1
|
Kim IY, Park CS, Seo KJ, Lee JY, Yune TY. TRPM7 Mediates Neuropathic Pain by Activating mTOR Signaling in Astrocytes after Spinal Cord Injury in Rats. Mol Neurobiol 2024; 61:5265-5281. [PMID: 38180616 DOI: 10.1007/s12035-023-03888-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/14/2023] [Indexed: 01/06/2024]
Abstract
In this study, we investigated whether transient receptor melastatin 7 (TRPM7), known as a non-selective cation channel, inhibits neuropathic pain after spinal cord injury (SCI) and how TRPM7 regulates neuropathic pain. Neuropathic pain was developed 4 weeks after moderate contusive SCI and TRPM7 was markedly upregulated in astrocytes in the lamina I and II of L4-L5 dorsal horn. In addition, both mechanical allodynia and thermal hyperalgesia were significantly alleviated by a TRPM7 inhibitor, carvacrol. In particular, carvacrol treatment inhibited mechanistic target of rapamycin (mTOR) signaling, which was activated in astrocytes. When rats were treated with rapamycin, an inhibitor of mTOR signaling, neuropathic pain was significantly inhibited. Furthermore, blocking TRPM7 and mTOR signaling by carvacrol and rapamycin inhibited astrocyte activation in lamina I and II of dorsal spinal cord and reduced the level of p-JNK and p-c-Jun, which are known to be activated in astrocytes. Finally, inhibiting TRPM7/mTOR signaling also downregulated the production of pain-related factors such as tumor necrosis factor-α, interleukin-6, interleukin-1β, chemokine (C-C motif) ligand (CCL) 2, CCL-3, CCL-4, CCL-20, chemokine C-X-C motif ligand 1, and matrix metalloproteinase 9 which are known to be involved in the induction and/or maintenance of neuropathic pain after SCI. These results suggest an important role of TRPM7-mediated mTOR signaling in astrocyte activation and thereby induction and/or maintenance of neuropathic pain after SCI.
Collapse
Affiliation(s)
- In Yi Kim
- Age-Related and Brain Diseases Research Center, Kyung Hee University, Medical Building 10th Floor, Dongdaemun-Gu, Hoegi-Dong 1, Seoul, 02447, Republic of Korea
- Department of Biomedical Science, Kyung Hee University, Seoul, 02447, Republic of Korea
- Biomedical Science Institute, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Chan Sol Park
- Age-Related and Brain Diseases Research Center, Kyung Hee University, Medical Building 10th Floor, Dongdaemun-Gu, Hoegi-Dong 1, Seoul, 02447, Republic of Korea
- Department of Biomedical Science, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Kyung Jin Seo
- Age-Related and Brain Diseases Research Center, Kyung Hee University, Medical Building 10th Floor, Dongdaemun-Gu, Hoegi-Dong 1, Seoul, 02447, Republic of Korea
- Department of Biomedical Science, Kyung Hee University, Seoul, 02447, Republic of Korea
- Biomedical Science Institute, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Jee Youn Lee
- Age-Related and Brain Diseases Research Center, Kyung Hee University, Medical Building 10th Floor, Dongdaemun-Gu, Hoegi-Dong 1, Seoul, 02447, Republic of Korea.
| | - Tae Young Yune
- Age-Related and Brain Diseases Research Center, Kyung Hee University, Medical Building 10th Floor, Dongdaemun-Gu, Hoegi-Dong 1, Seoul, 02447, Republic of Korea.
- Department of Biomedical Science, Kyung Hee University, Seoul, 02447, Republic of Korea.
- Biomedical Science Institute, Kyung Hee University, Seoul, 02447, Republic of Korea.
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea.
| |
Collapse
|
2
|
Shakeel M, Yoon M. Effects of insulin-like growth factor-1 on the proliferation and apoptosis of stallion testicular cells under normal and heat stress culture conditions. Anim Reprod Sci 2023; 256:107319. [PMID: 37633109 DOI: 10.1016/j.anireprosci.2023.107319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/13/2023] [Accepted: 08/14/2023] [Indexed: 08/28/2023]
Abstract
This study investigated the effect of heat stress on stallion testicular cells (TCs) and the effect of insulin-like growth factor (IGF)-1 on TC viability, proliferation, and apoptosis, including different stages of germ cells. TCs were divided into control or treatment groups with 0.01, 0.1, 1, 10, and 100 ng/mL of recombinant human IGF-1 (rhIGF-1) for 24 h at 34 °C and 37 °C. The population and viability were measured before and after treatment. The effects of rhIGF-1 on TC viability, proliferation, and apoptosis were determined using RT-qPCR. Proliferating cell nuclear antigen (PCNA) and marker of proliferation Ki-67 (MKI-67) were used as proliferation markers. Myeloid leukemia-1 (MCL-1) was used as an antiapoptotic marker. BCL2 antagonist/killer-1 (BAK-1) was used as a proapoptotic marker. The relative abundance of mRNA transcript of undifferentiated cell transcription factor 1 (UTF-1), protein gene product 9.5 (PGP9.5), and deleted in azoospermia-like (DAZL), was measured for spermatogenesis progression. TCs treated with 1 ng/mL rhIGF-1 at 34 °C exhibited the highest viability. Significant upregulation of the relative abundance of mRNA transcript of PCNA, MKI-67, and MCL-1 was observed in treated TCs compared with untreated TCs; however, BAK-1 was significantly downregulated in treated TCs. Germ cells treated with 1 ng/mL rhIGF-1 exhibited the highest relative abundance of mRNA transcript of UTF-1 and DAZL, whereas TCs exposed to 0.1 ng/mL showed the highest PGP9.5 level. These data confirm that heat stress in stallions decreases TC viability. These findings may help identify a basal IGF-1 level for TC proliferation and apoptosis during heat stress-induced testicular degeneration in stallions.
Collapse
Affiliation(s)
- Muhammad Shakeel
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju 37224, Republic of Korea; Department of Clinical Studies, Faculty of Veterinary and Animal Sciences, Pir Mehr Ali Shah, Arid Agriculture University, Rawalpindi 44000, Pakistan
| | - Minjung Yoon
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju 37224, Republic of Korea; Department of Horse, Companion, and Wild Animal Science, Kyungpook National University, Sangju 37224, Republic of Korea; Research Centre for Horse Industry, Kyungpook National University, Sangju 37224, Republic of Korea.
| |
Collapse
|