1
|
Zhang E, Hirao H. Exploring the Bonding Nature of Iron(IV)-Oxo Species through Valence Bond Calculations and Electron Density Analysis. J Phys Chem A 2024; 128:7167-7176. [PMID: 39163412 DOI: 10.1021/acs.jpca.4c04335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Compound I (Cpd I) plays a pivotal role in substrate transformations within the catalytic cycle of cytochrome P450 enzymes (P450s). A key constituent of Cpd I is the iron(IV)-oxo unit, a structural motif also found in other heme enzymes and nonheme enzymes. In this study, we performed ab initio valence bond (VB) calculations, employing the valence bond self-consistent field (VBSCF) and breathing orbital valence bond (BOVB) methods, to unveil the bonding nature of this vital "Fe(IV)═O″ unit in bioinorganic chemistry. Comparisons were drawn with the triplet O2 molecule, which shares some electronic characteristics with iron(IV)-oxo. Additionally, Cpd I models of horseradish peroxidase (HRP) and catalase (CAT) were analyzed to assess the proximal ligand effect on the electronic structure of iron(IV)-oxo. Our VB analysis underscores the significant role of noncovalent resonance effects in shaping the iron(IV)-oxo bonding. The resonance stabilization within the π and σ frameworks occurs to comparable degrees, with additional stabilization resulting from resonance between VB structures from these frameworks. Furthermore, we elucidated the substantial influence of proximal and equatorial ligands in modulating the relative significance of different VB structures. Notably, in the presence of these ligands, iron(IV)-oxo is better described as iron(III)-oxyl or iron(II)-oxygen, displaying weak covalent character but enhanced by resonance effects. Although both species exhibit diradicaloid characters, resonance stabilization in iron(IV)-oxo is weaker than in O2. Further exploration using the Laplacian of electron density shows that, unlike O2, which exhibits a charge concentration region between its two oxygen atoms, iron(IV)-oxo species display a charge depletion region.
Collapse
Affiliation(s)
- Enhua Zhang
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P. R. China
| | - Hajime Hirao
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P. R. China
| |
Collapse
|
2
|
Heinz MV, Reuter L, Lüchow A. Identifying a real space measure of charge-shift bonding with probability density analysis. Chem Sci 2024; 15:8820-8827. [PMID: 38873066 PMCID: PMC11168100 DOI: 10.1039/d4sc01674b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/06/2024] [Indexed: 06/15/2024] Open
Abstract
Charge-shift bonds have been hypothesized as a third type of chemical bonds in addition to covalent and ionic bonds. They have first been described with valence bond theory where they are identified by the resonance energy resulting from ionic contributions. While other indicators have been described, a clear real space fingerprint for charge-shift bonding is still lacking. Probability density analysis has been developed as a real space method, allowing chemical bonding to be identified from the many-electron probability density |Ψ|2 where the wave function Ψ can be obtained from any quantum chemical method. Recently, barriers of a probability potential, which depends on this density, have proven to be good measures for delocalization and covalent bonding. In this work, we employ many examples to demonstrate that a well-suited measure for charge-shift bonding can be defined within the framework of probability density analysis. This measure correlates well with the charge-shift resonance energy from valence bond theory and thus strongly supports the charge-shift bonding concept. It is, unlike the charge-shift resonance energy, not dependent on a reference state. Moreover, it is independent of the polarity of the bond, suggesting to characterize bonds in molecules by both their polarity and their charge-shift character.
Collapse
Affiliation(s)
- Michel V Heinz
- Institute of Physical Chemistry, RWTH Aachen University Landoltweg 2 52074 Aachen Germany +49 241 80 94748
| | - Leonard Reuter
- Institute of Physical Chemistry, RWTH Aachen University Landoltweg 2 52074 Aachen Germany +49 241 80 94748
| | - Arne Lüchow
- Institute of Physical Chemistry, RWTH Aachen University Landoltweg 2 52074 Aachen Germany +49 241 80 94748
| |
Collapse
|
3
|
Lin X, Lu X, Tang S, Wu W, Mo Y. Multiconfigurational actinide nitrides assisted by double Möbius aromaticity. Chem Sci 2024; 15:8216-8226. [PMID: 38817572 PMCID: PMC11134321 DOI: 10.1039/d4sc01549e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/25/2024] [Indexed: 06/01/2024] Open
Abstract
Understanding the bonding nature between actinides and main-group elements remains a key challenge in actinide chemistry due to the involvement of f orbitals. Herein, we propose a unique "aromaticity-assisted multiconfiguration" (AAM) model to elucidate the bonding nature in actinide nitrides (An2N2, An = Ac, Th, Pa, U). Each planar four-membered An2N2 with equivalent An-N bonds possesses four delocalized π electrons and four delocalized σ electrons, forming a new family of double Möbius aromaticity that contributes to the molecular stability. The unprecedented aromaticity further supports actinide nitrides to exhibit multiconfigurational characters, where the unpaired electrons (2, 4 or 6 in naked Th2N2, Pa2N2 or U2N2, respectively) either are spin-free and localized on metal centres or form metal-ligand bonds. High-level multiconfigurational computations confirm an open-shell singlet ground state for actinide nitrides, with small energy gaps to high spin states. This is consistent with the antiferromagnetic nature observed experimentally in uranium nitrides. The novel AAM bonding model can be authenticated in both experimentally identified compounds containing a U2N2 motif and other theoretically modelled An2N2 clusters and is thus expected to be a general chemical bonding pattern between actinides and main-group elements.
Collapse
Affiliation(s)
- Xuhui Lin
- School of Physics, Central South University Changsha Hunan 410083 China
| | - Xiaoli Lu
- School of Chemistry, Southwest Jiaotong University Chengdu Sichuan 610031 China
| | - Shenghui Tang
- School of Chemistry, Southwest Jiaotong University Chengdu Sichuan 610031 China
| | - Wei Wu
- The State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry and College of Chemistry and Chemical Engineering, Xiamen University Xiamen Fujian 361005 China
| | - Yirong Mo
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro Greensboro NC 27401 USA
| |
Collapse
|
4
|
Preethalayam P, Roldao JC, Castet F, Casanova D, Radenković S, Ottosson H. 3,4-Dimethylenecyclobutene: A Building Block for Design of Macrocycles with Excited State Aromatic Low-Lying High-Spin States. Chemistry 2024; 30:e202303549. [PMID: 38433097 DOI: 10.1002/chem.202303549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/25/2024] [Accepted: 02/29/2024] [Indexed: 03/05/2024]
Abstract
3,4-Dimethylenecyclobutene (DMCB) is an unusual isomer of benzene. Motivated by recent synthetic progress to substituted derivatives of this scaffold, we carried out a theoretical and computational analysis with a particular focus on the extent of (anti)aromatic character in the lowest excited states of different multiplicities. We found that the parent DMCB is non-aromatic in its singlet ground state (S0), lowest triplet state (T1), and lowest singlet excited state (S1), while it is aromatic in its lowest quintet state (Q1) as this state is represented by a triplet multiplicity cyclobutadiene (CBD) ring and two uncoupled same-spin methylene radicals. Interestingly, the Q1 state, despite having four unpaired electrons, is placed merely 4.8 eV above S0, and there is a corresponding singlet tetraradical 0.16 eV above. The DMCB is potentially a highly useful structural motif for the design of larger molecular entities with interesting optoelectronic properties. Here, we designed macrocycles composed of fused DMCB units, and according to our computations, two of these have low-lying nonet states (i. e., octaradical states) at energies merely 2.40 and 0.37 eV above their S0 states as a result of local Hückel- and Baird-aromatic character of individual 6π- and 4π-electron monocycles.
Collapse
Affiliation(s)
| | - Juan Carlos Roldao
- Department of Chemistry - Ångström Laboratory, Uppsala University, Uppsala, Sweden
- Donostia International Physics Center (DIPC), 20018, Donostia, Euskadi, Spain
- University of Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33405 Cedex, Talence, France
| | - Frédéric Castet
- University of Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33405 Cedex, Talence, France
| | - David Casanova
- Donostia International Physics Center (DIPC), 20018, Donostia, Euskadi, Spain
- IKERBASQUE - Basque Foundation for Science, 48009, Bilbao, Euskadi, Spain
| | - Slavko Radenković
- University of Kragujevac, Faculty of Science, P. O. Box 60, 34000, Kragujevac, Serbia
| | - Henrik Ottosson
- Department of Chemistry - Ångström Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
5
|
Zhang E, Hirao H. Synergistic Charge Transfer Effect in Ferrous Heme-CO Bonding within Cytochrome P450. Molecules 2024; 29:873. [PMID: 38398625 PMCID: PMC10891957 DOI: 10.3390/molecules29040873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/05/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
We conducted ab initio valence bond (VB) calculations employing the valence bond self-consistent field (VBSCF) and breathing orbital valence bond (BOVB) methods to investigate the nature of the coordination bonding between ferrous heme and carbon monoxide (CO) within cytochrome P450. These calculations revealed the significant influence exerted by both proximal and equatorial ligands on the π-backdonation effect from the heme to the CO. Moreover, our VB calculations unveiled a phenomenon of synergistic charge transfer (sCT). In the case of ferrous heme-CO bonding, the significant stabilization in this sCT arises from cooperative resonance between the VB structures associated with σ donation and π backdonation. Unlike many other ligands, CO possesses the unique ability to establish two mutually perpendicular π-backdonation orbital interaction pairs, leading to an intensified stabilization attributed to σ-π resonance. Furthermore, while of a smaller energy magnitude, sCT due to one π-π pair is also present, contributing to the differential stabilization of ferrous heme-CO bonding.
Collapse
Affiliation(s)
| | - Hajime Hirao
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China;
| |
Collapse
|
6
|
Wu X, Cao C, Zhou C, Wu W. Hybrid Density Functional Valence Bond Method with Multistate Treatment. J Chem Theory Comput 2024. [PMID: 38279919 DOI: 10.1021/acs.jctc.3c01170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2024]
Abstract
Recently, a hybrid density functional valence bond (VB) method, λ-DFVB(U), has been proposed and shown to give accuracy that is comparable to that of CASPT2 in calculations of atomization energies, atomic excitation energies, and reaction barriers, while its computational cost is approximately the same as the valence bond self-consistent-field (VBSCF) method. However, the interaction between electronic states is not included in λ-DFVB(U) since the last step of λ-DFVB(U) is not a diagonalization of the Hamiltonian matrix on the electronic state basis. Therefore, λ-DFVB(U) gives the wrong topology of the potential energy surfaces (PESs) near the conical intersection region. In the present paper, we propose a novel hybrid density functional VB method with multistate treatment, named λ-DFVB(MS), in which an effective Hamiltonian matrix is constructed on the basis of the diabatic states obtained by the valence-bond-based compression approach for the diabatization scheme, and the interaction between electronic states can be included through the diagonalization of the effective Hamiltonian matrix. Test calculations show that λ-DFVB(MS) gives the correct topology of the PESs near the conical intersection region. We also show that the VBSCF wave function with selected VB structures can be applied as a reference in λ-DFVB(MS).
Collapse
Affiliation(s)
- Xun Wu
- The State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| | - Chan Cao
- The State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| | - Chen Zhou
- The State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| | - Wei Wu
- The State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| |
Collapse
|
7
|
Shaik S, Danovich D, Zare RN. Valence Bond Theory Allows a Generalized Description of Hydrogen Bonding. J Am Chem Soc 2023; 145:20132-20140. [PMID: 37664980 PMCID: PMC10510329 DOI: 10.1021/jacs.3c08196] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Indexed: 09/05/2023]
Abstract
This paper describes the nature of the hydrogen bond (HB), B:---H-A, using valence bond theory (VBT). Our analysis shows that the most important HB interactions are polarization and charge transfer, and their corresponding sum displays a pattern that is identical for a variety of energy decomposition analysis (EDA) methods. Furthermore, the sum terms obtained with the different EDA methods correlate linearly with the corresponding VB quantities. The VBT analysis demonstrates that the total covalent-ionic resonance energy (RECS) of the HB portion (B---H in B:---H-A) correlates linearly with the dissociation energy of the HB, ΔEdiss. In principle, therefore, RECS(HB) can be determined by experiment. The VBT wavefunction reveals that the contributions of ionic structures to the HB increase the positive charge on the hydrogen of the corresponding external/free O-H bonds in, for example, the water dimer compared with a free water molecule. This increases the electric field of the external O-H bonds of water clusters and contributes to bringing about catalysis of reactions by water droplets and in water-hydrophobic interfaces.
Collapse
Affiliation(s)
- Sason Shaik
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - David Danovich
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Richard N. Zare
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
8
|
Roy S, Shurki A. New Methodology to Produce Sets of Valence Bond Structures with Enhanced Chemical Insights. J Chem Theory Comput 2023; 19:3102-3111. [PMID: 37186771 PMCID: PMC10269329 DOI: 10.1021/acs.jctc.2c01000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Indexed: 05/17/2023]
Abstract
The valence bond (VB) theory uses localized orbitals, and its wave function is composed of a linear combination of various VB structures which are based on sets of spin functions. The VB structures are not unique, and different sets are used, Rumer sets being the most common for classical VB due to their advantage as being both easily obtained as linearly independent and meaningful. Yet, Rumer rules, which are responsible for the simplified process of obtaining the Rumer sets, are very restrictive. Furthermore, Rumer sets are best suited for cyclic systems; however, in noncyclic systems, structures resulting from Rumer rules are often not the most intuitive/suitable structures for these systems. We have developed a method to obtain chemically insightful structures, which is based on concepts of chemical bonding. The method provides sets of VB structures with improved chemical insight, which can also be controlled. Parallel to the Rumer structures, the chemical insight sets of structures are based on electron pair coupling, and hence, pictorially can be drawn similarly to the Lewis structures. Yet, different from Rumer rules, the chemical insight method, being more flexible, allows larger combinations of bonds as well as larger combinations of structures in the sets it offers, resulting in many more possible sets that are better adapted to the systems studied.
Collapse
Affiliation(s)
- Sourav Roy
- Institute for Drug Research, School
of Pharmacy, Ein Kerem Campus, The Hebrew
University of Jerusalem, Jerusalem 9112001, Israel
| | - Avital Shurki
- Institute for Drug Research, School
of Pharmacy, Ein Kerem Campus, The Hebrew
University of Jerusalem, Jerusalem 9112001, Israel
| |
Collapse
|
9
|
Lin X, Wu W, Mo Y. Planar Four-Membered Diboron Actinide Compound with Double Möbius Aromaticity. J Am Chem Soc 2023; 145:8107-8113. [PMID: 36977280 PMCID: PMC10103132 DOI: 10.1021/jacs.3c00907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
The Möbius rule predicts that a planar four-membered metallacycle can be aromatic with four mobile electrons, but such a simple ring has escaped recognition because it usually favors Hückel anti-aromaticity. Here, we report that a quasi-square four-membered actinide compound (Pa2B2) is doubly Möbius aromatic. Chemical bonding analyses reveal that this diboron protactinium molecule has four delocalized π electrons in addition to four delocalized σ electrons, satisfying the 4n Möbius rule for both σ and π components. Energetically, the block-localized wavefunction method, which is the simplest variant of ab initio valence bond theory, shows that the delocalization energy for the π and σ electrons reaches up to 65.0 and 72.3 kcal/mol, respectively, while the extra cyclic resonance energy (ECRE) amounts to 45 kcal/mol. The large positive ECRE values strongly confirm the unprecedented double Möbius aromaticity in Pa2B2. We anticipate that this new type of aromatic molecule can enrich the concept of Möbius aromaticity and open a new avenue for actinide compounds.
Collapse
Affiliation(s)
- Xuhui Lin
- School of Chemistry, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Wei Wu
- The State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Yirong Mo
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, North Carolina 27401, United States
| |
Collapse
|
10
|
Zhang H, Wang Y, Lu Q, Song J, Duan Y, Zeng Y, Mo Y. Captodative Effect Facilitates the Excitation in Diboron Molecule (CAAC) 2 B 2 (SH) 2. Chemistry 2023; 29:e202203817. [PMID: 36624078 DOI: 10.1002/chem.202203817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/09/2023] [Accepted: 01/09/2023] [Indexed: 01/11/2023]
Abstract
Given the extraordinary versatility in chemical reactions and applications, boron compounds have gained increasing attentions in the past two decades. One of the remarkable advances is the unprecedented preparation of unsaturated boron species. Notably, Braunschweig et al. found that the cyclic (alkyl)(amino) carbenes (CAACs) stabilized diboron molecules (CAAC)2 B2 (SR)2 host unpaired electrons and exist in the 90°-twisted diradical form, while other analogues, such as N-heterocyclic carbenes (NHCs), stabilized diboron molecules prefer a conventional B=B double bond. Since previous studies recognized the differences in the steric effect between CAAC and NHC carbenes, here we focused on the role of thiol substituents in (CAAC)2 B2 (SR)2 by gradually localizing involved electrons. The co-planarity of the thiol groups and the consequent captodative effect were found to be the culprit for the 90°-twisted diradical form of (CAAC)2 B2 (SR)2 . Computational analyses identified two forces contributing to the π electron movements. One is the "push" effect of lone pairs on the sulfur atoms which boosts the π electron delocalization between the BB center and CAACs. The other is the π electron delocalization within each (CAAC)B(SR) fragment where the pull effect originates from the π electron withdrawal by CAACs. There are two such independent and orthogonal push-pull channels which function mainly in individual (CAAC)B(SR) fragments. This enhanced π push-pull effect in the triplet state facilitates the electronic excitation in (CAAC)2 B2 (SR)2 by reducing the singlet-triplet gap.
Collapse
Affiliation(s)
- Huaiyu Zhang
- Institute of Computational Quantum Chemistry, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, 050024, China
| | - Yating Wang
- Institute of Computational Quantum Chemistry, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, 050024, China
| | - Qingrui Lu
- Institute of Computational Quantum Chemistry, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, 050024, China
| | - Jinshuai Song
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Yandong Duan
- Hebei Key Laboratory of Photoelectric Control on Surface and Interface, School of Sciences, Hebei University of Science and Technology, Shijiazhuang, 050018, China
| | - Yanli Zeng
- Institute of Computational Quantum Chemistry, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, 050024, China
| | - Yirong Mo
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, NC 27401, USA
| |
Collapse
|
11
|
Ji C, Ying F, Su P, Zhou C, Wu W. Implementation of molecular symmetry in valence bond calculation. J CHIN CHEM SOC-TAIP 2022. [DOI: 10.1002/jccs.202200476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Chenru Ji
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and College of Chemistry and Chemical Engineering Xiamen University Xiamen People's Republic of China
| | - Fuming Ying
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and College of Chemistry and Chemical Engineering Xiamen University Xiamen People's Republic of China
| | - Peifeng Su
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and College of Chemistry and Chemical Engineering Xiamen University Xiamen People's Republic of China
| | - Chen Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and College of Chemistry and Chemical Engineering Xiamen University Xiamen People's Republic of China
| | - Wei Wu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and College of Chemistry and Chemical Engineering Xiamen University Xiamen People's Republic of China
| |
Collapse
|
12
|
Chourasia M, Cowen T, Friedman-Ezra A, Rubanovich E, Shurki A. The effect of immediate environment on bond strength of different bond types-A valence bond study. J Chem Phys 2022; 157:244301. [PMID: 36586970 DOI: 10.1063/5.0130020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The ability to design catalysis largely depends on our understanding of the electrostatic effect of the surrounding on the bonds participating in the reaction. Here, we used a simplistic model of point charges (PCs) to determine a set of rules guiding how to construct PC-bond arrangement that can strengthen or weaken different chemical bonds. Using valence bond theory to calculate the in situ bond energies, we show that the effect of the PC mainly depends on the bond's dipole moment irrespective of its type (being covalent or charge shift). That is, polar bonds are getting stronger or weaker depending on the sign and location of the PC, whereas non- or weakly polar bonds become stronger or weaker depending only on the location of the PC and to a smaller extent compared with polar bonds. We also show that for polar bonds, the maximal bond strengthening and weakening effect can be achieved when the PC is placed along the bond axis, as close as possible to the more and less polarizable atom/fragment, respectively. Finally, due to the stabilizing effects of polarizability, we show that, overall, it is easier to cause bond strengthening compared with bond weakening. Particularly, for polar bonds, bond strengthening is larger than bond weakening obtained by an oppositely signed PC. These rules should be useful in the future design of catalysis in, e.g., enzyme active sites.
Collapse
Affiliation(s)
- Mukesh Chourasia
- Institute for Drug Research, School of Pharmacy, Ein Kerem Campus, The Hebrew University of Jerusalem, Jerusalem 9112002, Israel
| | - Todd Cowen
- Institute for Drug Research, School of Pharmacy, Ein Kerem Campus, The Hebrew University of Jerusalem, Jerusalem 9112002, Israel
| | - Aviva Friedman-Ezra
- Institute for Drug Research, School of Pharmacy, Ein Kerem Campus, The Hebrew University of Jerusalem, Jerusalem 9112002, Israel
| | - Eden Rubanovich
- Institute for Drug Research, School of Pharmacy, Ein Kerem Campus, The Hebrew University of Jerusalem, Jerusalem 9112002, Israel
| | - Avital Shurki
- Institute for Drug Research, School of Pharmacy, Ein Kerem Campus, The Hebrew University of Jerusalem, Jerusalem 9112002, Israel
| |
Collapse
|
13
|
Ren M, Liu X, Zhang L, Lin X, Wu W, Chen Z. Compact and accurate ab initio valence bond wave functions for electron transfer: the classic but challenging covalent-ionic interaction in LiF. J Chem Phys 2022; 157:084106. [DOI: 10.1063/5.0097614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The paper combines the valence bond block diabatization approach (VBBDA) with the idea of orbital breathing. With highly compact wave functions, the breathing orbital valence bond (BOVB) method is applied to investigate several atomic and molecular properties including the electron affinity of F, the adiabatic and diabatic potential energy curves and the dipole moment curves of the two lowest-lying 1Σ+ states, the electronic coupling curve and the crossing distance of the two diabatic states, and the spectroscopic constants of the ground states for LiF. The configuration selection scheme proposed in this work is quite general, requiring only the selection of several de-excitation and excitation orbitals in a sense like the restricted active space self-consistent field method. Practically, this is also the first time that BOVB results are extrapolated to complete basis set limit. Armed with the chemical intuition provided by VB theory, the classic but challenging covalent-ionic interaction in the title molecule is not only conceptually interpreted but is also accurately computed.
Collapse
Affiliation(s)
- Mingxing Ren
- College of Chemistry and Chemical Engineering, Xiamen University, China
| | | | - Lina Zhang
- College of Chemistry and Chemical Engineering, Xiamen University, China
| | | | - Wei Wu
- Chemistry, Xiamen University, China
| | | |
Collapse
|
14
|
Reuter L, van Staalduinen N, Simons J, Ludovicy J, Lüchow A. Multi-center bonds as resonance hybrids: A real space perspective. J Chem Phys 2022; 156:224107. [PMID: 35705411 DOI: 10.1063/5.0090607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The concept of distinct bonds within molecules has proven to be successful in rationalizing chemical reactivity. However, bonds are not a well-defined physical concept, but rather vague entities, described by different and often contradicting models. With probability density analysis, which can-in principle-be applied to any wave function, bonds are recovered as spin-coupled positions within most likely electron arrangements in coordinate space. While the wave functions of many systems are dominated by a single electron arrangement that is built from two-center two-electron bonds, some systems require several different arrangements to be well described. In this work, a range of these multi-center bonded molecules are classified and investigated with probability density analysis. The results are compared with valence bond theory calculations and data from collision-induced dissociation experiments.
Collapse
Affiliation(s)
- L Reuter
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52074 Aachen, Germany
| | - N van Staalduinen
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52074 Aachen, Germany
| | - J Simons
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52074 Aachen, Germany
| | - J Ludovicy
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52074 Aachen, Germany
| | - A Lüchow
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52074 Aachen, Germany
| |
Collapse
|
15
|
Zheng P, Gan Z, Zhou C, Su P, Wu W. λ-DFVB(U): A hybrid density functional valence bond method based on unpaired electron density. J Chem Phys 2022; 156:204103. [DOI: 10.1063/5.0091592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In this paper, a hybrid density functional valence bond method based on unpaired electron density, called λ-DFVB(U), is presented, which is a combination of the valence bond self-consistent field (VBSCF) method and Kohn–Sham density functional theory. In λ-DFVB(U), the double-counting error of electron correlation is mitigated by a linear decomposition of the electron–electron interaction using a parameter λ, which is a function of an index based on the number of effectively unpaired electrons. In addition, λ-DFVB(U) is based on the approximation that correlation functionals in KS-DFT only cover dynamic correlation and exchange functionals mimic some amount of static correlation. Furthermore, effective spin densities constructed from unpaired density are used to address the symmetry dilemma problem in λ-DFVB(U). The method is applied to test calculations of atomization energies, atomic excitation energies, and reaction barriers. It is shown that the accuracy of λ-DFVB(U) is comparable to that of CASPT2, while its computational cost is approximately the same as VBSCF.
Collapse
Affiliation(s)
- Peikun Zheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Department of Chemistry, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zixi Gan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Department of Chemistry, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Chen Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Department of Chemistry, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Peifeng Su
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Department of Chemistry, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Wei Wu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Department of Chemistry, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
16
|
Hagebaum-Reignier D, Racine J, Humbel S. Electronic densities and valence bond wave functions. J Chem Phys 2022; 156:204310. [DOI: 10.1063/5.0094554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Valence bond (VB) wave functions are studied from the density point of view. The density is plotted as a difference with the quasi-state built on the same orbitals. The densities of the components of the VB wave function are also shown. The breathing orbital effect leads to small modifications of the density. It is shown that while the densities of ionic and covalent components are the same, their coupling ends-up in modifications of the electronic density.
Collapse
Affiliation(s)
| | - J. Racine
- Aix Marseille Université, CNRS, Centrale Marseille iSm2, Marseille, France
| | - S. Humbel
- Aix Marseille Université, CNRS, Centrale Marseille iSm2, Marseille, France
| |
Collapse
|
17
|
Huang D, Ying F, Chen S, Zhou C, Su P, Wu W. Metal-Ligand Bonds in Rare Earth Metal-Biphenyl Complexes. Inorg Chem 2022; 61:8135-8143. [PMID: 35588219 DOI: 10.1021/acs.inorgchem.2c00144] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A series of theoretical methods, including density functional theory, multiconfiguration molecular orbital theory, and ab initio valence bond theory, are devoted to understanding the metal-ligand bonds in M-BP (BP = biphenyl; M = Sc, Y, or La) complexes. Different from most transition metal-BP complexes, the most stable metal-biphenyl conformers are not half-sandwich but clamshell. Energy decomposition analysis results reveal that the M-BP bonds in the clamshell conformers possess extra-large orbital relaxation. According to the wave function analysis, 2-fold donations and 2-fold back-donations exist in the clamshell M-BP bonds. The back-donations from M to BP are quite strong, while donations from BP to M are quite weak. Our work improves our understanding of the metal-ligand bonds, which can be considered as the "reversed" Dewar-Chatt-Duncanson model.
Collapse
Affiliation(s)
- Dajiang Huang
- The State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, iChEM, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Fuming Ying
- The State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, iChEM, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Sifeng Chen
- The State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, iChEM, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Chen Zhou
- The State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, iChEM, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Peifeng Su
- The State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, iChEM, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Wei Wu
- The State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, iChEM, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| |
Collapse
|
18
|
Lin X, Mo Y. Partial Double Metal-Carbon Bonding Model in Transition Metal Methyl Compounds. Inorg Chem 2022; 61:2892-2902. [PMID: 35104122 DOI: 10.1021/acs.inorgchem.1c03619] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The chemical bond between a transition metal and a methyl group (M-CH3) is typically defined as a single covalent bond, which is of fundamental significance and general interest in understanding the structural properties and reactivity of transition metal alkyl compounds. Herein, we demonstrate that the M-CH3 bonding involves varying σ and π components and thus should be best described in terms of the partial double M═CH3 bond. The often-neglected π bonding stems from an occupied π-symmetric orbital of the methyl group comprising all three C-H σ bonds (but one C-H' contributes more than the other two) and a vacant low-lying metal d(π) orbital, and is associated with the intramolecular C-H'···M agostic effect (i.e., an acute M-C-H' angle and a short H'···M distance), whose origin is still controversial. We quantify the geometric and energetic impacts of the π interaction involved in the M-CH3 bond by explicitly computing the intramolecular πCH' → dM interaction with the ab initio valence bond (VB) theory. Our computations of the ligand-free [TiCH3]3+ and a series of metallocene catalysts provide a direct proof for the presence of the π bonding in M-CH3 bonds, which is the cause for the agostic effect. The partial double M═CH3 bonding model is not only validated by a range of bonding analyses including VB self-consistent field (VBSCF)-based energy decomposition and quantum theory of atoms in molecules (QTAIM) but also authenticated by the specific activity of double M═CH3 bonds in the C-H activation and olefin insertion. More importantly, the σ bond gradually switches from a classical covalent bond to a novel charge-shift bond with the π bonding becoming increasingly significant. We anticipate that the recognition of the π interaction between electrophilic metal centers and C-H bonds can benefit the understanding of the nature of metal-carbon bonds in transition metal ethyl, alkyl, and carbene compounds.
Collapse
Affiliation(s)
- Xuhui Lin
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Yirong Mo
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, North Carolina 27401, United States
| |
Collapse
|
19
|
Đorđević S, Radenković S, Shaik S, Braïda B. On the Nature of the Bonding in Coinage Metal Halides. Molecules 2022; 27:490. [PMID: 35056805 PMCID: PMC8780489 DOI: 10.3390/molecules27020490] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/06/2022] [Accepted: 01/09/2022] [Indexed: 01/06/2023] Open
Abstract
This article analyzes the nature of the chemical bond in coinage metal halides using high-level ab initio Valence Bond (VB) theory. It is shown that these bonds display a large Charge-Shift Bonding character, which is traced back to the large Pauli pressure arising from the interaction between the bond pair with the filled semicore d shell of the metal. The gold-halide bonds turn out to be pure Charge-Shift Bonds (CSBs), while the copper halides are polar-covalent bonds and silver halides borderline cases. Among the different halogens, the largest CSB character is found for fluorine, which experiences the largest Pauli pressure from its σ lone pair. Additionally, all these bonds display a secondary but non-negligible π bonding character, which is also quantified in the VB calculations.
Collapse
Affiliation(s)
- Slađana Đorđević
- Faculty of Science, University of Kragujevac, 34000 Kragujevac, Serbia;
| | - Slavko Radenković
- Faculty of Science, University of Kragujevac, 34000 Kragujevac, Serbia;
| | - Sason Shaik
- Institute of Chemistry, Hebrew University of Jerusalem, Jerusalem 91904, Israel; or
| | - Benoît Braïda
- Laboratoire de Chimie Théorique, Sorbonne Université, UMR7616 CNRS, 75005 Paris, France
| |
Collapse
|
20
|
Joy J, Danovich D, Shaik S. Nature of the Trigger Linkage in Explosive Materials Is a Charge-Shift Bond. J Org Chem 2021; 86:15588-15596. [PMID: 34612631 DOI: 10.1021/acs.joc.1c02066] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Explosion begins by rupture of a specific bond, in the explosive, called a trigger linkage. We characterize this bond in nitro-containing explosives. Valence-bond (VB) investigations of X-NO2 linkages in alkyl nitrates, nitramines, and nitro esters establish the existence of Pauli repulsion that destabilizes the covalent structure of these bonds. The trigger linkages are mainly stabilized by covalent-ionic resonance and are therefore charge-shift bonds (CSBs). The source of Pauli repulsion in nitro explosives is unique. It is traced to the hyperconjugative interaction from the oxygen lone pairs of NO2 into the σ(X-N)* orbital, which thereby weakens the X-NO2 bond, and depletes its electron density as X becomes more electronegative. Weaker trigger bonds have higher CSB characters. In turn, weaker bonds increase the sensitivity of the explosive to impacts/shocks which lead to detonation. Application of the analysis to realistic explosives supports the CSB character of their X-NO2 bonds by independent criteria. Furthermore, other families of explosives also involve CSBs as trigger linkages (O-O, N-O, Cl-O, N-I, etc. bonds). In all of these, detonation is initiated selectively at the CSB of the molecule. A connection is made between the CSB bond-weakening and the surface-electrostatic potential diagnosis in the trigger bonds.
Collapse
Affiliation(s)
- Jyothish Joy
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - David Danovich
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Sason Shaik
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
21
|
Chen Z, Song J, Chen X, Zhou C, Wu W. N-Body Reduced Density Matrix-Based Valence Bond Theory and Its Applications in Diabatic Electronic-Structure Computations. Acc Chem Res 2021; 54:3895-3905. [PMID: 34615356 DOI: 10.1021/acs.accounts.1c00421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Valence bond (VB) theory, as a helpful complement to the more popular molecular orbital theory, is a fundamental electronic-structure theory that aims at interpreting molecular structure and chemical reactions in a lucid way. Both theoretical and experimental chemists have shown great interest in VB theory because of its capability of providing intuitive insight into the nature of chemical bonding and the mechanism of chemical reaction in a clear and comprehensible language rooted in Lewis structure. Therefore, there is a great call for the renaissance of VB theory. Nevertheless, this is possible only after a series of methods and algorithms were developed and efficiently implemented in user-friendly programs so as to serve computational chemists for general applications. In the past three decades, we have devoted a great amount of scientific enthusiasm toward this goal. In this Account, we will concisely summarize and briefly but insightfully discuss recent developments in ab initio VB theory, especially the N-body reduced density matrices (RDM)-based approach and its applications in diabatic electronic-structure computations, which is very useful for the vivid interpretation of many fundamental chemical processes such as electron and energy transfers. Furthermore, because of the fundamentally important role that the diabatic state plays in electron and energy transfers, which are two frontier research topics in both molecular and biochemical sciences, there are a broad range of applications that VB theory can handle.We start by briefly reviewing the general feature of ab initio VB wave functions. In particular, we focus on the multistructural ab initio VB theory that uses strictly localized orbitals, including the fundamental VB self-consistent field (VBSCF) and two post-SCF methods, VBCI and VBPT2, that use the VBSCF wave function as reference. We then allot a section to describing the recent developments of the RDM-based VB approach in the second quantization language. In this section, the enhanced Wick theorem is first outlined, followed by a brief discussion of its applications in evaluating VBSCF energy gradients and a Hessian with respect to the orbital expansion coefficients, together with a short review of the implementation of an automatic formula and code generator (AFCG) designed for many-body methods with nonorthogonal orbitals. Then, we introduce the application of the RDM-based approach in implementing the post-SCF method that addresses dynamic electronic correlation via perturbation theory, viz., the icVBPT2 method that adopts an internal contraction technique naturally. We finish this section by incorporating VB theory with the concept of seniority number, in which the tensor analysis technique is carefully exploited with the RDM-based approach, resulting in significant improvements in both the number of the active electrons/orbitals and in the speedup of the computational efficiency, thus pushing VB theory to its new limit. With these achievements available, we present the applications of VB theory in diabatic electronic-structure computations by using the intuitive insight rendered by VB theory. Therefore, we believe that there is a bright future in VB theory with true opportunities and new challenges coexisting both for theoretical developments and computational applications.
Collapse
Affiliation(s)
- Zhenhua Chen
- Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, The State Key Laboratory of Physical Chemistry of Solid Surfaces, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Jinshuai Song
- Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, The State Key Laboratory of Physical Chemistry of Solid Surfaces, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Xun Chen
- Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, The State Key Laboratory of Physical Chemistry of Solid Surfaces, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Chen Zhou
- Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, The State Key Laboratory of Physical Chemistry of Solid Surfaces, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Wei Wu
- Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, The State Key Laboratory of Physical Chemistry of Solid Surfaces, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| |
Collapse
|
22
|
Reuter L, Lüchow A. Real space electron delocalization, resonance, and aromaticity in chemistry. Nat Commun 2021; 12:4820. [PMID: 34376667 PMCID: PMC8355119 DOI: 10.1038/s41467-021-25091-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 07/19/2021] [Indexed: 11/10/2022] Open
Abstract
Chemists explaining a molecule’s stability and reactivity often refer to the concepts of delocalization, resonance, and aromaticity. Resonance is commonly discussed within valence bond theory as the stabilizing effect of mixing different Lewis structures. Yet, most computational chemists work with delocalized molecular orbitals, which are also usually employed to explain the concept of aromaticity, a ring delocalization in cyclic planar systems which abide certain number rules. However, all three concepts lack a real space definition, that is not reliant on orbitals or specific wave function expansions. Here, we outline a redefinition from first principles: delocalization means that likely electron arrangements are connected via paths of high probability density in the many-electron real space. In this picture, resonance is the consideration of additional electron arrangements, which offer alternative paths. Most notably, the famous 4n + 2 Hückel rule is generalized and derived from nothing but the antisymmetry of fermionic wave functions. The concept of delocalization, resonance and aromaticity are commonly discussed within electronic structure frameworks relying on specific wave function expansions. Here the authors propose a redefinition of these concepts from first-principles by investigating saddle points of the all-electron probability density.
Collapse
Affiliation(s)
- Leonard Reuter
- Institute of Physical Chemistry, RWTH Aachen University, Aachen, Germany
| | - Arne Lüchow
- Institute of Physical Chemistry, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
23
|
Shaik S, Danovich D, Hiberty PC. Valence Bond Theory-Its Birth, Struggles with Molecular Orbital Theory, Its Present State and Future Prospects. Molecules 2021; 26:molecules26061624. [PMID: 33804038 PMCID: PMC8001733 DOI: 10.3390/molecules26061624] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/08/2021] [Accepted: 03/10/2021] [Indexed: 01/04/2023] Open
Abstract
This essay describes the successive births of valence bond (VB) theory during 1916–1931. The alternative molecular orbital (MO) theory was born in the late 1920s. The presence of two seemingly different descriptions of molecules by the two theories led to struggles between the main proponents, Linus Pauling and Robert Mulliken, and their supporters. Until the 1950s, VB theory was dominant, and then it was eclipsed by MO theory. The struggles will be discussed, as well as the new dawn of VB theory, and its future.
Collapse
Affiliation(s)
- Sason Shaik
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel;
- Correspondence: (S.S.); (P.C.H.)
| | - David Danovich
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel;
| | - Philippe C. Hiberty
- CNRS, Institut de Chimie Physique UMR8000, Université Paris-Saclay, 91405 Orsay, France
- Correspondence: (S.S.); (P.C.H.)
| |
Collapse
|
24
|
Affiliation(s)
- Philippe C. Hiberty
- Laboratoire de Chimie Physique CNRS UMR8000 Université de Paris-Sud Bat. 349 91405 Orsay Cédex France
| | - D. Danovich
- The Hebrew University of Jerusalem Institute of Chemistry Edmond J. Safra Campus, Givat Ram Jerusalem 9190401 Israel
| | - Sason Shaik
- The Hebrew University of Jerusalem Institute of Chemistry Edmond J. Safra Campus, Givat Ram Jerusalem 9190401 Israel
| |
Collapse
|
25
|
Thomas A, Ji C, Siddlingeshwar B, Manohar PU, Ying F, Wu W. Revealing the biradicaloid nature inherited in the derivatives of thieno[3,4- c][1,2,5]thiadiazole: a computational study. Phys Chem Chem Phys 2021; 23:1050-1061. [PMID: 33346279 DOI: 10.1039/d0cp05106c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Computational studies were performed on non-classical thieno[3,4-c][1,2,5] thiadiazole and its pi donor derivatives (TT dyes) so as to delineate the factors responsible for their near-infrared (NIR) absorption. For all dyes except the unsubstituted bare dye, adiabatic singlet-triplet energy gaps (estimated through the ΔSCF procedure using the B3LYP and M062X DFT methods and SFTDDFT with the 5050 functional) were less than 1eV. Percentage calculations of the biradicaloid character suggested a moderate biradicaloid nature in all derivatives. There was a resemblance between the frontier molecular orbital (MO) picture of the TT bicyclic ring and the degenerate non-bonding molecular orbitals of Trimethyleneethane (TME, a known biradical). Inter-fragment charge transfer analysis revealed not only a considerable donation of charge to the central ring (Acceptor, TT part) but also substantial charge redistribution within the ring itself. From these results, it was inferred that NIR absorption, in these dyes, was due to: (1) a reduced HOMO-LUMO gap (HLG) as a TME biradical substructure forms its chromophoric part; and (2) charge transfer from the donor substituents. The non-bonding nature of the S atom, in the bare dye, with its neighbouring N/C atom (of the highest occupied π-MOs), led to an examination of its electronic structure using the ab initio valence bond method. The relatively large weight and energetic stability of the biradicaloid VB structures compared to those of the ylidic structures clearly disclosed the importance of biradicaloid structures in the overall resonance of the bare dye. Their utility as singlet fission materials was screened using singlet and triplet energy-based molecular structure activity criteria. The results were encouraging, demanding experiments to reaffirm the materials' usefulness.
Collapse
Affiliation(s)
- Anup Thomas
- Center for Computational Research in Clean Energy Technologies, Sree Chitra Thirunal College of Engineering, Pappanamcode, Trivandrum 695018, India
| | - Chenru Ji
- Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, The State Key Laboratory of Physical Chemistry of Solid Surfaces, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China.
| | - B Siddlingeshwar
- Department of Physics, M. S. Ramaiah Institute of Technology, Bengaluru 560054, India.
| | - Prashant Uday Manohar
- Department of Chemistry, Birla Institute of Technology and Science, Pilani 333031, Rajasthan, India
| | - Fuming Ying
- Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, The State Key Laboratory of Physical Chemistry of Solid Surfaces, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China.
| | - Wei Wu
- Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, The State Key Laboratory of Physical Chemistry of Solid Surfaces, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China.
| |
Collapse
|
26
|
Zheng P, Ji C, Ying F, Su P, Wu W. A Valence-Bond-Based Multiconfigurational Density Functional Theory: The λ-DFVB Method Revisited. Molecules 2021; 26:521. [PMID: 33498268 PMCID: PMC7863953 DOI: 10.3390/molecules26030521] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/17/2021] [Accepted: 01/18/2021] [Indexed: 11/29/2022] Open
Abstract
A recently developed valence-bond-based multireference density functional theory, named λ-DFVB, is revisited in this paper. λ-DFVB remedies the double-counting error of electron correlation by decomposing the electron-electron interactions into the wave function term and density functional term with a variable parameter λ. The λ value is defined as a function of the free valence index in our previous scheme, denoted as λ-DFVB(K) in this paper. Here we revisit the λ-DFVB method and present a new scheme based on natural orbital occupation numbers (NOONs) for parameter λ, named λ-DFVB(IS), to simplify the process of λ-DFVB calculation. In λ-DFVB(IS), the parameter λ is defined as a function of NOONs, which are straightforwardly determined from the many-electron wave function of the molecule. Furthermore, λ-DFVB(IS) does not involve further self-consistent field calculation after performing the valence bond self-consistent field (VBSCF) calculation, and thus, the computational effort in λ-DFVB(IS) is approximately the same as the VBSCF method, greatly reduced from λ-DFVB(K). The performance of λ-DFVB(IS) was investigated on a broader range of molecular properties, including equilibrium bond lengths and dissociation energies, atomization energies, atomic excitation energies, and chemical reaction barriers. The computational results show that λ-DFVB(IS) is more robust without losing accuracy and comparable in accuracy to high-level multireference wave function methods, such as CASPT2.
Collapse
Affiliation(s)
| | | | | | - Peifeng Su
- Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, The State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; (P.Z.); (C.J.); (F.Y.)
| | - Wei Wu
- Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, The State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; (P.Z.); (C.J.); (F.Y.)
| |
Collapse
|
27
|
Shaik S. Stories of My Journeys Through Valence Bond Theory, DFT, MD and their Applications to Complex Objects. Isr J Chem 2020. [DOI: 10.1002/ijch.202000090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sason Shaik
- Institute of Chemistry The Hebrew University of Jerusalem Edmond J. Safra Campus, Givat Ram 91904 Jerusalem Israel
| |
Collapse
|
28
|
Lin X, Mo Y. Resonance-Assisted but Antielectrostatic Intramolecular Au···H–O Hydrogen Bonding in Gold(I) Complexes: A Computational Verification. Inorg Chem 2020; 60:460-467. [DOI: 10.1021/acs.inorgchem.0c03252] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xuhui Lin
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Yirong Mo
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, North Carolina 27401, United States
| |
Collapse
|
29
|
Braïda B, Chen Z, Wu W, Hiberty PC. Valence Bond Alternative Yielding Compact and Accurate Wave Functions for Challenging Excited States. Application to Ozone and Sulfur Dioxide. J Chem Theory Comput 2020; 17:330-343. [PMID: 33319998 DOI: 10.1021/acs.jctc.0c00598] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A novel state-averaged version of ab initio nonorthogonal valence bond method is described, for the sake of accurate theoretical studies of excited states in the valence bond framework. With respect to standard calculations in the molecular orbital framework, the state-averaged breathing-orbital valence bond (BOVB) method has the advantage to be free from the penalizing constraint for the ground and excited state(s) to share the same unique set of orbitals. The ability of the BOVB method to faithfully describe excited states and to compute accurate transition energies from the ground state is tested on the five lowest-lying singlet electronic states of ozone and sulfur dioxide, among which 11B2 and 21A1 are the challenging ones. As the 11A2, 11B1, and 11B2 states are of different symmetries than the ground state, they can be calculated at the state-specific BOVB level. On the other hand, the 21A1 states and the 11A1 ground states, which are of like symmetry, are calculated with the state-averaged BOVB technique. In all cases, the calculated vertical energies are close to the experimental values when available, and at par with the most sophisticated calculations in the molecular framework, despite the extreme compactness of the BOVB wave functions, made of no more than 5-9 valence bond structures in all cases. The features that allow the combination of compactness and accuracy in challenging cases are analyzed. For the "ionic" 11B2 states, which are the site of important charge fluctuations, it is because of the built-in dynamic correlation inherent to the BOVB method. For the 21A1 ones, this is the fact that these states have the degree of freedom of having different orbitals than the ground states, even though they are of like symmetry and calculated simultaneously using the newly implemented state-average BOVB algorithm. Finally, the description of the excited states in terms of Lewis structures is insightful, rationalizing the fast ring closure for the 21A1 state of ozone and predicting some diradical character in the so-called "ionic" 11B2 states.
Collapse
Affiliation(s)
- Benoît Braïda
- Laboratoire de Chimie Théorique, Sorbonne Université, UMR7616 CNRS, Paris 75252 France
| | - Zhenhua Chen
- College of Chemistry and Chemical Engineering, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and the State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, Fujian 361005, China
| | - Wei Wu
- College of Chemistry and Chemical Engineering, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and the State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, Fujian 361005, China
| | - Philippe C Hiberty
- Université Paris-Saclay, CNRS, Institut de Chimie Physique UMR8000, Orsay 91405, France
| |
Collapse
|
30
|
Stuyver T, Shaik S. Unifying Conceptual Density Functional and Valence Bond Theory: The Hardness-Softness Conundrum Associated with Protonation Reactions and Uncovering Complementary Reactivity Modes. J Am Chem Soc 2020; 142:20002-20013. [PMID: 33180491 PMCID: PMC7735708 DOI: 10.1021/jacs.0c09041] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In this study, we address the long-standing issue-arising prominently from conceptual density functional theory (CDFT)-of the relative importance of electrostatic, i.e., "hard-hard", versus spin-pairing, i.e., "soft-soft", interactions in determining regiochemical preferences. We do so from a valence bond (VB) perspective and demonstrate that VB theory readily enables a clear-cut resolution of both of these contributions to the bond formation/breaking process. Our calculations indicate that appropriate local reactivity descriptors can be used to gauge the magnitude of both interactions individually, e.g., Fukui functions or HOMO/LUMO orbitals for the spin-pairing/(frontier) orbital interactions and molecular electrostatic potentials (and/or partial charges) for the electrostatic interactions. In contrast to previous reports, we find that protonation reactions cannot generally be classified as either charge- or frontier orbital-controlled; instead, our results indicate that these two bonding contributions generally interplay in more subtle patterns, only giving the impression of a clear-cut dichotomy. Finally, we demonstrate that important covalent, i.e., spin pairing, reactivity modes can be missed when only a single spin-pairing/orbital interaction descriptor is considered. This study constitutes an important step in the unification of CDFT and VB theory.
Collapse
Affiliation(s)
- Thijs Stuyver
- Institute of Chemistry, Edmond J. Safara Campus at Givat Ram, The Hebrew University, Jerusalem 9190401, Israel
| | - Sason Shaik
- Institute of Chemistry, Edmond J. Safara Campus at Givat Ram, The Hebrew University, Jerusalem 9190401, Israel
| |
Collapse
|
31
|
Chen Z, Wu W. Ab initio valence bond theory: A brief history, recent developments, and near future. J Chem Phys 2020; 153:090902. [PMID: 32891101 DOI: 10.1063/5.0019480] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
This Perspective presents a survey of several issues in ab initio valence bond (VB) theory with a primary focus on recent advances made by the Xiamen VB group, including a brief review of the earlier history of the ab initio VB methods, in-depth discussion of algorithms for nonorthogonal orbital optimization in the VB self-consistent field method and VB methods incorporating dynamic electron correlation, along with a concise overview of VB methods for complex systems and VB models for chemical bonding and reactivity, and an outlook of opportunities and challenges for the near future of the VB theory.
Collapse
Affiliation(s)
- Zhenhua Chen
- Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, The State Key Laboratory of Physical Chemistry of Solid Surfaces, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Wei Wu
- Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, The State Key Laboratory of Physical Chemistry of Solid Surfaces, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| |
Collapse
|
32
|
Joy J, Danovich D, Kaupp M, Shaik S. Covalent vs Charge-Shift Nature of the Metal-Metal Bond in Transition Metal Complexes: A Unified Understanding. J Am Chem Soc 2020; 142:12277-12287. [PMID: 32571021 DOI: 10.1021/jacs.0c03957] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We present here a general conceptualization of the nature of metal-metal (M-M) bonding in transition-metal (TM) complexes across the periods of TM elements, by use of ab initio valence-bond theory. The calculations reveal a dual-trend: For M-M bonds in groups 7 and 9, the 3d-series forms charge-shift bonds (CSB), while upon moving down to the 5d-series, the bonds become gradually covalent. In contrast, M-M bonds of metals having filled d-orbitals (groups 11 and 12) behave oppositely; initially the M-M bond is covalent, but upon moving down the Periodic Table, the CSB character increases. These trends originate in the radial-distribution-functions of the atomic orbitals, which determine the compactness of the valence-orbitals vis-à-vis the filled semicore orbitals. Key factors that gauge this compactness are the presence/absence of a radial-node in the valence-orbital and relativistic contraction/expansion of the valence/semicore orbitals. Whenever these orbital-types are spatially coincident, the covalent bond-pairing is weakened by Pauli-repulsion with the semicore electrons, and CSB takes over. Thus, for groups 3-10, which possess (n - 1)s2(n - 1)p6 semicores, this spatial-coincidence is maximal at the 3d-transition-metals which consequently form charge-shift M-M bonds. However, in groups 11 and 12, the relativistic effects maximize spatial-coincidence in the third series, wherein the 5d10 core approaches the valence 6s orbital, and the respective Pauli repulsion generates M-M bonds with CSB character. These considerations create a generalized paradigm for M-M bonding in the transition-elements periods, and Pauli repulsion emerges as the factor that unifies CSB over the periods of main-group and transition elements.
Collapse
Affiliation(s)
- Jyothish Joy
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - David Danovich
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Martin Kaupp
- Institut für Chemie, Theoretische Chemie - Quantenchemie, Technische Universität Berlin, Sekr. C7, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Sason Shaik
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
33
|
Stuyver T, De Proft F, Geerlings P, Shaik S. How Do Local Reactivity Descriptors Shape the Potential Energy Surface Associated with Chemical Reactions? The Valence Bond Delocalization Perspective. J Am Chem Soc 2020; 142:10102-10113. [PMID: 32366103 PMCID: PMC7304891 DOI: 10.1021/jacs.0c02390] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Indexed: 01/11/2023]
Abstract
How do local reactivity descriptors, such as the Fukui function and the local spin density distribution, shape the potential energy surface (PES) associated with chemical reactions and thus govern reactivity trends and regioselective preferences? This is the question that is addressed here through a qualitative valence bond (VB) analysis. We demonstrate that common density functional theory (DFT)-based local reactivity descriptors can essentially be regarded-in one way or another-as indirect measures of delocalization, i.e., resonance stabilization, of the reactants within VB theory. The inherent connection between (spatial) delocalization and (energetic) resonance stabilization embedded in VB theory provides a natural and elegant framework for analyzing and comprehending the impact of individual local reactivity descriptors on the global PES. Our analysis provides new insights into the role played by local reactivity descriptors and illustrates under which conditions they can sometimes fail to predict reactivity trends and regioselective preferences, e.g., in the case of ambident reactivity. This treatment constitutes a first step toward a unification of VB theory and conceptual DFT.
Collapse
Affiliation(s)
- Thijs Stuyver
- Institute
of Chemistry, The Hebrew University, Jerusalem 91904, Israel
- Algemene
Chemie, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Frank De Proft
- Algemene
Chemie, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Paul Geerlings
- Algemene
Chemie, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Sason Shaik
- Institute
of Chemistry, The Hebrew University, Jerusalem 91904, Israel
| |
Collapse
|
34
|
Anderson ME, Braïda B, Hiberty PC, Cundari TR. Revealing a Decisive Role for Secondary Coordination Sphere Nucleophiles on Methane Activation. J Am Chem Soc 2020; 142:3125-3131. [PMID: 31951407 DOI: 10.1021/jacs.9b12644] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Density functional theory and ab initio calculations indicate that nucleophiles can significantly reduce enthalpic barriers to methane C-H bond activation. Valence bond analysis suggests the formation of a two-center three-electron bond as the origin for the catalytic nucleophile effect. A predictive model for methane activation catalysis follows, which suggests that strongly electron-attracting and electron-rich radicals, together with both a negatively charged and strongly electron-donating outer sphere nucleophile, result in the lowest reaction barriers. It is corroborated by the sensitivity of the calculated C-H activation barriers to the external nucleophile and to continuum solvent polarity. More generally, from the present studies, one may propose proteins with hydrophobic active sites, available strong nucleophiles, and hydrogen bond donors as attractive targets for engineering novel methane functionalizing enzymes.
Collapse
Affiliation(s)
- Mary E Anderson
- Department of Chemistry and Biochemistry , Texas Woman's University , Denton , Texas 76204 , United States
| | - Benoît Braïda
- Laboratoire de Chimie Théorique , Sorbonne Université , UMR7616 CNRS, Paris 75252 , France
| | - Philippe C Hiberty
- Université Paris-Saclay, CNRS, Institut de Chimie Physique, UMR8000 , Orsay 91405 , France
| | - Thomas R Cundari
- Department of Chemistry, Center for Advanced Scientific Computing and Modeling (CASCaM) , University of North Texas , Denton , Texas 76203 , United States
| |
Collapse
|
35
|
Fu Z, Yang L, Sun D, Qu Z, Zhao Y, Gao J, Wang Y. Coupled electron and proton transfer in the piperidine drug metabolism pathway by the active species of cytochromes P450. Dalton Trans 2020; 49:11099-11107. [DOI: 10.1039/c9dt03056e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
KS-DFT and MSDFT studies reveal a novel CEPT step that triggers ring contraction of piperidines by P450.
Collapse
Affiliation(s)
- Zhiqiang Fu
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE)
- School of Environmental Science and Technology
- Dalian University of Technology
- Dalian 116024
- China
| | - Lili Yang
- Laboratory of Theoretical and Computational Chemistry
- Institute of Theoretical Chemistry
- Jilin University
- Changchun 130023
- China
| | - Dongru Sun
- Institute of Drug Discovery Technology
- Ningbo University
- Ningbo 315211
- China
| | - Zexing Qu
- Laboratory of Theoretical and Computational Chemistry
- Institute of Theoretical Chemistry
- Jilin University
- Changchun 130023
- China
| | - Yufen Zhao
- Institute of Drug Discovery Technology
- Ningbo University
- Ningbo 315211
- China
| | - Jiali Gao
- Department of Chemistry and Supercomputing Institute
- University of Minnesota
- Minneapolis
- USA
- Institute of Systems and Physical Biology
| | - Yong Wang
- Institute of Drug Discovery Technology
- Ningbo University
- Ningbo 315211
- China
| |
Collapse
|
36
|
Reuter L, Lüchow A. On the connection between probability density analysis, QTAIM, and VB theory. Phys Chem Chem Phys 2020; 22:25892-25903. [PMID: 33159782 DOI: 10.1039/d0cp02209h] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Classification of bonds is essential for understanding and predicting the reactivity of chemical compounds. This classification mainly manifests in the bond order and the contribution of different Lewis resonance structures. Here, we outline a first principles approach to obtain these orders and contributions for arbitrary wave functions in a manner that is both, related to the quantum theory of atoms in molecules and consistent with valence bond theory insight: the Lewis structures arise naturally as attractors of the all-electron probability density |Ψ|2. Doing so, we introduce a valence bond weight definition that does not collapse in the basis set limit.
Collapse
Affiliation(s)
- Leonard Reuter
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52074 Aachen, Germany.
| | | |
Collapse
|
37
|
Chinaroj S, Iwamoto T. Switchable dual bonding nature in silabicyclo[1.1.0]butanes that exhibit bond stretch isomerism. J PHYS ORG CHEM 2019. [DOI: 10.1002/poc.4019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Siwat Chinaroj
- Department of Chemistry Graduate School of ScienceTohoku University Sendai Japan
| | - Takeaki Iwamoto
- Department of Chemistry Graduate School of ScienceTohoku University Sendai Japan
| |
Collapse
|
38
|
Zhou C, Zeng C, Ma B, Ying F, Chen Z, Wu W. Novel implementation of seniority number truncated valence bond methods with applications to H22 chain. J Chem Phys 2019; 151:194107. [DOI: 10.1063/1.5123197] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Chen Zhou
- Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Chenyu Zeng
- Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Bo Ma
- Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Fuming Ying
- Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Zhenhua Chen
- Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Wei Wu
- The State Key Laboratory of Physical Chemistry of Solid Surfaces, iChem and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| |
Collapse
|
39
|
Bonding and Diels–Alder reactions of substituted 2-borabicyclo(1.1.0)but-1(3)-enes: a theoretical study. Theor Chem Acc 2019. [DOI: 10.1007/s00214-019-2491-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
40
|
Stuyver T, Danovich D, Shaik S. Captodative Substitution Enhances the Diradical Character of Compounds, Reduces Aromaticity, and Controls Single-Molecule Conductivity Patterns: A Valence Bond Study. J Phys Chem A 2019; 123:7133-7141. [PMID: 31318209 DOI: 10.1021/acs.jpca.9b06096] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The present contribution uses a valence bond (VB) perspective to consider the captodative substitution strategy, a method to enhance the diradical character of (potentially aromatic) compounds. We confirm the qualitative reasoning that has generally been used to rationalize the diradical-character-enhancing effect of captodative substitution: this type of substitution scheme disproportionally stabilizes specific Dewar/diradical(oid) VB structures, thus increasing their weight in the full ground-state wave function. Furthermore, we assess the effect of captodative substitution on the aromaticity of the considered compound. We observe a clear trade-off between diradical character and aromaticity for our model systems: as one of these properties increases, the other decreases. This finding is especially significant within the field of single-molecule electronics because it enables unification of the previously observed inverse proportionality between the aromaticity of a compound and the magnitude of conductance through that molecule, with the observed proportionality between diradical character and the magnitude of conductance associated with a compound. To some extent, both properties, i.e., aromaticity and diradical character, appear to be the flip-sides of the same coin.
Collapse
Affiliation(s)
- Thijs Stuyver
- Department of Organic Chemistry and the Lise Meitner-Minerva Centre for Computational Quantum Chemistry , The Hebrew University , Jerusalem 91904 , Israel.,Algemene Chemie , Vrije Universiteit Brussel , Pleinlaan 2 , 1050 Brussels , Belgium
| | - David Danovich
- Department of Organic Chemistry and the Lise Meitner-Minerva Centre for Computational Quantum Chemistry , The Hebrew University , Jerusalem 91904 , Israel
| | - Sason Shaik
- Department of Organic Chemistry and the Lise Meitner-Minerva Centre for Computational Quantum Chemistry , The Hebrew University , Jerusalem 91904 , Israel
| |
Collapse
|
41
|
Lin X, Wu W, Mo Y. Agostic Interactions in Early Transition-Metal Complexes: Roles of Hyperconjugation, Dispersion, and Steric Effect. Chemistry 2019; 25:6591-6599. [PMID: 30883975 DOI: 10.1002/chem.201900436] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/13/2019] [Indexed: 01/19/2023]
Abstract
The agostic interaction is a ubiquitous phenomenon in catalytic processes and transition-metal complexes, and hyperconjugation has been well recognized as its origin. Yet, recent studies showed that either short-range London dispersion or structural constraints could be the driving force, although proper evaluation of the role of hyperconjugation therein is needed. Herein, a simple variant of valence bond theory was employed to study a few exemplary Ti complexes with α- or β-agostic interactions and interpret the agostic effect in terms of the steric effect, hyperconjugation, and dispersion. For the complexes [MeTiCl3 (dmpe)] and [MeTiCl3 (dhpe)] with α-agostic interactions, hyperconjugation plays the dominant role with comparable magnitudes in both systems, but dispersion is solely responsible for the stronger agostic interaction in the former compared with the latter. For the complexes [EtTiCl3 (dmpe)] and [EtTiCl3 (dhpe)] with β-agostic interactions, however, hyperconjugation and dispersion play comparable roles, and the weaker steric repulsion leads to a stronger agostic effect in the former than in the latter. Thus, the present study clarifies the variable and sensitive roles of steric, hyperconjugative, and dispersion interactions in the agostic interaction.
Collapse
Affiliation(s)
- Xuhui Lin
- The State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry and College of Chemistry and Chemical, Engineering, Xiamen University, Xiamen, Fujian, 361005, P.R. China
| | - Wei Wu
- The State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry and College of Chemistry and Chemical, Engineering, Xiamen University, Xiamen, Fujian, 361005, P.R. China
| | - Yirong Mo
- Department of Chemistry, Western Michigan University, Kalamazoo, MI, 49008, USA
| |
Collapse
|
42
|
Wang C, Danovich D, Chen H, Shaik S. Oriented External Electric Fields: Tweezers and Catalysts for Reactivity in Halogen-Bond Complexes. J Am Chem Soc 2019; 141:7122-7136. [PMID: 30945542 DOI: 10.1021/jacs.9b02174] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This theoretical study establishes ways of controlling and enabling an uncommon chemical reaction, the displacement reaction, B:---(X-Y) → (B-X)+ + :Y-, which is nascent from a B:---(X-Y) halogen bond (XB) by nucleophilic attack of the base, B:, on the halogen, X. In most of the 14 cases examined, these reactions possess high barriers either in the gas phase (where the X-Y bond dissociates to radicals) or in solvents such as CH2Cl2 and CH3CN (which lead to endothermic processes). Thus, generally, the XB species are trapped in deep minima, and their reactions are not allowed without catalysis. However, when an oriented-external electric field (OEEF) is directed along the B---X---Y reaction axis, the field acts as electric tweezers that orient the XB along the field's axis, and intensely catalyze the process, by tens of kcal/mol, thus rendering the reaction allowed. Flipping the OEEF along the reaction axis inhibits the reaction and weakens the interaction of the XB. Furthermore, at a critical OEEF, each XB undergoes spontaneous and barrier-free reaction. As such, OEEF achieves quite tight control of the structure and reactivity of XB species. Valence bond modeling is used to elucidate the means whereby OEEFs exert their control.
Collapse
Affiliation(s)
- Chao Wang
- Institute of Chemistry , The Hebrew University of Jerusalem , Jerusalem 9190407 , Israel.,Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , P. R. China
| | - David Danovich
- Institute of Chemistry , The Hebrew University of Jerusalem , Jerusalem 9190407 , Israel
| | - Hui Chen
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , P. R. China
| | - Sason Shaik
- Institute of Chemistry , The Hebrew University of Jerusalem , Jerusalem 9190407 , Israel
| |
Collapse
|
43
|
Fletcher GD, Bertoni C, Keçeli M, D'Mello M. Valence : A Massively Parallel Implementation of the Variational Subspace Valence Bond Method. J Comput Chem 2019; 40:1664-1673. [PMID: 30919485 DOI: 10.1002/jcc.25818] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/01/2019] [Accepted: 02/19/2019] [Indexed: 12/14/2022]
Abstract
This work describes the software package, Valence, for the calculation of molecular energies using the variational subspace valence bond (VSVB) method. VSVB is an ab initio electronic structure method based on nonorthogonal orbitals. Important features of practical value include high parallel scalability, wave functions that can be constructed automatically by combining orbitals from previous calculations, and ground and excited states that can be modeled with a single configuration or determinant. The open-source software package includes tools to generate wave functions, a database of generic orbitals, example input files, and a library build intended for integration with other packages. We also describe the interface to an external software package, enabling the computation of optimized molecular geometries and vibrational frequencies. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Graham D Fletcher
- Computational Science Division, Argonne National Laboratory, 9700 S. Cass Ave., Lemont, Illinois 60439
| | - Colleen Bertoni
- Argonne Leadership Computing Facility, Argonne National Laboratory, 9700 S. Cass Ave., Lemont, Illinois 60439
| | - Murat Keçeli
- Computational Science Division, Argonne National Laboratory, 9700 S. Cass Ave., Lemont, Illinois 60439
| | - Michael D'Mello
- Intel® Corporation, 425 N. Martingale Road, Suite 1500, Schaumburg, Illinois
| |
Collapse
|
44
|
Gu J, Wu W, Stuyver T, Danovich D, Hoffmann R, Tsuji Y, Shaik S. Cross Conjugation in Polyenes and Related Hydrocarbons: What Can Be Learned from Valence Bond Theory about Single-Molecule Conductance? J Am Chem Soc 2019; 141:6030-6047. [DOI: 10.1021/jacs.9b01420] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Junjing Gu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Wei Wu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Thijs Stuyver
- Department of Organic Chemistry and the Lise Meitner-Minerva Centre for Computational Quantum Chemistry, The Hebrew University, Jerusalem 91904, Israel
- Algemene Chemie, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - David Danovich
- Department of Organic Chemistry and the Lise Meitner-Minerva Centre for Computational Quantum Chemistry, The Hebrew University, Jerusalem 91904, Israel
| | - Roald Hoffmann
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, United States
| | - Yuta Tsuji
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, Nishi-ku, Fukuoka 819-0395, Japan
| | - Sason Shaik
- Department of Organic Chemistry and the Lise Meitner-Minerva Centre for Computational Quantum Chemistry, The Hebrew University, Jerusalem 91904, Israel
| |
Collapse
|
45
|
Stuyver T, Danovich D, Shaik S. Insights into the Trends in the Acidity Strength of Organic and Inorganic Compounds: A Valence-Bond Perspective. J Phys Chem A 2019; 123:1851-1860. [PMID: 30735375 DOI: 10.1021/acs.jpca.9b01095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Few concepts are more familiar to chemists than the concept of acidity strength. In almost any undergraduate chemistry textbook, one can find lists of factors affecting the acidities of organic and inorganic molecules. The factors, invoked to explain trends in the acidity strength through series of compounds, rely on concepts such as hybridization, delocalization, inductive effects, and electronegativity. Some of these concepts could be considered somewhat fuzzy, whereas others have a rigorous physical definition, yet together they shape the traditional framework used by chemists for the qualitative assessment of acidity strengths. At the same time, a thermodynamic cycle reveals that the acidity of a H-A bond is dependent on only three unequivocally definable quantities: the bond dissociation energy, the electron affinity of A, and the solvent effects. Here we attempt to answer the following questions: "How are the qualitative factors, found in textbooks, related to these quantities?" and "How can we connect this plethora of factors to the nature of the acidic H-A bond being cleaved heterolytically in an acidic dissociation process?" To do so, we turn to valence bond theory and model a generic acidic dissociation process. Within this model, the quantities, determining the acidity strength of an H-A compound (as revealed through the thermodynamic cycling process), arise naturally and lucidly, thus enabling the evaluation of the effects of the different qualitative factors found in the literature on the bonding situation. Our analysis projects surprising and thought-provoking anomalies, which challenge common chemical knowledge.
Collapse
Affiliation(s)
- Thijs Stuyver
- Institute of Chemistry , The Hebrew University , Jerusalem 91904 , Israel.,Algemene Chemie , Vrije Universiteit Brussel , Pleinlaan 2 , 1050 Brussels , Belgium
| | - David Danovich
- Institute of Chemistry , The Hebrew University , Jerusalem 91904 , Israel
| | - Sason Shaik
- Institute of Chemistry , The Hebrew University , Jerusalem 91904 , Israel
| |
Collapse
|
46
|
Abstract
What is now called "resonance theory" has a long and conflicted history. We first sketch the early roots of resonance theory, its heritage of diverse physics and chemistry conceptions, and its subsequent rise to reigning chemical bonding paradigm of the mid-20th century. We then outline the alternative "natural" pathway to localized Lewis- and resonance-structural conceptions that was initiated in the 1950s, given semi-empirical formulation in the 1970s, recast in ab initio form in the 1980s, and successfully generalized to multi-structural "natural resonance theory" (NRT) form in the 1990s. Although earlier numerical applications were often frustrated by the ineptness of then-available numerical solvers, the NRT variational problem was recently shown to be amenable to highly efficient convex programming methods that yield provably optimal resonance weightings at a small fraction of previous computational costs. Such convexity-based algorithms now allow a full "reboot" of NRT methodology for tackling a broad range of chemical applications, including the many familiar resonance phenomena of organic and biochemistry as well as the still broader range of resonance attraction effects in the inorganic domain. We illustrate these advances for prototype chemical applications, including (i) stable near-equilibrium species, where resonance mixing typically provides only small corrections to a dominant Lewis-structural picture, (ii) reactive transition-state species, where strong resonance mixing of reactant and product bonding patterns is inherent, (iii) coordinative and related supramolecular interactions of the inorganic domain, where sub-integer resonance bond orders are the essential origin of intermolecular attraction, and (iv) exotic long-bonding and metallic delocalization phenomena, where no single "parent" Lewis-structural pattern gains pre-eminent weighting in the overall resonance hybrid.
Collapse
Affiliation(s)
- Eric D Glendening
- Department of Chemistry and Physics , Indiana State University , Terre Haute , Indiana 47809 , United States
| | - Clark R Landis
- Department of Chemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| | - Frank Weinhold
- Department of Chemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| |
Collapse
|
47
|
Zhang H, Zhou C, Mo Y, Wu W. Performance of the VBSCF method for pericyclic and π bond shift reactions. J Comput Chem 2018; 40:1123-1129. [DOI: 10.1002/jcc.25729] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 08/27/2018] [Accepted: 09/27/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Huaiyu Zhang
- Institute of Computational Quantum Chemistry; College of Chemistry and Material Science, Hebei Normal University; Shijiazhuang 050024 China
- The State Key Laboratory of Physical Chemistry of Solid Surfaces; Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, iChEM, and College of Chemistry and Chemical Engineering, Xiamen University; Xiamen 361005 China
| | - Chen Zhou
- The State Key Laboratory of Physical Chemistry of Solid Surfaces; Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, iChEM, and College of Chemistry and Chemical Engineering, Xiamen University; Xiamen 361005 China
| | - Yirong Mo
- The State Key Laboratory of Physical Chemistry of Solid Surfaces; Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, iChEM, and College of Chemistry and Chemical Engineering, Xiamen University; Xiamen 361005 China
- Department of Chemistry; Western Michigan University; Kalamazoo Michigan 49008 USA
| | - Wei Wu
- The State Key Laboratory of Physical Chemistry of Solid Surfaces; Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, iChEM, and College of Chemistry and Chemical Engineering, Xiamen University; Xiamen 361005 China
| |
Collapse
|
48
|
Wu J, Liu X, Hao Y, Chen H, Su P, Wu W, Zhu J. σ-Aromaticity in a Fully Unsaturated Ring. Chem Asian J 2018; 13:3691-3696. [PMID: 30232840 DOI: 10.1002/asia.201801279] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 09/14/2018] [Indexed: 11/07/2022]
Abstract
Aromaticity is one of the most fundamental and fascinating chemical topics, attracting both experimental and theoretical chemists owing to its many manifestations. Both σ- and π-aromaticity can be classified depending on the character of the cyclic electron delocalization. In general, σ-aromaticity stabilizes fully saturated rings with σ-electron delocalization whereas the traditional π-aromaticity describes the π-conjugation in fully unsaturated rings. Here, we demonstrate a strong correlation between nucleus-independent chemical shift (NICS) values and extra cyclic resonance energies (ECREs), which are used to evaluate the σ-aromaticity in an unsaturated three-membered ring (3MR) of cyclopropene, which were computed by molecular orbital (MO) theory and valence bond (VB) theory, respectively. Further study shows that the fully unsaturated ring in methylenecyclopropene and its metallic analogy is σ-aromatic. Our findings revolutionize the fundamental knowledge of the concept of σ-aromaticity, thus opening an avenue to design σ-aromaticity in other fully unsaturated systems, which are traditionally reserved as the domain of π-aromaticity.
Collapse
Affiliation(s)
- Jingjing Wu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Xin Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Yulei Hao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Hongjiang Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Peifeng Su
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Wei Wu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Jun Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| |
Collapse
|
49
|
Glendening ED, Weinhold F. Efficient evaluation of poly-electron populations in natural bond orbital analysis. Chem Phys Lett 2018. [DOI: 10.1016/j.cplett.2018.09.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
50
|
Yang L, Chen X, Qu Z, Gao J. Combined Multistate and Kohn-Sham Density Functional Theory Studies of the Elusive Mechanism of N-Dealkylation of N,N-Dimethylanilines Mediated by the Biomimetic Nonheme Oxidant Fe IV(O)(N4Py)(ClO 4) 2. Front Chem 2018; 6:406. [PMID: 30250841 PMCID: PMC6139341 DOI: 10.3389/fchem.2018.00406] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 08/20/2018] [Indexed: 11/13/2022] Open
Abstract
The oxidative C-H bond activation mediated by heme and nonheme enzymes and related biomimetics is one of the most interesting processes in bioinorganic and oxidative chemistry. However, the mechanisms of these reactions are still elusive and controversy due to the involvement of highly reactive metal-oxo intermediates with multiple spin states, despite extensive experimental efforts, especially for the N-dealkylation of N,N-dialkyalinines. In this work, we employed multistate density functional theory (MSDFT) and the Kohn-Sham DFT to investigate the mechanism of N-demethylation of N,N-dimethyalinines oxidized by the reaction intermediate FeIV(O)(N4Py)(ClO4)2. The Kohn-Sham DFT study demonstrated that the reaction proceeds via a rate-limiting hydrogen atom transfer (HAT) step and a subsequent barrier-free oxygen rebound step to form the carbinol product. The MSDFT investigation on the first C-H activation further showed that this step is an initial hydrogen atom abstraction that is highly correlated between CEPT and HAT, i.e., both CEPT and HAT processes make significant contributions to the mechanism before reaching the diabatic crossing point, then the valence bond character of the adiabatic ground state is switched to the CEPT product configuration. The findings from this work may be applicable to other hydrogen abstraction process.
Collapse
Affiliation(s)
- Lili Yang
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun, China
| | - Xin Chen
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun, China
| | - Zexing Qu
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun, China
| | - Jiali Gao
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun, China.,Department of Chemistry, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|