with aging. These findings suggest that ANG II regulates age-related cartilage degeneration through the ANG II–AT1R axis.
Collapse
|
9
|
Tan Y, Guo Y, Reed-Maldonado AB, Li Z, Lin G, Xia SJ, Lue TF. Low-intensity pulsed ultrasound stimulates proliferation of stem/progenitor cells: what we need to know to translate basic science research into clinical applications. Asian J Androl 2021; 23:602-610. [PMID: 33818526 PMCID: PMC8577250 DOI: 10.4103/aja.aja_25_21] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Low-intensity pulsed ultrasound (LIPUS) is a promising therapy that has been increasingly explored in basic research and clinical applications. LIPUS is an appealing therapeutic option as it is a noninvasive treatment that has many advantages, including no risk of infection or tissue damage and no known adverse reactions. LIPUS has been shown to have many benefits including promotion of tissue healing, angiogenesis, and tissue regeneration; inhibition of inflammation and pain relief; and stimulation of cell proliferation and differentiation. The biophysical mechanisms of LIPUS remain unclear and the studies are ongoing. In recent years, more and more research has focused on the relationship between LIPUS and stem/progenitor cells. A comprehensive search of the PubMed and Embase databases to July 2020 was performed. LIPUS has many effects on stem cells. Studies show that LIPUS can stimulate stem cells in vitro; promote stem cell proliferation, differentiation, and migration; maintain stem cell activity; alleviate the problems of insufficient seed cell source, differentiation, and maturation; and circumvent the low efficiency of stem cell transplantation. The mechanisms involved in the effects of LIPUS are not fully understood, but the effects demonstrated in studies thus far have been favorable. Much additional research is needed before LIPUS can progress from basic science research to large-scale clinical dissemination and application.
Collapse
Affiliation(s)
- Yan Tan
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA 94143, USA.,Department of Andrology, Renmin Hospital, Hubei University of Medicine, Shiyan 442000, China.,Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan 442000, China
| | - Yang Guo
- Department of Andrology, Renmin Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Amanda B Reed-Maldonado
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA 94143, USA.,Department of Urology, Tripler Army Medical Center, Honolulu, HI 96859, USA
| | - Zheng Li
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Guiting Lin
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA 94143, USA
| | - Shu-Jie Xia
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Tom F Lue
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
10
|
Xu M, Wang L, Wu S, Dong Y, Chen X, Wang S, Li X, Zou C. Review on experimental study and clinical application of low-intensity pulsed ultrasound in inflammation. Quant Imaging Med Surg 2021; 11:443-462. [PMID: 33392043 DOI: 10.21037/qims-20-680] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Low-intensity pulsed ultrasound (LIPUS), as physical therapy, is widely used in both research and clinical settings. It induces multiple bioeffects, such as alleviating pain, promoting tissue repair, and shortening disease duration. LIPUS can also mediate inflammation. This paper reviews the application of LIPUS in inflammation and discusses the underlying mechanism. In basic experiments, LIPUS can regulate inflammatory responses at the cellular level by affecting some signaling pathways. In a clinical trial, LIPUS has been shown to alleviate inflammatory responses efficiently. As a cheap, safe, and convenient physical method, LIPUS is promising as anti-inflammatory therapy.
Collapse
Affiliation(s)
- Maosheng Xu
- Department of Ultrasonography, The Second Affiliated Hospital, and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Liang Wang
- Department of Ultrasonography, The Second Affiliated Hospital, and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Senmin Wu
- Department of Ultrasonography, The Second Affiliated Hospital, and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yanyan Dong
- Department of Ultrasonography, The Second Affiliated Hospital, and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiu Chen
- Department of Ultrasonography, The Second Affiliated Hospital, and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shijia Wang
- Department of Ultrasonography, The Second Affiliated Hospital, and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiuyun Li
- Department of Ultrasonography, The Second Affiliated Hospital, and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chunpeng Zou
- Department of Ultrasonography, The Second Affiliated Hospital, and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
11
|
Nishida T, Kubota S. Roles of CCN2 as a mechano-sensing regulator of chondrocyte differentiation. JAPANESE DENTAL SCIENCE REVIEW 2020; 56:119-126. [PMID: 33088364 PMCID: PMC7560579 DOI: 10.1016/j.jdsr.2020.07.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/07/2020] [Accepted: 07/20/2020] [Indexed: 12/17/2022] Open
Abstract
Cellular communication network factor 2 (CCN2) is a cysteine-rich secreted matricellular protein that regulates various cellular functions including cell differentiation. CCN2 is highly expressed under several types of mechanical stress, such as stretch, compression, and shear stress, in mesenchymal cells including chondrocytes, osteoblasts, and fibroblasts. In particular, CCN2 not only promotes cell proliferation and differentiation of various cells but also regulates the stability of mRNA of TRPV4, a mechanosensitive ion channel in chondrocytes. Of note, CCN2 behaves like a biomarker to sense suitable mechanical stress, because CCN2 expression is down-regulated when chondrocytes are subjected to excessive mechanical stress. These findings suggest that CCN2 is a mechano-sensing regulator. CCN2 expression is regulated by the activation of various mechano-sensing signaling pathways, e.g., mechanosensitive ion channels, integrin-focal adhesion-actin dynamics, Rho GTPase family members, Hippo-YAP signaling, and G protein-coupled receptors. This review summarizes the characterization of mechanoreceptors involved in CCN2 gene regulation and discusses the role of CCN2 as a mechano-sensing regulator of mesenchymal cell differentiation, with particular focus on chondrocytes.
Collapse
Affiliation(s)
- Takashi Nishida
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama 700-8525, Japan.,Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama 700-8525, Japan
| | - Satoshi Kubota
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama 700-8525, Japan
| |
Collapse
|