1
|
Lai R, Li H. Deacetylation mechanism of histone deacetylase 8: insights from QM/MM MP2 calculations. Phys Chem Chem Phys 2025; 27:7120-7138. [PMID: 40109193 DOI: 10.1039/d5cp00002e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Understanding the catalytic mechanism of histone deacetylases can greatly benefit the development of targeted therapies that are safe and effective. Combined quantum mechanical and molecular mechanical (QM/MM) Møller-Plesset second-order perturbation theory (MP2) geometry optimizations are performed to investigate the catalytic mechanism of the deacetylation reaction of a tetrapeptide catalyzed by human Histone Deacetylase 8. A three-step catalytic mechanism is identified: the first step is the formation of a negatively charged tetrahedral intermediate via nucleophilic addition of the activated water to the amide C atom and a proton transfer from the water to His143; the second step is the formation of a neutral tetrahedral intermediate with an elongated amide C-N bond via a proton transfer from His143 to the amide N atom. The third step is the complete cleavage of the amide C-N bond, accompanied by a proton transfer from the newly formed carboxylic group of the neutral tetrahedral intermediate to His142. These three steps have similar computed energy barriers, with the second step having the highest calculated activation free energy of 19.6 kcal mol-1. When there is no potassium ion at site 1, the calculated activation free energy is 17.7 kcal mol-1. Both values are in good agreement with an experimental value of 17.5 kcal mol-1. Their difference implies that there would be a 25-fold increase in the enzyme's activity, in line with experiments. The solvent hydrogen-deuterium kinetic isotope effect was computed to be ∼3.8 for the second step in both cases. It is also found that the energy barriers are significantly and systematically higher on the QM/MM B3LYP and QM/MM B3LYP-D3 potential energy surfaces. In particular, the QM/MM B3LYP and B3LYP-D3 methods fail to predict the neutral tetrahedral intermediate and a meaningful transition state for the third step, leading to a two-step mechanism. With a sufficiently large basis set such as aug-cc-pVDZ, QM/MM M05-2X, M06-2X, M06, and MN15 methods can give results much closer to the QM/MM MP2 method. However, when a smaller basis set such as 6-31G* is used, these methods can lead to errors as large as 10 kcal mol-1 on the reaction pathway. These results highlight the importance of using accurate QM methods in the computational study of enzyme catalysis.
Collapse
Affiliation(s)
- Rui Lai
- College of Chemistry, Jilin University, Changchun, 130021, China.
| | - Hui Li
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA.
- Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| |
Collapse
|
2
|
Eberhart ME, Alexandrova AN, Ajmera P, Bím D, Chaturvedi SS, Vargas S, Wilson TR. Methods for Theoretical Treatment of Local Fields in Proteins and Enzymes. Chem Rev 2025. [PMID: 39993955 DOI: 10.1021/acs.chemrev.4c00471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Electric fields generated by protein scaffolds are crucial in enzymatic catalysis. This review surveys theoretical approaches for detecting, analyzing, and comparing electric fields, electrostatic potentials, and their effects on the charge density within enzyme active sites. Pioneering methods like the empirical valence bond approach rely on evaluating ionic and covalent resonance forms influenced by the field. Strategies employing polarizable force fields also facilitate field detection. The vibrational Stark effect connects computational simulations to experimental Stark spectroscopy, enabling direct comparisons. We highlight how protein dynamics induce fluctuations in local fields, influencing enzyme activity. Recent techniques assess electric fields throughout the active site volume rather than only at specific bonds, and machine learning helps relate these global fields to reactivity. Quantum theory of atoms in molecules captures the entire electron density landscape, providing a chemically intuitive perspective on field-driven catalysis. Overall, these methodologies show protein-generated fields are highly dynamic and heterogeneous, and understanding both aspects is critical for elucidating enzyme mechanisms. This holistic view empowers rational enzyme engineering by tuning electric fields, promising new avenues in drug design, biocatalysis, and industrial applications. Future directions include incorporating electric fields as explicit design targets to enhance catalytic performance and biochemical functionalities.
Collapse
Affiliation(s)
- Mark E Eberhart
- Chemistry Department, Colorado School of Mines, 1500 Illinois Street, Golden, Colorado 80401, United States
| | - Anastassia N Alexandrova
- Department of Chemistry, and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Pujan Ajmera
- Department of Chemistry, and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Daniel Bím
- Department of Physical Chemistry, University of Chemistry and Technology, Prague 166 28, Czech Republic
| | - Shobhit S Chaturvedi
- Department of Chemistry, and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Santiago Vargas
- Department of Chemistry, and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Timothy R Wilson
- Chemistry Department, Colorado School of Mines, 1500 Illinois Street, Golden, Colorado 80401, United States
| |
Collapse
|
3
|
Mikkelsen JES, Jensen F. Minimal Basis Iterative Stockholder Decomposition with Multipole Constraints. J Chem Theory Comput 2025; 21:1179-1193. [PMID: 39836948 DOI: 10.1021/acs.jctc.4c01297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
The minimal basis iterative Stockholder (MBIS) decomposition of molecular electron densities into atomic quantities is an attractive approach for deriving electrostatic parameters in force fields. The MBIS-derived atomic charges, however, in general tend to overestimate the molecular dipole and quadrupole moments by ∼10%. We show that it is possible to derive a constrained MBIS model where the atomic charges or a combination of atomic charges and dipoles exactly reproduce the molecular dipole and quadrupole moments for molecules. The atomic multipole moments derived by the constrained procedure are better at reproducing the molecular electrostatic potential (ESP) than the unconstrained atomic multipole moments. They are, furthermore, significantly less conformationally dependent than atomic charges obtained by fitting to the molecular electrostatic potential.
Collapse
Affiliation(s)
- Jonas E S Mikkelsen
- Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus, Denmark
| | - Frank Jensen
- Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus, Denmark
| |
Collapse
|
4
|
Lai R, Li H. Mechanism of Ampicillin Hydrolysis by New Delhi Metallo-β-Lactamase 1: Insight From QM/MM MP2 Calculation. J Comput Chem 2025; 46:e27544. [PMID: 39636155 PMCID: PMC11619567 DOI: 10.1002/jcc.27544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/17/2024] [Accepted: 11/15/2024] [Indexed: 12/07/2024]
Abstract
The New Delhi metallo-β-lactamase 1 (NDM-1) can hydrolyze nearly all clinically important β-lactam antibiotics, narrowing the options for effective treatment of bacterial infections. QM/MM MP2 calculations are performed to reveal the mechanism of ampicillin hydrolysis catalyzed by NDM-1. It is found that the rate-determining step is the dissociation of hydrolyzed ampicillin from the NDM-1 active site, which requires a proton transfer from the bridging neutral water molecule to the newly formed carboxylate group. The precedent reaction steps, including the hydroxide nucleophilic addition, CN bond cleavage, and the protonation of the negative lactam N atom by a solvent water molecule, all require insignificant activation free energies. The calculated activation free energy for this rate-determining proton transfer step is 16.0 kcal/mol, in good agreement with experimental values of 13.7 ~ 14.7 kcal/mol. This proton transfer step exhibits a solvent hydrogen-deuterium kinetic isotope effect of 3.4, consistent with several experimental kinetic results.
Collapse
Affiliation(s)
- Rui Lai
- Dalian Institute of Chemical PhysicsChinese Academy of SciencesDalianChina
| | - Hui Li
- Department of Chemistry, Nebraska Center for Materials and Nanoscience, and Center for Integrated Biomolecular CommunicationUniversity of Nebraska‐LincolnLincolnNebraskaUSA
| |
Collapse
|
5
|
Yang Y, Jin Q, Yin S. Development of an anisotropic polarizable model for the all-atom AMOEBA force field. Phys Chem Chem Phys 2024; 26:22900-22911. [PMID: 39169824 DOI: 10.1039/d4cp01568a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
For planar and rigid π-conjugated molecular systems, electrostatic and inductive interactions are pivotal in governing molecular packing structures and electron polarization energies. These electrostatic interactions typically exhibit an anisotropic nature within π-conjugated systems. In this study, we utilize the atoms in molecules (AIM) theory in conjunction with linear response theory to decompose molecular polarizability into distributed atomic polarizability tensors. On the basis of atomic polarizability tensors, we extended an anisotropic polarizable model into the AMOEBA polarizable force field. Both anisotropic and isotropic polarizable models in combination with various density functional theory (DFT)-derived atomic multipoles were applied to optimize the experimental crystals of naphthalene and anthracene. Furthermore, these two types of electrostatic models, coupled with the evolutionary algorithm USPEX program, are utilized to predict the crystal structures of oligoacenes. Our findings demonstrate that the anisotropic polarizable model exhibits superior performance in crystal refinement and crystal structure prediction. This enriched anisotropic polarizable model is seamlessly integrated into the AMOEBA polarizable force field and readily applicable within our modified Tinker program.
Collapse
Affiliation(s)
- Yanyan Yang
- Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an City 710119, People's Republic of China.
| | - Qianqian Jin
- Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an City 710119, People's Republic of China.
| | - Shiwei Yin
- Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an City 710119, People's Republic of China.
| |
Collapse
|
6
|
Mikkelsen JES, Jensen F. Ambiguities in Decomposing Molecular Polarizability into Atomic Charge Flow and Induced Dipole Contributions. J Phys Chem A 2024; 128:4168-4175. [PMID: 38743593 DOI: 10.1021/acs.jpca.4c01890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The molecular dipole polarizability can be decomposed into components corresponding to the charge flow between atoms and changes in atomic dipole moments. Such decompositions are recognized to depend on how atoms are defined within a molecule, as, for example, by Hirshfeld, iterative Stockholder, or quantum topology partitioning of the electron density. For some of these, however, there are significant differences between the numerical results obtained by analytical response methods and finite field calculations. We show that this difference is due to analytical response methods accounting for (only) the change in electron density by a perturbation, while finite field methods may also include a component corresponding to a perturbation-dependent change in the definition of an atom within a molecule. For some atom-in-molecule definitions, such as the iterative Hirshfeld, iterative Stockholder, and quantum topology methods, the latter effect significantly increases the charge flow component. The decomposition of molecular polarizability into atomic charge flow and induced dipole components thus depends on whether the atom-in-molecule definition is taken to be perturbation-dependent.
Collapse
Affiliation(s)
- Jonas E S Mikkelsen
- Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus, Denmark
| | - Frank Jensen
- Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus, Denmark
| |
Collapse
|
7
|
Huang H, Zhao DX, Zhao J, Chen X, Liu C, Yang ZZ. Origin of Enantioselectivity in Engineered Cytochrome c-Catalyzed Carbon-Radical FePP Hydrolysis Revealed Using QM/MM (ABEEM Polarizable Force Field) and MD Simulations. J Phys Chem B 2024; 128:3807-3823. [PMID: 38605466 DOI: 10.1021/acs.jpcb.3c07158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
The origin of highly efficient asymmetric aminohydroxylation of styrene catalyzed by engineered cytochrome c is investigated by the developed Atom-Bond Electronegativity Equalization Method polarizable force field (ABEEM PFF), which is a combined outcome of electronic and steric effects. Model molecules were used to establish the charge parameters of the ABEEM PFF, for which the bond-stretching and angle-bending parameters were obtained by using a combination of modified Seminario and scan methods. The interactions between carbon-radical Fe-porphyrin (FePP) and waters are simulated by molecular dynamics, which shows a clear preference for the pre-R over the pre-S. This preference is attributed to the hydrogen-bond between the mutated 100S and 101P residues as well as van der Waals interactions, enforcing a specific conformation of the carbon-radical FePP complex within the binding pocket. Meanwhile, the hydrogen-bond between water and the nitrogen atom in the active intermediate dictates the stereochemical outcome. Quantum mechanics/molecular mechanics (QM/MM (ABEEM PFF)) and free-energy perturbation calculations elucidate that the 3RTS is characterized by sandwich-like structure among adjacent amino acid residues, which exhibits greater stability than crowed arrangement in 3STS and enables the R enantiomer to form more favorably. Thus, this study provides mechanistic insight into the catalytic reaction of hemoproteins.
Collapse
Affiliation(s)
- Hong Huang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China
| | - Dong-Xia Zhao
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China
| | - Jian Zhao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Xin Chen
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China
| | - Cui Liu
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China
| | - Zhong-Zhi Yang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China
| |
Collapse
|
8
|
Amezcua M, Setiadi J, Mobley DL. The SAMPL9 host-guest blind challenge: an overview of binding free energy predictive accuracy. Phys Chem Chem Phys 2024; 26:9207-9225. [PMID: 38444308 PMCID: PMC10954238 DOI: 10.1039/d3cp05111k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 02/03/2024] [Indexed: 03/07/2024]
Abstract
We report the results of the SAMPL9 host-guest blind challenge for predicting binding free energies. The challenge focused on macrocycles from pillar[n]-arene and cyclodextrin host families, including WP6, and bCD and HbCD. A variety of methods were used by participants to submit binding free energy predictions. A machine learning approach based on molecular descriptors achieved the highest accuracy (RMSE of 2.04 kcal mol-1) among the ranked methods in the WP6 dataset. Interestingly, predictions for WP6 obtained via docking tended to outperform all methods (RMSE of 1.70 kcal mol-1), most of which are MD based and computationally more expensive. In general, methods applying force fields achieved better correlation with experiments for WP6 opposed to the machine learning and docking models. In the cyclodextrin-phenothiazine challenge, the ATM approach emerged as the top performing method with RMSE less than 1.86 kcal mol-1. Correlation metrics of ranked methods in this dataset were relatively poor compared to WP6. We also highlight several lessons learned to guide future work and help improve studies on the systems discussed. For example, WP6 may be present in other microstates other than its -12 state in the presence of certain guests. Machine learning approaches can be used to fine tune or help train force fields for certain chemistry (i.e. WP6-G4). Certain phenothiazines occupy distinct primary and secondary orientations, some of which were considered individually for accurate binding free energies. The accuracy of predictions from certain methods while starting from a single binding pose/orientation demonstrates the sensitivity of calculated binding free energies to the orientation, and in some cases the likely dominant orientation for the system. Computational and experimental results suggest that guest phenothiazine core traverses both the secondary and primary faces of the cyclodextrin hosts, a bulky cationic side chain will primarily occupy the primary face, and the phenothiazine core substituent resides at the larger secondary face.
Collapse
Affiliation(s)
- Martin Amezcua
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, California 92697, USA.
| | - Jeffry Setiadi
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, USA
| | - David L Mobley
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, California 92697, USA.
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, USA
| |
Collapse
|
9
|
Zhao S, Cieplak P, Duan Y, Luo R. Assessment of Amino Acid Electrostatic Parametrizations of the Polarizable Gaussian Multipole Model. J Chem Theory Comput 2024; 20:2098-2110. [PMID: 38394331 PMCID: PMC11060985 DOI: 10.1021/acs.jctc.3c01347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Accurate parametrization of amino acids is pivotal for the development of reliable force fields for molecular modeling of biomolecules such as proteins. This study aims to assess amino acid electrostatic parametrizations with the polarizable Gaussian Multipole (pGM) model by evaluating the performance of the pGM-perm (with atomic permanent dipoles) and pGM-ind (without atomic permanent dipoles) variants compared to the traditional RESP model. The 100-conf-combterm fitting strategy on tetrapeptides was adopted, in which (1) all peptide bond atoms (-CO-NH-) share identical set of parameters and (2) the total charges of the two terminal N-acetyl (ACE) and N-methylamide (NME) groups were set to neutral. The accuracy and transferability of electrostatic parameters across peptides with varying lengths and real-world examples were examined. The results demonstrate the enhanced performance of the pGM-perm model in accurately representing the electrostatic properties of amino acids. This insight underscores the potential of the pGM-perm model and the 100-conf-combterm strategy for the future development of the pGM force field.
Collapse
Affiliation(s)
- Shiji Zhao
- Nurix Therapeutics, Inc., 1700 Owens St. Suite 205, San Francisco, CA 94158, USA
| | - Piotr Cieplak
- SBP Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Yong Duan
- UC Davis Genome Center and Department of Biomedical Engineering, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Ray Luo
- Departments of Molecular Biology and Biochemistry, Chemical and Biomolecular Engineering, Materials Science and Engineering, and Biomedical Engineering, University of California, Irvine. Irvine, California 92697, United States
| |
Collapse
|
10
|
Conflitti P, Raniolo S, Limongelli V. Perspectives on Ligand/Protein Binding Kinetics Simulations: Force Fields, Machine Learning, Sampling, and User-Friendliness. J Chem Theory Comput 2023; 19:6047-6061. [PMID: 37656199 PMCID: PMC10536999 DOI: 10.1021/acs.jctc.3c00641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Indexed: 09/02/2023]
Abstract
Computational techniques applied to drug discovery have gained considerable popularity for their ability to filter potentially active drugs from inactive ones, reducing the time scale and costs of preclinical investigations. The main focus of these studies has historically been the search for compounds endowed with high affinity for a specific molecular target to ensure the formation of stable and long-lasting complexes. Recent evidence has also correlated the in vivo drug efficacy with its binding kinetics, thus opening new fascinating scenarios for ligand/protein binding kinetic simulations in drug discovery. The present article examines the state of the art in the field, providing a brief summary of the most popular and advanced ligand/protein binding kinetics techniques and evaluating their current limitations and the potential solutions to reach more accurate kinetic models. Particular emphasis is put on the need for a paradigm change in the present methodologies toward ligand and protein parametrization, the force field problem, characterization of the transition states, the sampling issue, and algorithms' performance, user-friendliness, and data openness.
Collapse
Affiliation(s)
- Paolo Conflitti
- Faculty
of Biomedical Sciences, Euler Institute, Universitá della Svizzera italiana (USI), 6900 Lugano, Switzerland
| | - Stefano Raniolo
- Faculty
of Biomedical Sciences, Euler Institute, Universitá della Svizzera italiana (USI), 6900 Lugano, Switzerland
| | - Vittorio Limongelli
- Faculty
of Biomedical Sciences, Euler Institute, Universitá della Svizzera italiana (USI), 6900 Lugano, Switzerland
- Department
of Pharmacy, University of Naples “Federico
II”, 80131 Naples, Italy
| |
Collapse
|
11
|
Zhao S, Cieplak P, Duan Y, Luo R. Transferability of the Electrostatic Parameters of the Polarizable Gaussian Multipole Model. J Chem Theory Comput 2023; 19:924-941. [PMID: 36696564 PMCID: PMC10152989 DOI: 10.1021/acs.jctc.2c01048] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Accuracy and transferability are the two highly desirable properties of molecular mechanical force fields. Compared with the extensively used point-charge additive force fields that apply fixed atom-centered point partial charges to model electrostatic interactions, polarizable force fields are thought to have the advantage of modeling the atomic polarization effects. Previous works have demonstrated the accuracy of the recently developed polarizable Gaussian multipole (pGM) models. In this work, we assessed the transferability of the electrostatic parameters of the pGM models with (pGM-perm) and without (pGM-ind) atomic permanent dipoles in terms of reproducing the electrostatic potentials surrounding molecules/oligomers absent from electrostatic parameterizations. Encouragingly, both the pGM-perm and pGM-ind models show significantly improved transferability than the additive model in the tests (1) from water monomer to water oligomer clusters; (2) across different conformations of amino acid dipeptides and tetrapeptides; (3) from amino acid tetrapeptides to longer polypeptides; and (4) from nucleobase monomers to Watson-Crick base pair dimers and tetramers. Furthermore, we demonstrated that the double-conformation fittings using amino acid tetrapeptides in the αR and β conformations can result in good transferability not only across different tetrapeptide conformations but also from tetrapeptides to polypeptides with lengths ranging from 1 to 20 repetitive residues for both the pGM-ind and pGM-perm models. In addition, the observation that the pGM-ind model has significantly better accuracy and transferability than the point-charge additive model, even though they have an identical number of parameters, strongly suggest the importance of intramolecular polarization effects. In summary, this and previous works together show that the pGM models possess both accuracy and transferability, which are expected to serve as foundations for the development of next-generation polarizable force fields for modeling various polarization-sensitive biological systems and processes.
Collapse
Affiliation(s)
- Shiji Zhao
- Departments of Molecular Biology and Biochemistry, Chemical and Biomolecular Engineering, Materials Science and Engineering, and Biomedical Engineering, University of California, Irvine, Irvine, California 92697, United States
| | - Piotr Cieplak
- SBP Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Yong Duan
- UC Davis Genome Center and Department of Biomedical Engineering, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Ray Luo
- Departments of Molecular Biology and Biochemistry, Chemical and Biomolecular Engineering, Materials Science and Engineering, and Biomedical Engineering, University of California, Irvine, Irvine, California 92697, United States
| |
Collapse
|
12
|
Villard J, Kılıç M, Rothlisberger U. Surrogate Based Genetic Algorithm Method for Efficient Identification of Low-Energy Peptide Structures. J Chem Theory Comput 2023; 19:1080-1097. [PMID: 36692853 PMCID: PMC9933449 DOI: 10.1021/acs.jctc.2c01078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Indexed: 01/25/2023]
Abstract
Identification of the most stable structure(s) of a system is a prerequisite for the calculation of any of its properties from first-principles. However, even for relatively small molecules, exhaustive explorations of the potential energy surface (PES) are severely hampered by the dimensionality bottleneck. In this work, we address the challenging task of efficiently sampling realistic low-lying peptide coordinates by resorting to a surrogate based genetic algorithm (GA)/density functional theory (DFT) approach (sGADFT) in which promising candidates provided by the GA are ultimately optimized with DFT. We provide a benchmark of several computational methods (GAFF, AMOEBApro13, PM6, PM7, DFTB3-D3(BJ)) as possible prescanning surrogates and apply sGADFT to two test case systems that are (i) two isomer families of the protonated Gly-Pro-Gly-Gly tetrapeptide (Masson, A.; J. Am. Soc. Mass Spectrom.2015, 26, 1444-1454) and (ii) the doubly protonated cyclic decapeptide gramicidin S (Nagornova, N. S.; J. Am. Chem. Soc.2010, 132, 4040-4041). We show that our GA procedure can correctly identify low-energy minima in as little as a few hours. Subsequent refinement of surrogate low-energy structures within a given energy threshold (≤10 kcal/mol (i), ≤5 kcal/mol (ii)) via DFT relaxation invariably led to the identification of the most stable structures as determined from high-resolution infrared (IR) spectroscopy at low temperature. The sGADFT method therefore constitutes a highly efficient route for the screening of realistic low-lying peptide structures in the gas phase as needed for instance for the interpretation and assignment of experimental IR spectra.
Collapse
Affiliation(s)
- Justin Villard
- Laboratory of Computational Chemistry
and Biochemistry, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale
de Lausanne (EPFL), CH-1015Lausanne, Switzerland
| | - Murat Kılıç
- Laboratory of Computational Chemistry
and Biochemistry, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale
de Lausanne (EPFL), CH-1015Lausanne, Switzerland
| | - Ursula Rothlisberger
- Laboratory of Computational Chemistry
and Biochemistry, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale
de Lausanne (EPFL), CH-1015Lausanne, Switzerland
| |
Collapse
|
13
|
Mauger N, Plé T, Lagardère L, Huppert S, Piquemal JP. Improving Condensed-Phase Water Dynamics with Explicit Nuclear Quantum Effects: The Polarizable Q-AMOEBA Force Field. J Phys Chem B 2022; 126:8813-8826. [PMID: 36270033 DOI: 10.1021/acs.jpcb.2c04454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
We introduce a new parametrization of the AMOEBA polarizable force field for water denoted Q-AMOEBA, for use in simulations that explicitly account for nuclear quantum effects (NQEs). This study is made possible thanks to the recently introduced adaptive Quantum Thermal Bath (adQTB) simulation technique which computational cost is comparable to classical molecular dynamics. The flexible Q-AMOEBA model conserves the initial AMOEBA functional form, with an intermolecular potential including an atomic multipole description of electrostatic interactions (up to quadrupole), a polarization contribution based on the Thole interaction model and a buffered 14-7 potential to model van der Waals interactions. It has been obtained by using a ForceBalance fitting strategy including high-level quantum chemistry reference energies and selected condensed-phase properties targets. The final Q-AMOEBA model is shown to accurately reproduce both gas-phase and condensed-phase properties, notably improving the original AMOEBA water model. This development allows the fine study of NQEs on water liquid phase properties such as the average H-O-H angle compared to its gas-phase equilibrium value, isotope effects, and so on. Q-AMOEBA also provides improved infrared spectroscopy prediction capabilities compared to AMOEBA03. Overall, we show that the impact of NQEs depends on the underlying model functional form and on the associated strength of hydrogen bonds. Since adQTB simulations can be performed at near classical computational cost using the Tinker-HP package, Q-AMOEBA can be extended to organic molecules, proteins, and nucleic acids opening the possibility for the large-scale study of the importance of NQEs in biophysics.
Collapse
Affiliation(s)
- Nastasia Mauger
- Sorbonne Université, Laboratoire de Chimie Théorique, UMR 7616 CNRS, 75005 Paris, France
| | - Thomas Plé
- Sorbonne Université, Laboratoire de Chimie Théorique, UMR 7616 CNRS, 75005 Paris, France
| | - Louis Lagardère
- Sorbonne Université, Laboratoire de Chimie Théorique, UMR 7616 CNRS, 75005 Paris, France
| | - Simon Huppert
- Sorbonne Université, Institut des NanoSciences de Paris, UMR 7588 CNRS, 75005 Paris, France
| | - Jean-Philip Piquemal
- Sorbonne Université, Laboratoire de Chimie Théorique, UMR 7616 CNRS, 75005 Paris, France
| |
Collapse
|
14
|
Amezcua M, Setiadi J, Ge Y, Mobley DL. An overview of the SAMPL8 host-guest binding challenge. J Comput Aided Mol Des 2022; 36:707-734. [PMID: 36229622 PMCID: PMC9596595 DOI: 10.1007/s10822-022-00462-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 06/21/2022] [Indexed: 11/23/2022]
Abstract
The SAMPL series of challenges aim to focus the community on specific modeling challenges, while testing and hopefully driving progress of computational methods to help guide pharmaceutical drug discovery. In this study, we report on the results of the SAMPL8 host–guest blind challenge for predicting absolute binding affinities. SAMPL8 focused on two host–guest datasets, one involving the cucurbituril CB8 (with a series of common drugs of abuse) and another involving two different Gibb deep-cavity cavitands. The latter dataset involved a previously featured deep cavity cavitand (TEMOA) as well as a new variant (TEETOA), both binding to a series of relatively rigid fragment-like guests. Challenge participants employed a reasonably wide variety of methods, though many of these were based on molecular simulations, and predictive accuracy was mixed. As in some previous SAMPL iterations (SAMPL6 and SAMPL7), we found that one approach to achieve greater accuracy was to apply empirical corrections to the binding free energy predictions, taking advantage of prior data on binding to these hosts. Another approach which performed well was a hybrid MD-based approach with reweighting to a force matched QM potential. In the cavitand challenge, an alchemical method using the AMOEBA-polarizable force field achieved the best success with RMSE less than 1 kcal/mol, while another alchemical approach (ATM/GAFF2-AM1BCC/TIP3P/HREM) had RMSE less than 1.75 kcal/mol. The work discussed here also highlights several important lessons; for example, retrospective studies of reference calculations demonstrate the sensitivity of predicted binding free energies to ethyl group sampling and/or guest starting pose, providing guidance to help improve future studies on these systems.
Collapse
Affiliation(s)
- Martin Amezcua
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, 92697, USA
| | - Jeffry Setiadi
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Yunhui Ge
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, 92697, USA
| | - David L Mobley
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, 92697, USA. .,Department of Chemistry, University of California, Irvine, CA, 92697, USA.
| |
Collapse
|
15
|
Zhao S, Wei H, Cieplak P, Duan Y, Luo R. Accurate Reproduction of Quantum Mechanical Many-Body Interactions in Peptide Main-Chain Hydrogen-Bonding Oligomers by the Polarizable Gaussian Multipole Model. J Chem Theory Comput 2022; 18:6172-6188. [PMID: 36094401 PMCID: PMC10152986 DOI: 10.1021/acs.jctc.2c00710] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A key advantage of polarizable force fields is their ability to model the atomic polarization effects that play key roles in the atomic many-body interactions. In this work, we assessed the accuracy of the recently developed polarizable Gaussian Multipole (pGM) models in reproducing quantum mechanical (QM) interaction energies, many-body interaction energies, as well as the nonadditive and additive contributions to the many-body interactions for peptide main-chain hydrogen-bonding conformers, using glycine dipeptide oligomers as the model systems. Two types of pGM models were considered, including that with (pGM-perm) and without (pGM-ind) permanent atomic dipoles. The performances of the pGM models were compared with several widely used force fields, including two polarizable (Amoeba13 and ff12pol) and three additive (ff19SB, ff15ipq, and ff03) force fields. Encouragingly, the pGM models outperform all other force fields in terms of reproducing QM interaction energies, many-body interaction energies, as well as the nonadditive and additive contributions to the many-body interactions, as measured by the root-mean-square errors (RMSEs) and mean absolute errors (MAEs). Furthermore, we tested the robustness of the pGM models against polarizability parameterization errors by employing alternative polarizabilities that are either scaled or obtained from other force fields. The results show that the pGM models with alternative polarizabilities exhibit improved accuracy in reproducing QM many-body interaction energies as well as the nonadditive and additive contributions compared with other polarizable force fields, suggesting that the pGM models are robust against the errors in polarizability parameterizations. This work shows that the pGM models are capable of accurately modeling polarization effects and have the potential to serve as templates for developing next-generation polarizable force fields for modeling various biological systems.
Collapse
Affiliation(s)
- Shiji Zhao
- Departments of Molecular Biology and Biochemistry, Chemical and Biomolecular Engineering, Materials Science and Engineering, and Biomedical Engineering, University of California, Irvine, Irvine, California 92697, United States
| | - Haixin Wei
- Departments of Molecular Biology and Biochemistry, Chemical and Biomolecular Engineering, Materials Science and Engineering, and Biomedical Engineering, University of California, Irvine, Irvine, California 92697, United States
| | - Piotr Cieplak
- SBP Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Yong Duan
- UC Davis Genome Center and Department of Biomedical Engineering, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Ray Luo
- Departments of Molecular Biology and Biochemistry, Chemical and Biomolecular Engineering, Materials Science and Engineering, and Biomedical Engineering, University of California, Irvine, Irvine, California 92697, United States
| |
Collapse
|
16
|
Kognole AA, Aytenfisu AH, MacKerell AD. Extension of the CHARMM Classical Drude Polarizable Force Field to N- and O-Linked Glycopeptides and Glycoproteins. J Phys Chem B 2022; 126:6642-6653. [PMID: 36005290 PMCID: PMC9463114 DOI: 10.1021/acs.jpcb.2c04245] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Molecular dynamic simulations are an effective tool to study complex molecular systems and are contingent upon the availability of an accurate and reliable molecular mechanics force field. The Drude polarizable force field, which allows for the explicit treatment of electronic polarization in a computationally efficient fashion, has been shown to reproduce experimental properties that were difficult or impossible to reproduce with the CHARMM additive force field, including peptide folding cooperativity, RNA hairpin structures, and DNA base flipping. Glycoproteins are essential components of glycoconjugate vaccines, antibodies, and many pharmaceutically important molecules, and an accurate polarizable force field that includes compatibility between the protein and carbohydrate aspect of the force field is essential to study these types of systems. In this work, we present an extension of the Drude polarizable force field to glycoproteins, including both N- and O-linked species. Parameter optimization focused on the dihedral terms using a reweighting protocol targeting NMR solution J-coupling data for model glycopeptides. Validation of the model include eight model glycopeptides and four glycoproteins with multiple N- and O-linked glycosylations. The new glycoprotein carbohydrate force field can be used in conjunction with the remainder of Drude polarizable force field through a variety of MD simulation programs including GROMACS, OPENMM, NAMD, and CHARMM and may be accessed through the Drude Prepper module in the CHARMM-GUI.
Collapse
Affiliation(s)
| | | | - Alexander D. MacKerell
- Computer-Aided Drug Design Center, Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201, United States
| |
Collapse
|
17
|
Ahmad K, Rizzi A, Capelli R, Mandelli D, Lyu W, Carloni P. Enhanced-Sampling Simulations for the Estimation of Ligand Binding Kinetics: Current Status and Perspective. Front Mol Biosci 2022; 9:899805. [PMID: 35755817 PMCID: PMC9216551 DOI: 10.3389/fmolb.2022.899805] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 05/09/2022] [Indexed: 12/12/2022] Open
Abstract
The dissociation rate (k off) associated with ligand unbinding events from proteins is a parameter of fundamental importance in drug design. Here we review recent major advancements in molecular simulation methodologies for the prediction of k off. Next, we discuss the impact of the potential energy function models on the accuracy of calculated k off values. Finally, we provide a perspective from high-performance computing and machine learning which might help improve such predictions.
Collapse
Affiliation(s)
- Katya Ahmad
- Computational Biomedicine (IAS-5/INM-9), Forschungszentrum Jülich, Jülich, Germany
| | - Andrea Rizzi
- Computational Biomedicine (IAS-5/INM-9), Forschungszentrum Jülich, Jülich, Germany
- Atomistic Simulations, Istituto Italiano di Tecnologia, Genova, Italy
| | - Riccardo Capelli
- Department of Applied Science and Technology (DISAT), Politecnico di Torino, Torino, Italy
| | - Davide Mandelli
- Computational Biomedicine (IAS-5/INM-9), Forschungszentrum Jülich, Jülich, Germany
| | - Wenping Lyu
- Warshel Institute for Computational Biology, School of Life and Health Sciences, The Chinese University of Hong Kong (Shenzhen), Shenzhen, China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, China
| | - Paolo Carloni
- Computational Biomedicine (IAS-5/INM-9), Forschungszentrum Jülich, Jülich, Germany
- Molecular Neuroscience and Neuroimaging (INM-11), Forschungszentrum Jülich, Jülich, Germany
| |
Collapse
|
18
|
Zhao S, Wei H, Cieplak P, Duan Y, Luo R. PyRESP: A Program for Electrostatic Parameterizations of Additive and Induced Dipole Polarizable Force Fields. J Chem Theory Comput 2022; 18:3654-3670. [PMID: 35537209 DOI: 10.1021/acs.jctc.2c00230] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Molecular modeling at the atomic level has been applied in a wide range of biological systems. The widely adopted additive force fields typically use fixed atom-centered partial charges to model electrostatic interactions. However, the additive force fields cannot accurately model polarization effects, leading to unrealistic simulations in polarization-sensitive processes. Numerous efforts have been invested in developing induced dipole-based polarizable force fields. Whether additive atomic charge models or polarizable induced dipole models are used, proper parameterization of the electrostatic term plays a key role in the force field developments. In this work, we present a Python program called PyRESP for performing atomic multipole parameterizations by reproducing ab initio electrostatic potential (ESP) around molecules. PyRESP provides parameterization schemes for several electrostatic models, including the RESP model with atomic charges for the additive force fields and the RESP-ind and RESP-perm models with additional induced and permanent dipole moments for the polarizable force fields. PyRESP is a flexible and user-friendly program that can accommodate various needs during force field parameterizations for molecular modeling of any organic molecules.
Collapse
Affiliation(s)
- Shiji Zhao
- Departments of Molecular Biology and Biochemistry, Chemical and Biomolecular Engineering, Materials Science and Engineering, and Biomedical Engineering, University of California, Irvine, Irvine, California 92697, United States
| | - Haixin Wei
- Departments of Molecular Biology and Biochemistry, Chemical and Biomolecular Engineering, Materials Science and Engineering, and Biomedical Engineering, University of California, Irvine, Irvine, California 92697, United States
| | - Piotr Cieplak
- SBP Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Yong Duan
- UC Davis Genome Center and Department of Biomedical Engineering, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Ray Luo
- Departments of Molecular Biology and Biochemistry, Chemical and Biomolecular Engineering, Materials Science and Engineering, and Biomedical Engineering, University of California, Irvine, Irvine, California 92697, United States
| |
Collapse
|
19
|
Chatterjee P, Sengul MY, Kumar A, MacKerell AD. Harnessing Deep Learning for Optimization of Lennard-Jones Parameters for the Polarizable Classical Drude Oscillator Force Field. J Chem Theory Comput 2022; 18:2388-2407. [PMID: 35362975 PMCID: PMC9097857 DOI: 10.1021/acs.jctc.2c00115] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The outcomes of computational chemistry and biology research, including drug design, are significantly influenced by the underlying force field (FF) used in molecular simulations. While improved FF accuracy may be achieved via inclusion of explicit treatment of electronic polarization, such an extension must be accompanied by optimization of van der Waals (vdW) interactions, in the context of the Lennard-Jones (LJ) formalism in the present study. This is particularly challenging due to the extensive nature of chemical space combined with the correlated nature of LJ parameters. To address this challenge, a deep learning (DL)-based parametrization framework is developed, allowing for sampling of wide ranges of LJ parameters targeting experimental condensed phase thermodynamic properties. The present work utilizes this framework to develop the LJ parameters for atoms associated with four distinct groups covering 10 different atom types. Final parameter selection was facilitated by quantum mechanical data on rare-gas interactions with the training set molecules. The chosen parameters were then validated through experimental hydration free energies and condensed phase thermodynamic properties of validation set molecules to confirm transferability. The ultimate outcome of utilizing this framework is a set of LJ parameters in the context of the polarizable Drude FF, which demonstrated improvement in the reproduction of both experimental pure solvent and crystal properties and hydration free energies of the molecules compared to the additive CHARMM General FF (CGenFF) including the ability of the Drude FF to accurately reproduce both experimental pure solvent properties and hydration free energies. The study also shows how correlations between difference in the reproduction of condensed phase data between model compounds may be used to direct the selection of new atom types and training set molecules during FF development.
Collapse
Affiliation(s)
| | | | - Anmol Kumar
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland Baltimore, 20 Penn Street, Baltimore, MD, 21201, USA
| | - Alexander D. MacKerell
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland Baltimore, 20 Penn Street, Baltimore, MD, 21201, USA
| |
Collapse
|
20
|
Kumar A, Pandey P, Chatterjee P, MacKerell AD. Deep Neural Network Model to Predict the Electrostatic Parameters in the Polarizable Classical Drude Oscillator Force Field. J Chem Theory Comput 2022; 18:1711-1725. [PMID: 35148088 PMCID: PMC8904317 DOI: 10.1021/acs.jctc.1c01166] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The Drude polarizable force field (FF) captures electronic polarization effects via auxiliary Drude particles that are attached to non-hydrogen atoms, distinguishing it from commonly used additive FFs that rely on fixed charges. The Drude FF currently includes parameters for biomolecules such as proteins, nucleic acids, lipids, and carbohydrates and small-molecule representative of those classes of molecules as well as a range of atomic ions. Extension of the Drude FF to novel small druglike molecules is challenging as it requires the assignment of partial charges, atomic polarizabilities, and Thole scaling factors. In the present article, deep neural network (DNN) models are trained on quantum mechanical (QM)-based partial charges and atomic polarizabilities along with Thole scale factors trained to target QM molecular dipole moments and polarizabilities. Training of the DNN model used a collection of 39 421 molecules with molecular weights up to 200 Da and containing H, C, N, O, P, S, F, Cl, Br, or I atoms. The DNN model utilizes bond connectivity, including 1,2, 1,3, 1,4, and 1,5 terms and distances of Drude FF atom types as the feature vector to build the model, allowing it to capture both local and nonlocal effects in the molecules. Novel methods have been developed to determine restrained electrostatic potential (RESP) charges on atoms and external points representing lone pairs and to determine Thole scale factors, which have no QM analogue. A penalty scheme is devised as a performance predictor of the trained model. Validation studies show that these DNN models can precisely predict molecular dipole and polarizabilities of Food and Drug Administration (FDA)-approved drugs compared to reference MP2 calculations. The availability of the DNN model allowing for the rapid estimation of the Drude electrostatic parameters will facilitate its applicability to a wider range of molecular species.
Collapse
Affiliation(s)
- Anmol Kumar
- School of Pharmacy, University of Maryland, Baltimore, 20 Penn Street, HSFII, Baltimore, Maryland 21201, United States
| | - Poonam Pandey
- School of Pharmacy, University of Maryland, Baltimore, 20 Penn Street, HSFII, Baltimore, Maryland 21201, United States
| | - Payal Chatterjee
- School of Pharmacy, University of Maryland, Baltimore, 20 Penn Street, HSFII, Baltimore, Maryland 21201, United States
| | - Alexander D MacKerell
- School of Pharmacy, University of Maryland, Baltimore, 20 Penn Street, HSFII, Baltimore, Maryland 21201, United States
| |
Collapse
|
21
|
Alencar WLM, da Silva Arouche T, Neto AFG, de Castro Ramalho T, de Carvalho Júnior RN, de Jesus Chaves Neto AM. Interactions of Co, Cu, and non-metal phthalocyanines with external structures of SARS-CoV-2 using docking and molecular dynamics. Sci Rep 2022; 12:3316. [PMID: 35228662 PMCID: PMC8885651 DOI: 10.1038/s41598-022-07396-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 02/10/2022] [Indexed: 02/06/2023] Open
Abstract
The new coronavirus, SARS-CoV-2, caused the COVID-19 pandemic, characterized by its high rate of contamination, propagation capacity, and lethality rate. In this work, we approach the use of phthalocyanines as an inhibitor of SARS-CoV-2, as they present several interactive properties of the phthalocyanines (Pc) of Cobalt (CoPc), Copper (CuPc) and without a metal group (NoPc) can interact with SARS-CoV-2, showing potential be used as filtering by adsorption on paints on walls, masks, clothes, and air conditioning filters. Molecular modeling techniques through Molecular Docking and Molecular Dynamics were used, where the target was the external structures of the virus, but specifically the envelope protein, main protease, and Spike glycoprotein proteases. Using the g_MM-GBSA module and with it, the molecular docking studies show that the ligands have interaction characteristics capable of adsorbing the structures. Molecular dynamics provided information on the root-mean-square deviation of the atomic positions provided values between 1 and 2.5. The generalized Born implicit solvation model, Gibbs free energy, and solvent accessible surface area approach were used. Among the results obtained through molecular dynamics, it was noticed that interactions occur since Pc could bind to residues of the active site of macromolecules, demonstrating good interactions; in particular with CoPc. Molecular couplings and free energy showed that S-gly active site residues interacted strongly with phthalocyanines with values of - 182.443 kJ/mol (CoPc), 158.954 kJ/mol (CuPc), and - 129.963 kJ/mol (NoPc). The interactions of Pc's with SARS-CoV-2 may predict some promising candidates for antagonists to the virus, which if confirmed through experimental approaches, may contribute to resolving the global crisis of the COVID-19 pandemic.
Collapse
Affiliation(s)
- Wilson Luna Machado Alencar
- Laboratory of Preparation and Computation of Nanomaterials (LPCN), Federal University of Pará, C. P. 479, Belem, PA, 66075-110, Brazil
- Pos-Graduation Program in Engineering of Natural Resources of the Amazon, ITEC, Federal University of Pará, C. P. 2626, Belém, PA, 66050-540, Brazil
- Federal Institute of Pará (IFPA), C. P. BR 316, Km 61, Castanhal, PA, 68740-970, Brazil
| | - Tiago da Silva Arouche
- Laboratory of Preparation and Computation of Nanomaterials (LPCN), Federal University of Pará, C. P. 479, Belem, PA, 66075-110, Brazil
| | | | | | - Raul Nunes de Carvalho Júnior
- Pos-Graduation Program in Engineering of Natural Resources of the Amazon, ITEC, Federal University of Pará, C. P. 2626, Belém, PA, 66050-540, Brazil
- Pos-Graduation Program in Chemical Engineering, ITEC, Federal University of Pará, C. P. 479, Belém, PA, 66075-900, Brazil
| | - Antonio Maia de Jesus Chaves Neto
- Laboratory of Preparation and Computation of Nanomaterials (LPCN), Federal University of Pará, C. P. 479, Belem, PA, 66075-110, Brazil.
- Pos-Graduation Program in Engineering of Natural Resources of the Amazon, ITEC, Federal University of Pará, C. P. 2626, Belém, PA, 66050-540, Brazil.
- Pos-Graduation Program in Chemical Engineering, ITEC, Federal University of Pará, C. P. 479, Belém, PA, 66075-900, Brazil.
- National Professional Master's in Physics Teaching, Federal University of Pará, C. P. 479, Belém, PA, 66075-110, Brazil.
| |
Collapse
|
22
|
Poier PP. Variational Formulation of the Bond Capacity Charge Polarization Model. J Chem Phys 2022; 156:104101. [DOI: 10.1063/5.0082680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
23
|
Zauchner MG, Dal Forno S, Cśanyi G, Horsfield A, Lischner J. Predicting polarizabilities of silicon clusters using local chemical environments. MACHINE LEARNING: SCIENCE AND TECHNOLOGY 2021. [DOI: 10.1088/2632-2153/ac2cfe] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
24
|
Introducing the effective polarizable bond (EPB) model in DNA simulations. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.139160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
25
|
Lu LN, Liu C, Yang ZZ. Systematic Parameterization and Simulation of Boronic Acid-β-Lactamase Aqueous Solution in Developing the ABEEMσπ Polarizable Force Field. J Phys Chem A 2020; 124:8614-8632. [PMID: 32910648 DOI: 10.1021/acs.jpca.0c06806] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Boronic acid, an inhibitor of β-lactamase, has begun to be applied to the treatment of biological infections and tumors. Scientists are working to develop new and more effective boronic acid. Molecular dynamics (MD) simulation provides a powerful auxiliary tool for drug design. However, the current force fields have no boron-related parameters. In this work, an atom-bond electronegativity equalization method at the σπ level (ABEEMσπ) polarizable force field (ABEEMσπ PFF) of boronic acid and β-lactamase has been developed to determine the potential functions and parameters. The interaction between boron and serine in β-lactamase is regarded as a bonded mode. The interaction between them is simulated by the Morse potential energy function, which is close to the experimental change of the stretching potential energy in a large range. The potential energy surfaces of the bond length, bond angle, and dihedral angle of boronic acid-β-lactamase have the same stability point and change trend as M06-2X/6-311G**. For 47 boronic acid-β-lactamase training molecules, the linear correlation coefficient (R) of the charge distribution between the ABEEMσπ PFF and HF/STO-3G is greater than 0.96. Attributed to the fact that the charge distribution of the ABEEMσπ PFF can fluctuate with the change of geometry and environment, the polarization effect and charge-transfer effect are well reflected. The binding ability of different boronic acids with the same β-lactamase is different. A total of 10 boronic acid-β-lactamase model molecules and 10 boronic acid-β-lactamase and water complexes are simulated. The order of binding energy of five large model molecules calculated by the ABEEMσπ PFF is consistent with that of the MP2 method. The binding energies of boronic acid-β-lactamase and water complexes are close to those of the MP2 method. The results of MD simulation of five aqueous boronic acid-β-lactamase complexes in the NVT ensemble verify the rationality of boron-related parameters of the ABEEMσπ PFF, which have a good application prospect. This study lays a solid theoretical foundation for further study of the inhibition of boronic acid on β-lactamase.
Collapse
Affiliation(s)
- Li-Nan Lu
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, People's Republic of China
| | - Cui Liu
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, People's Republic of China
| | - Zhong-Zhi Yang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, People's Republic of China
| |
Collapse
|
26
|
Lazim R, Suh D, Choi S. Advances in Molecular Dynamics Simulations and Enhanced Sampling Methods for the Study of Protein Systems. Int J Mol Sci 2020; 21:E6339. [PMID: 32882859 PMCID: PMC7504087 DOI: 10.3390/ijms21176339] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 12/12/2022] Open
Abstract
Molecular dynamics (MD) simulation is a rigorous theoretical tool that when used efficiently could provide reliable answers to questions pertaining to the structure-function relationship of proteins. Data collated from protein dynamics can be translated into useful statistics that can be exploited to sieve thermodynamics and kinetics crucial for the elucidation of mechanisms responsible for the modulation of biological processes such as protein-ligand binding and protein-protein association. Continuous modernization of simulation tools enables accurate prediction and characterization of the aforementioned mechanisms and these qualities are highly beneficial for the expedition of drug development when effectively applied to structure-based drug design (SBDD). In this review, current all-atom MD simulation methods, with focus on enhanced sampling techniques, utilized to examine protein structure, dynamics, and functions are discussed. This review will pivot around computer calculations of protein-ligand and protein-protein systems with applications to SBDD. In addition, we will also be highlighting limitations faced by current simulation tools as well as the improvements that have been made to ameliorate their efficiency.
Collapse
Affiliation(s)
- Raudah Lazim
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea
| | - Donghyuk Suh
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea
| | - Sun Choi
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
27
|
Kato K, Masuda T, Watanabe C, Miyagawa N, Mizouchi H, Nagase S, Kamisaka K, Oshima K, Ono S, Ueda H, Tokuhisa A, Kanada R, Ohta M, Ikeguchi M, Okuno Y, Fukuzawa K, Honma T. High-Precision Atomic Charge Prediction for Protein Systems Using Fragment Molecular Orbital Calculation and Machine Learning. J Chem Inf Model 2020; 60:3361-3368. [PMID: 32496771 DOI: 10.1021/acs.jcim.0c00273] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Here, we have constructed neural network-based models that predict atomic partial charges with high accuracy at low computational cost. The models were trained using high-quality data acquired from quantum mechanics calculations using the fragment molecular orbital method. We have succeeded in obtaining highly accurate atomic partial charges for three representative molecular systems of proteins, including one large biomolecule (approx. 2000 atoms). The novelty of our approach is the ability to take into account the electronic polarization in the system, which is a system-dependent phenomenon, being important in the field of drug design. Our high-precision models are useful for the prediction of atomic partial charges and expected to be widely applicable in structure-based drug designs such as structural optimization, high-speed and high-precision docking, and molecular dynamics calculations.
Collapse
Affiliation(s)
- Koichiro Kato
- Science Solutions Division, Mizuho Information & Research Institute, Inc., 2-3 Kanda Nishiki-cho, Chiyoda, Tokyo 101-8443, Japan.,Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.,Center for Molecular Systems (CMS), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Tomohide Masuda
- Pharmaceutical Research Laboratories, Toray Industries, Inc., 6-10-1 Tebiro, Kamakura, Kanagawa 248-8555, Japan
| | - Chiduru Watanabe
- Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Naoki Miyagawa
- Science Solutions Division, Mizuho Information & Research Institute, Inc., 2-3 Kanda Nishiki-cho, Chiyoda, Tokyo 101-8443, Japan
| | - Hideo Mizouchi
- Science Solutions Division, Mizuho Information & Research Institute, Inc., 2-3 Kanda Nishiki-cho, Chiyoda, Tokyo 101-8443, Japan
| | - Shumpei Nagase
- Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan.,Masuda Keizai Kenkyusho, Y.K., Hillsidemasuda, 1-1-15 Teraya, Tsurumi-ku, Yokohama-shi, Kanagawa 230-0015, Japan
| | - Kikuko Kamisaka
- Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Kanji Oshima
- Biotechnology Research Laboratories, Kaneka Corporation, 1-8 Miyamae-cho, Takasago-cho, Takasago, Hyogo 676-8688, Japan
| | - Satoshi Ono
- Discovery Technology Laboratories, Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 1000 Kamoshida-cho, Aoba-ku, Yokohama, Kanagawa 227-0033, Japan
| | - Hiroshi Ueda
- Pharmaceutical Research Laboratories, Toray Industries, Inc., 6-10-1 Tebiro, Kamakura, Kanagawa 248-8555, Japan
| | - Atsushi Tokuhisa
- RIKEN Cluster for Science and Technology Hub, 6-3-5 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.,RIKEN Center for Computational Science, 6-3-5 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.,RIKEN Medical Sciences Innovation Hub Program, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Ryo Kanada
- RIKEN Cluster for Science and Technology Hub, 6-3-5 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Masateru Ohta
- Drug Development Data Intelligence Platform Group, Medical Science Innovation Hub Program, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Mitsunori Ikeguchi
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Yasushi Okuno
- RIKEN Medical Sciences Innovation Hub Program, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan.,Graduate School of Medicine, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan.,RIKEN Compass to Healthy Life Research Complex Program, RIKEN, 6-7-1 Minatojima Minami-machi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Kaori Fukuzawa
- School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Teruki Honma
- Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| |
Collapse
|
28
|
Prajapati JD, Mele C, Aksoyoglu MA, Winterhalter M, Kleinekathöfer U. Computational Modeling of Ion Transport in Bulk and through a Nanopore Using the Drude Polarizable Force Field. J Chem Inf Model 2020; 60:3188-3203. [DOI: 10.1021/acs.jcim.0c00389] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
| | - Crystal Mele
- Department of Physics and Earth Sciences, Jacobs University Bremen, 28759 Bremen, Germany
| | | | - Mathias Winterhalter
- Department of Life Sciences and Chemistry, Jacobs University Bremen, 28759 Bremen, Germany
| | - Ulrich Kleinekathöfer
- Department of Physics and Earth Sciences, Jacobs University Bremen, 28759 Bremen, Germany
| |
Collapse
|
29
|
Kognole AA, Aytenfisu AH, MacKerell AD. Balanced polarizable Drude force field parameters for molecular anions: phosphates, sulfates, sulfamates, and oxides. J Mol Model 2020; 26:152. [PMID: 32447472 DOI: 10.1007/s00894-020-04399-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 04/28/2020] [Indexed: 12/14/2022]
Abstract
Polarizable force fields are emerging as a more accurate alternative to additive force fields in terms of modeling and simulations of a variety of chemicals including biomolecules. Explicit treatment of induced polarization in charged species such as phosphates and sulfates offers the potential for achieving an improved atomistic understanding of the physical forces driving their interactions with their environments. To help achieve this, in this study we present balanced Drude polarizable force field parameters for molecular ions including phosphates, sulfates, sulfamates, and oxides. Better balance was primarily achieved in the relative values of minimum interaction energies and distances of the anionic model compounds with water at the Drude and quantum mechanical (QM) model chemistries. Parametrization involved reoptimizing available parameters as well as extending the force field to new molecules with the goal of achieving self-consistency with respect to the Lennard-Jones and electrostatic parameters targeting QM and experimental hydration free energies. The resulting force field parameters achieve consistent treatment across the studied anions, facilitating more balanced simulations of biomolecules and small organic molecules in the context of the classical Drude polarizable force field. Graphical abstract.
Collapse
Affiliation(s)
- Abhishek A Kognole
- University of Maryland Computer-Aided Drug Design Center, Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD, 21201, USA
| | - Asaminew H Aytenfisu
- University of Maryland Computer-Aided Drug Design Center, Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD, 21201, USA
| | - Alexander D MacKerell
- University of Maryland Computer-Aided Drug Design Center, Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD, 21201, USA.
| |
Collapse
|
30
|
Lin FY, Huang J, Pandey P, Rupakheti C, Li J, Roux B, MacKerell AD. Further Optimization and Validation of the Classical Drude Polarizable Protein Force Field. J Chem Theory Comput 2020; 16:3221-3239. [PMID: 32282198 PMCID: PMC7306265 DOI: 10.1021/acs.jctc.0c00057] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The CHARMM Drude-2013 polarizable force field (FF) was developed to include the explicit treatment of induced electronic polarizability, resulting in a more accurate description of the electrostatic interactions in molecular dynamics (MD) simulations. While the Drude-2013 protein FF has shown success in improving the folding properties of α-helical peptides and to reproduce experimental observables in simulations up to 1 μs, some limitations were noted regarding the stability of β-sheet structures in simulations longer than 100 ns as well as larger deviations from crystal structures in simulations of a number of proteins compared to the additive CHARMM36 protein FF. The origin of the instability has been identified and appears to be primarily due to overestimated atomic polarizabilities and induced dipole-dipole interactions on the Cβ, Cγ, and Cδ side chain atoms. To resolve this and other issues, a number of aspects of the model were revisited, resulting in Drude-2019 protein FF. Backbone parameters were optimized targeting the conformational properties of the (Ala)5 peptide in solution along with gas phase properties of the alanine dipeptide. Dipeptides that contain N-acetylated and N'-methylamidated termini, excluding Gly, Pro, and Ala, were used as models to optimize the atomic polarizabilities and Thole screening factors on selected Cβ, Cγ, and Cδ carbons by targeting quantum mechanical (QM) dipole moments and molecular polarizabilities. In addition, to obtain better conformational properties, side chain χ1 and χ2 dihedral parameters were optimized targeting QM data for the respective side chain dipeptide conformations as well as Protein Data Bank survey data based on the χ1, χ2 sampling from Hamiltonian replica-exchange MD simulations of (Ala)4-X-(Ala)4 in solution, where X is the amino acid of interest. Further improvements include optimizing nonbonded interactions between charged residues to reproduce QM interaction energies of the charged-protein model compounds and experimental osmotic pressures. Validation of the optimized Drude protein FF includes MD simulations of a collection of peptides and proteins including β-sheet structures, as well as transmembrane ion channels. Results showed that the updated Drude-2019 protein FF yields smaller overall root-mean-square differences of proteins as compared to the additive CHARMM36m and Drude-2013 FFs as well as similar or improved agreement with experimental NMR properties, allowing for long time scale simulation studies of proteins and more complex biomolecular systems in conjunction with the remainder of the Drude polarizable FF.
Collapse
Affiliation(s)
- Fang-Yu Lin
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, 20 Penn Street, Baltimore, MD 21201, USA
| | - Jing Huang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, 20 Penn Street, Baltimore, MD 21201, USA
- Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang, China
| | - Poonam Pandey
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, 20 Penn Street, Baltimore, MD 21201, USA
| | - Chetan Rupakheti
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, 60637, USA
| | - Jing Li
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, 60637, USA
| | - Benoît Roux
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, 60637, USA
| | - Alexander D. MacKerell
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, 20 Penn Street, Baltimore, MD 21201, USA
| |
Collapse
|
31
|
Duan G, Ji C, Zhang JZH. Developing an effective polarizable bond method for small molecules with application to optimized molecular docking. RSC Adv 2020; 10:15530-15540. [PMID: 35495446 PMCID: PMC9052371 DOI: 10.1039/d0ra01483d] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 03/31/2020] [Indexed: 12/20/2022] Open
Abstract
Electrostatic interaction plays an essential role in protein-ligand binding. Due to the polarization effect, electrostatic interactions are largely impacted by their local environments. However, traditional force fields use fixed point charge-charge interactions to describe electrostatic interactions but is unable to include the polarization effect. The lack of the polarization effect in the force field representation can result in substantial error in biomolecular studies, such as molecular dynamics and molecular docking. Docking programs usually employ traditional force fields to estimate the binding energy between a ligand and a protein for pose selection or scoring. The intermolecular interaction energy mainly consists of van der Waals and electrostatic interaction in the force field representation. In the current study, we developed an Effective Polarizable Bond (EPB) method for small organic molecules and applied this EPB method to optimize protein-ligand docking in computational tests for a variety of protein-ligand systems. We tested the method on a set of 38 cocrystallized structures taken from the Protein Data Bank (PDB) and found that the maximum error was reduced from 7.98 Å to 2.03 Å when using EPB Dock, providing strong evidence that the use of EPB charges is important. We found that our optimized docking approach with EPB charges could improve the docking performance, sometimes dramatically, and the maximum error was reduced from 12.88 Å to 1.57 Å in Optimized Docking (in the case of 1fqx). The average RMSD decreased from 2.83 Å to 1.85 Å. Further investigations showed that the use of the EBP method could enhance intermolecular hydrogen bonding, which is a major contributing factor to improved docking performance. Developed tools for the calculation of the polarized ligand charge from a protein-ligand complex structure with the EPB method are freely available on GitHub (https://github.com/Xundrug/EPB).
Collapse
Affiliation(s)
- Guanfu Duan
- Shanghai Engineering Research Center for Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry & Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
| | - Changge Ji
- Shanghai Engineering Research Center for Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry & Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai Shanghai 200062 China
| | - John Z H Zhang
- Shanghai Engineering Research Center for Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry & Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai Shanghai 200062 China
- Department of Chemistry, New York University NY NY 10003 USA
- Collaborative Innovation Center of Extreme Optics, Shanxi University Taiyuan Shanxi 030006 China
| |
Collapse
|
32
|
Heid E, Boresch S, Schröder C. Polarizable molecular dynamics simulations of ionic liquids: Influence of temperature control. J Chem Phys 2020; 152:094105. [PMID: 33480729 PMCID: PMC7610910 DOI: 10.1063/1.5143746] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Ionic liquids are an interesting class of soft matter with viscosities of one or two orders of magnitude higher than that of water. Unfortunately, classical, non-polarizable molecular dynamics (MD) simulations of ionic liquids result in too slow dynamics and demonstrate the need for explicit inclusion of polarizability. The inclusion of polarizability, here via the Drude oscillator model, requires amendments to the employed thermostat, where we consider a dual Nosé-Hoover thermostat, as well as a dual Langevin thermostat. We investigate the effects of the choice of a thermostat and the underlying parameters such as the masses and force constants of the Drude particles on static and dynamic properties of ionic liquids. Here, we show that Langevin thermostats are not suitable for investigating the dynamics of ionic liquids. Since polarizable MD simulations are associated with high computational costs, we employed a self-developed graphics processing unit enhanced code within the MD program CHARMM to keep the overall computational effort reasonable.
Collapse
Affiliation(s)
- Esther Heid
- University of Vienna, Faculty of Chemistry, Department of Computational Biological Chemistry, Währingerstr. 17, A-1090 Vienna, Austria
| | - Stefan Boresch
- University of Vienna, Faculty of Chemistry, Department of Computational Biological Chemistry, Währingerstr. 17, A-1090 Vienna, Austria
| | - Christian Schröder
- University of Vienna, Faculty of Chemistry, Department of Computational Biological Chemistry, Währingerstr. 17, A-1090 Vienna, Austria
| |
Collapse
|
33
|
Poier PP, Lagardère L, Piquemal JP, Jensen F. Molecular Dynamics Using Nonvariational Polarizable Force Fields: Theory, Periodic Boundary Conditions Implementation, and Application to the Bond Capacity Model. J Chem Theory Comput 2019; 15:6213-6224. [DOI: 10.1021/acs.jctc.9b00721] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Pier Paolo Poier
- Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus, Denmark
| | - Louis Lagardère
- Sorbonne Université, Institut Parisien de Chimie Physique et Théorique, 75005, Paris, France
- Sorbonne Université, Institut des Sciences du Calcul et des Données, 75005, Paris, France
| | - Jean-Philip Piquemal
- Sorbonne Université, Laboratoire de Chimie Théorique, 75005, Paris, France
- Sorbonne Université, Institut Universitaire de France, 75005, Paris, France
- University of Texas, Department of Biomedical Engineering, Austin, Texas, United States
| | - Frank Jensen
- Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus, Denmark
| |
Collapse
|
34
|
Duan G, Ji C, Zhang JZH. A force consistent method for electrostatic energy calculation in fluctuating charge model. J Chem Phys 2019; 151:094105. [PMID: 31492061 DOI: 10.1063/1.5118224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A practical approach to include the polarization effect in a molecular force field is the fluctuating charge method in which atomic charges vary as the configuration of the molecular system changes. However, the use of the Coulomb formula to evaluate energy in a fluctuating charge method is theoretically inconsistent with the forces given by the fluctuating method. In this work, we propose a force-consistent method to correctly calculate electrostatic energies of molecular systems using a fluctuating charge model (Effective Polarizable Bond or EPB). In this protocol, the electrostatic energy is obtained by numerical interaction of the atomic forces along the MD trajectory, rather than using the default Coulomb formula in the EPB model. Test study on the benchmark Barnase-Barstar protein-protein interaction system demonstrates that although the total electrostatic energy of the system shows little deviation due to the averaging effect, specific residue-residue electrostatic interaction energy is affected and the level of the effect depends on the charges of the interacting residues with charged residues showing pronounced differences in calculated energies between using the current protocol and the standard Coulomb formula. It is recommended that the proposed numerical interaction method should be preferred in the calculation of electrostatic energy in fluctuating charge models used in molecular dynamics simulations.
Collapse
Affiliation(s)
- Guanfu Duan
- Shanghai Engineering Research Center for Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Changge Ji
- Shanghai Engineering Research Center for Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - John Z H Zhang
- Shanghai Engineering Research Center for Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| |
Collapse
|
35
|
Pandey P, Aytenfisu AH, MacKerell AD, Mallajosyula SS. Drude Polarizable Force Field Parametrization of Carboxylate and N-Acetyl Amine Carbohydrate Derivatives. J Chem Theory Comput 2019; 15:4982-5000. [PMID: 31411469 PMCID: PMC6852669 DOI: 10.1021/acs.jctc.9b00327] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In this work, we report the development of Drude polarizable force field parameters for the carboxylate and N-acetyl amine derivatives, extending the functionality of the existing Drude polarizable carbohydrate force field. The force field parameters have been developed in a hierarchical manner, reproducing the quantum mechanical gas-phase properties of small model compounds representing the key functional group in the carbohydrate derivatives, including optimization of the electrostatic and bonded parameters. The optimized parameters were then used to generate the models for carboxylate and N-acetyl amine carbohydrate derivatives. The transferred parameters were further tested and optimized to reproduce crystal geometries and J-coupling data from nuclear magnetic resonance experiments. The parameter development resulted in the incorporation of d-glucuronate, l-iduronate, N-acetyl-d-glucosamine (GlcNAc), and N-acetyl-d-galactosamine (GalNAc) sugars into the Drude polarizable force field. The parameters developed in this study were then applied to study the conformational properties of glycosaminoglycan polymer hyaluronan, composed of d-glucuronate and N-acetyl-d-glucosamine, in aqueous solution. Upon comparing the results from the additive and polarizable simulations, it was found that the inclusion of polarization improved the description of the electrostatic interactions observed in hyaluronan, resulting in enhanced conformational flexibility. The developed Drude polarizable force field parameters in conjunction with the remainder of the Drude polarizable force field parameters can be used for future studies involving carbohydrates and their conjugates in complex, heterogeneous systems.
Collapse
Affiliation(s)
| | - Asaminew H Aytenfisu
- Department of Pharmaceutical Sciences , University of Maryland School of Pharmacy , 20 Penn Street , Baltimore , Maryland 21201 , United States
| | - Alexander D MacKerell
- Department of Pharmaceutical Sciences , University of Maryland School of Pharmacy , 20 Penn Street , Baltimore , Maryland 21201 , United States
| | | |
Collapse
|
36
|
Abstract
Although the charge flux effect or the geometric dependence of the atomic partial charges have been known for a long time, how it can be effectively handled is not yet established. Here, we present a charge interpolation scheme as a new general tool for representing the charge flux in an analytically well-defined manner. By applying it to the anionic GFP chromophore with the diabatically represented atomic charges, we show that the charge interpolation provides a substantial improvement on the accuracy of the geometry-dependent changes in the molecular dipole moments in the gas phase. We also test the scheme toward describing the electrostatic term in the solvation energy in the aqueous environment and observe that it is also improved but that the extent of the improvement is somewhat limited. We show that the remaining errors can be largely corrected by introducing atomic polarizabilities. Overall, our results show that charge interpolation is an amenable approach for describing the charge flux effect and that its description in the condensed phase should be accompanied by proper treatments of polarization effects.
Collapse
Affiliation(s)
- Seung Soo Kim
- Department of Chemistry , Pohang University of Science and Technology (POSTECH) , Pohang 37673 , Korea
| | - Young Min Rhee
- Department of Chemistry , Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141 , Korea
| |
Collapse
|
37
|
Liu C, Piquemal JP, Ren P. AMOEBA+ Classical Potential for Modeling Molecular Interactions. J Chem Theory Comput 2019; 15:4122-4139. [PMID: 31136175 DOI: 10.1021/acs.jctc.9b00261] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Classical potentials based on isotropic and additive atomic charges have been widely used to model molecules in computers for the past few decades. The crude approximations in the underlying physics are hindering both their accuracy and transferability across chemical and physical environments. Here we present a new classical potential, AMOEBA+, to capture essential intermolecular forces, including permanent electrostatics, repulsion, dispersion, many-body polarization, short-range charge penetration, and charge transfer, by extending the polarizable multipole-based AMOEBA (Atomic Multipole Optimized Energetics for Biomolecular Applications) model. For a set of common organic molecules, we show that AMOEBA+ with general parameters can reproduce both quantum mechanical interactions and energy decompositions according to Symmetry-Adapted Perturbation Theory (SAPT). Additionally, a new water model based on the AMOEBA+ framework captures various liquid-phase properties in molecular dynamics simulations while remaining consistent with SAPT energy decompositions, utilizing both ab initio data and experimental liquid properties. Our results demonstrate that it is possible to improve the physical basis of classical force fields to advance their accuracy and general applicability.
Collapse
Affiliation(s)
- Chengwen Liu
- Department of Biomedical Engineering , The University of Texas at Austin , Austin , Texas 78712 , United States
| | - Jean-Philip Piquemal
- Department of Biomedical Engineering , The University of Texas at Austin , Austin , Texas 78712 , United States.,Laboratoire de Chimie Théorique , Sorbonne Université, UMR7616 CNRS , Paris 75252 , France.,Institut Universitaire de France , Paris Cedex 05, 75005 , France
| | - Pengyu Ren
- Department of Biomedical Engineering , The University of Texas at Austin , Austin , Texas 78712 , United States
| |
Collapse
|
38
|
Sasaki T, von der Mark K, Lanig H. Molecular dynamics simulations on human fibulin-4 mutants D203A and E126K reveal conformational changes in EGF domains potentially responsible for enhanced protease lability and impaired extracellular matrix assembly. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1867:748-756. [PMID: 31125616 DOI: 10.1016/j.bbapap.2019.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 05/12/2019] [Accepted: 05/17/2019] [Indexed: 10/26/2022]
Abstract
Fibulin-4 is a 50 kDa glycoprotein of elastic fibers and plays an important role in development and function of elastic tissues. Fibulin-4 consists of a tandem array of five calcium-binding epidermal growth factor-like modules flanked by N- and C-terminal domains. Mutations in the human fibulin-4 gene EFEMP2 have been identified in patients affected with various arteriopathies including aneurysm, arterial tortuosity, or stenosis, but the molecular basis of most genotype-phenotype correlations is unknown. Here we present biochemical and computer modelling approaches designed to gain further insight into changes in structure and function of two fibulin-4 mutations (E126K and D203A), which are potentially involved in Ca2+ binding in the EGF2 and EGF4 domain, respectively. Using recombinantly produced fibulin-4 mutant and wild type proteins we show that both mutations introduced additional protease cleavage sites, impaired extracellular assembly into fibers, and affected binding to to fibrillin-1, latent TGF-β-binding proteins, and the lysyl oxidase LOXL2. Molecular dynamics studies indicated that the E126K and D203A mutations do not necessarily result in a direct loss of the complexed Ca2+ ion after 500 ns simulation time, but in significantly enhanced fluctuations within the connecting loop between EGF3 and EGF4 domains and other conformational changes. In contrast, intentionally removing Ca2+ from EGF4 (D203A ΔCa) predicted dramatic changes in the protein structure. These results may explain the changes in protease cleavage sites, reduced secretion and impaired extracellular assembly of the E126K and D203A fibulin-4 mutants and provide further insight into understanding the molecular basis of the associated clinical phenotypes.
Collapse
Affiliation(s)
- Takako Sasaki
- Dept. of Biochemistry, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama machi, Yufu, 879-5503, Oita, Japan; Nikolaus-Fiebiger Center of Molecular Medicine, Friedrich-Alexander University Erlangen-Nuremberg, Glueckstr. 6, Erlangen, Germany
| | - Klaus von der Mark
- Nikolaus-Fiebiger Center of Molecular Medicine, Friedrich-Alexander University Erlangen-Nuremberg, Glueckstr. 6, Erlangen, Germany.
| | - Harald Lanig
- Central Institute for Scientific Computing (ZISC), Friedrich-Alexander University Erlangen-Nuremberg, Martensstr. 5a, Erlangen, Germany.
| |
Collapse
|
39
|
de la Lande A, Alvarez-Ibarra A, Hasnaoui K, Cailliez F, Wu X, Mineva T, Cuny J, Calaminici P, López-Sosa L, Geudtner G, Navizet I, Garcia Iriepa C, Salahub DR, Köster AM. Molecular Simulations with in-deMon2k QM/MM, a Tutorial-Review. Molecules 2019; 24:molecules24091653. [PMID: 31035516 PMCID: PMC6539060 DOI: 10.3390/molecules24091653] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/11/2019] [Accepted: 04/12/2019] [Indexed: 12/18/2022] Open
Abstract
deMon2k is a readily available program specialized in Density Functional Theory (DFT) simulations within the framework of Auxiliary DFT. This article is intended as a tutorial-review of the capabilities of the program for molecular simulations involving ground and excited electronic states. The program implements an additive QM/MM (quantum mechanics/molecular mechanics) module relying either on non-polarizable or polarizable force fields. QM/MM methodologies available in deMon2k include ground-state geometry optimizations, ground-state Born-Oppenheimer molecular dynamics simulations, Ehrenfest non-adiabatic molecular dynamics simulations, and attosecond electron dynamics. In addition several electric and magnetic properties can be computed with QM/MM. We review the framework implemented in the program, including the most recently implemented options (link atoms, implicit continuum for remote environments, metadynamics, etc.), together with six applicative examples. The applications involve (i) a reactivity study of a cyclic organic molecule in water; (ii) the establishment of free-energy profiles for nucleophilic-substitution reactions by the umbrella sampling method; (iii) the construction of two-dimensional free energy maps by metadynamics simulations; (iv) the simulation of UV-visible absorption spectra of a solvated chromophore molecule; (v) the simulation of a free energy profile for an electron transfer reaction within Marcus theory; and (vi) the simulation of fragmentation of a peptide after collision with a high-energy proton.
Collapse
Affiliation(s)
- Aurélien de la Lande
- Laboratoire de Chimie Physique, CNRS, Université Paris Sud, Université Paris Saclay, 15 avenue Jean Perrin, 91405 Orsay, France.
| | - Aurelio Alvarez-Ibarra
- Laboratoire de Chimie Physique, CNRS, Université Paris Sud, Université Paris Saclay, 15 avenue Jean Perrin, 91405 Orsay, France.
| | - Karim Hasnaoui
- Laboratoire de Chimie Physique, CNRS, Université Paris Sud, Université Paris Saclay, 15 avenue Jean Perrin, 91405 Orsay, France.
| | - Fabien Cailliez
- Laboratoire de Chimie Physique, CNRS, Université Paris Sud, Université Paris Saclay, 15 avenue Jean Perrin, 91405 Orsay, France.
| | - Xiaojing Wu
- Laboratoire de Chimie Physique, CNRS, Université Paris Sud, Université Paris Saclay, 15 avenue Jean Perrin, 91405 Orsay, France.
- CNRS Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique, PSL University, 75005 Paris, France.
| | - Tzonka Mineva
- Matériaux Avancés pour la Catalyse et la Santé, UMR 5253 CNRS/UM/ENSCM, Institut Charles Gerhardt de Montpellier (ICGM) Montpellier CEDEX 5, 34090 Montpellier, France.
| | - Jérôme Cuny
- Laboratoire de Chimie et Physique Quantiques, IRSAMC, Université Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse CEDEX 4, France.
| | - Patrizia Calaminici
- Programa de Doctorado en Nanociencias y Nanotecnología, CINVESTAV, Av. Instituto Politécnico Nacional, 2508, A.P. 14-740, Ciudad de México 07000, Mexico.
- Departamento de Química, CINVESTAV, Av. Instituto Politécnico Nacional, 2508, A.P. 14-740, Ciudad de México 07000, México.
| | - Luis López-Sosa
- Departamento de Química, CINVESTAV, Av. Instituto Politécnico Nacional, 2508, A.P. 14-740, Ciudad de México 07000, México.
| | - Gerald Geudtner
- Departamento de Química, CINVESTAV, Av. Instituto Politécnico Nacional, 2508, A.P. 14-740, Ciudad de México 07000, México.
| | - Isabelle Navizet
- Laboratoire Modélisation et Simulation Multi Échelle, Université Paris-Est, MSME, UMR 8208 CNRS, UPEM, 5 bd Descartes, 77454 Marne-la-Vallée, France.
| | - Cristina Garcia Iriepa
- Laboratoire Modélisation et Simulation Multi Échelle, Université Paris-Est, MSME, UMR 8208 CNRS, UPEM, 5 bd Descartes, 77454 Marne-la-Vallée, France.
| | - Dennis R Salahub
- Department of Chemistry, Centre for Molecular Simulation, Institute for Quantum Science and Technology and Quantum Alberta, University of Calgary, 2500 University Drive N.W., Calgary, AB T2N 1N4, Canada.
- College of Chemistry and Chemical Engineering, Henan University of Technology, No. 100, Lian Hua Street, High-Tech Development Zone, Zhengzhou 450001, China.
| | - Andreas M Köster
- Programa de Doctorado en Nanociencias y Nanotecnología, CINVESTAV, Av. Instituto Politécnico Nacional, 2508, A.P. 14-740, Ciudad de México 07000, Mexico.
- Departamento de Química, CINVESTAV, Av. Instituto Politécnico Nacional, 2508, A.P. 14-740, Ciudad de México 07000, México.
| |
Collapse
|
40
|
Albaugh A, Tuckerman ME, Head-Gordon T. Combining Iteration-Free Polarization with Large Time Step Stochastic-Isokinetic Integration. J Chem Theory Comput 2019; 15:2195-2205. [PMID: 30830768 DOI: 10.1021/acs.jctc.9b00072] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In order to accelerate molecular dynamics simulations using polarizable force fields, we combine a new extended Lagrangian approach that eliminates the self-consistent field step (iEL/0-SCF) with a stochastic integration scheme that allows for a long time step using a multiple time scale algorithm (SIN(R)). We consider different algorithms for the combined scheme that places different components of the nonbonded forces into different time scales, as well as splitting individual nonbonded forces across time scales, to demonstrate that the combined method works well for bulk water as well as for a concentrated salt solution, aqueous peptide, and solvated protein. Depending on system and desired accuracy, the iEL/0-SCF and SIN(R) combination yields lower bound computational speed-ups of ∼6-8 relative to a molecular dynamics Verlet integration using a standard SCF solver implemented in the reference program TINKER 8.1. The combined approach embodies a significant advance for equilibrium simulations in the canonical ensemble of many-body potential energy surfaces for condensed phase systems with speed-ups that exceed what is possible by either method alone.
Collapse
Affiliation(s)
| | - Mark E Tuckerman
- NYU-ECNU , Center for Computational Chemistry at NYU, Shanghai , Shanghai 200062 , China
| | | |
Collapse
|
41
|
Heid E, Fleck M, Chatterjee P, Schröder C, MacKerell AD. Toward Prediction of Electrostatic Parameters for Force Fields That Explicitly Treat Electronic Polarization. J Chem Theory Comput 2019; 15:2460-2469. [PMID: 30811193 DOI: 10.1021/acs.jctc.8b01289] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The derivation of atomic polarizabilities for polarizable force field development has been a long-standing problem. Atomic polarizabilities were often refined manually starting from tabulated values, rendering an automated assignment of parameters difficult and hampering reproducibility and transferability of the obtained values. To overcome this, we trained both a linear increment scheme and a multilayer perceptron neural network on a large number of high-quality quantum mechanical atomic polarizabilities and partial atomic charges, where only the type of each atom and its connectivity were used as input. The predicted atomic polarizabilities and charges had average errors of 0.023 Å3 and 0.019 e using the neural net and 0.063 Å3 and 0.069 e using the simple increment scheme. As the algorithm relies only on the connectivities of the atoms within a molecule, thus omitting dependencies on the three-dimensional conformation, the approach naturally assigns like charges and polarizabilities to symmetrical groups. Accordingly, a convenient utility is presented for generating the partial atomic charges and atomic polarizabilities for organic molecules as needed in polarizable force field development.
Collapse
Affiliation(s)
- Esther Heid
- Department of Computational Biological Chemistry , University of Vienna, Faculty of Chemistry , Währingerstraße 17 , A-1090 Vienna , Austria.,Department of Pharmaceutical Sciences, School of Pharmacy , University of Maryland , Baltimore , Maryland 21201 , United States
| | - Markus Fleck
- Department of Computational Biological Chemistry , University of Vienna, Faculty of Chemistry , Währingerstraße 17 , A-1090 Vienna , Austria
| | - Payal Chatterjee
- Department of Pharmaceutical Sciences, School of Pharmacy , University of Maryland , Baltimore , Maryland 21201 , United States
| | - Christian Schröder
- Department of Computational Biological Chemistry , University of Vienna, Faculty of Chemistry , Währingerstraße 17 , A-1090 Vienna , Austria
| | - Alexander D MacKerell
- Department of Pharmaceutical Sciences, School of Pharmacy , University of Maryland , Baltimore , Maryland 21201 , United States
| |
Collapse
|
42
|
Abstract
Molecular dynamics (MD) simulations have been widely applied to computer-aided drug design (CADD). While MD has been used in a variety of applications such as free energy perturbation and long-time simulations, the accuracy of the results from those methods depends strongly on the force field used. Force fields for small molecules are crucial, as they not only serve as building blocks for developing force fields for larger biomolecules but also act as model compounds that will be transferred to ligands used in CADD. Currently, a wide range of small molecule force fields based on additive or nonpolarizable models have been developed. While these nonpolarizable force fields can produce reasonable estimations of physical properties and have shown success in a variety of systems, there is still room for improvements due to inherent limitations in these models including the lack of an electronic polarization response. For this reason, incorporating polarization effects into the energy function underlying a force field is believed to be an important step forward, giving rise to the development of polarizable force fields. Recent simulations of biological systems have indicated that polarizable force fields are able to provide a better physical representation of intermolecular interactions and, in many cases, better agreement with experimental properties than nonpolarizable, additive force fields. Therefore, this chapter focuses on the development of small molecule force fields with emphasis on polarizable models. It begins with a brief introduction on the importance of small molecule force fields and their evolution from additive to polarizable force fields. Emphasis is placed on the additive CHARMM General Force Field and the polarizable force field based on the classical Drude oscillator. The theory for the Drude polarizable force field and results for small molecules are presented showing their improvements over the additive model. The potential importance of polarization for their application in a wide range of biological systems including CADD is then discussed.
Collapse
Affiliation(s)
- Fang-Yu Lin
- Department of Pharmaceutical Sciences, Computer-Aided Drug Design Center, School of Pharmacy, University of Maryland, Baltimore, MD, USA
| | - Alexander D MacKerell
- Department of Pharmaceutical Sciences, Computer-Aided Drug Design Center, School of Pharmacy, University of Maryland, Baltimore, MD, USA.
| |
Collapse
|
43
|
Lai R, Tang WJ, Li H. Catalytic Mechanism of Amyloid-β Peptide Degradation by Insulin Degrading Enzyme: Insights from Quantum Mechanics and Molecular Mechanics Style Møller-Plesset Second Order Perturbation Theory Calculation. J Chem Inf Model 2018; 58:1926-1934. [PMID: 30133282 PMCID: PMC6670292 DOI: 10.1021/acs.jcim.8b00406] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Insulin degrading enzyme (IDE), a metalloprotease that degrades amyloid-β (Aβ) peptides and insulin, is associated with Alzheimer's disease and diabetes. The mechanism of IDE catalyzed degrading of Aβ peptides, which is of fundamental importance in the design of therapeutic methods for Alzheimer's disease, has not been fully understood. In this work, combined quantum mechanics and molecular mechanics (QM/MM) style Møller-Plesset second order perturbation theory (MP2) geometry optimization calculations are performed to investigate the catalytic mechanism of the Aβ40 Phe19-Phe20 peptide bond cleavage by human IDE. The analyses using QM/MM MP2 optimization suggest that a neutral water molecule is at the active site of the enzyme-substrate (ES) complex. The water molecule is in hydrogen bonding with the nearby anionic Glu111 of IDE but not directly bound to the catalytic Zn ion. This is confirmed by QM/MM DFTB3 molecular dynamics simulation. Our studies also reveal that the hydrolysis of the Aβ40 Phe19-Phe20 peptide bond by IDE consists of four key steps. The neutral water is first activated by moving toward and binding to the Zn ion. A gem-diol intermediate is then formed by the activated neutral water molecule attacking the C atom of the Phe19-Phe20 peptide bond. The next is the protonation of the N atom of Phe19-Phe20 peptide bond to form an intermediate with an elongated C-N bond. The final step is the breaking of the Phe19-Phe20 C-N bond. The final step is the rate-determining step with a calculated Gibbs free energy of activation of 17.34 kcal/mol, in good agreement with the experimental value 16.7 kcal/mol. This mechanism provides the basis for the design of biochemical methods to modulate the activity of IDE in humans.
Collapse
Affiliation(s)
- Rui Lai
- Department of Chemistry, Nebraska Center for Materials and Nanoscience, and Center for Integrated Biomolecular Communication , University of Nebraska-Lincoln , Lincoln , Nebraska 68588-0304 , United States
| | - Wei-Jen Tang
- Ben May Department for Cancer Research , The University of Chicago , Chicago , Illinois 60637 , United States
| | - Hui Li
- Department of Chemistry, Nebraska Center for Materials and Nanoscience, and Center for Integrated Biomolecular Communication , University of Nebraska-Lincoln , Lincoln , Nebraska 68588-0304 , United States
| |
Collapse
|
44
|
Boulanger E, Huang L, Rupakheti C, MacKerell AD, Roux B. Optimized Lennard-Jones Parameters for Druglike Small Molecules. J Chem Theory Comput 2018; 14:3121-3131. [PMID: 29694035 PMCID: PMC5997559 DOI: 10.1021/acs.jctc.8b00172] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Meaningful efforts in computer-aided drug design (CADD) require accurate molecular mechanical force fields to quantitatively characterize protein-ligand interactions, ligand hydration free energies, and other ligand physical properties. Atomic models of new compounds are commonly generated by analogy from the predefined tabulated parameters of a given force field. Two widely used approaches following this strategy are the General Amber Force Field (GAFF) and the CHARMM General Force Field (CGenFF). An important limitation of using pretabulated parameter values is that they may be inadequate in the context of a specific molecule. To resolve this issue, we previously introduced the General Automated Atomic Model Parameterization (GAAMP) for automatically generating the parameters of atomic models of small molecules, using the results from ab initio quantum mechanical (QM) calculations as target data. The GAAMP protocol uses QM data to optimize the bond, valence angle, and dihedral angle internal parameters, and atomic partial charges. However, since the treatment of van der Waals interactions based on QM is challenging and may often be unreliable, the Lennard-Jones 6-12 parameters are kept unchanged from the initial atom types assignments (GAFF or CGenFF), which limits the accuracy that can be achieved by these models. To address this issue, a new set of Lennard-Jones 6-12 parameters was systematically optimized to reproduce experimental neat liquid densities and enthalpies of vaporization for a large set of 430 compounds, covering a wide range of chemical functionalities. Calculations of the hydration free energy indicate that optimal accuracy for these models is achieved when the molecule-water van der Waals dispersion is rescaled by a factor of 1.115. The final optimized model yields an average unsigned error of 0.79 kcal/mol in the hydration free energies.
Collapse
Affiliation(s)
- Eliot Boulanger
- Department of Biochemistry and Molecular Biophysics , University of Chicago , Chicago , Illinois 60637 , United States
| | - Lei Huang
- Department of Biochemistry and Molecular Biophysics , University of Chicago , Chicago , Illinois 60637 , United States
| | - Chetan Rupakheti
- Department of Biochemistry and Molecular Biophysics , University of Chicago , Chicago , Illinois 60637 , United States
| | - Alexander D MacKerell
- Department of Pharmaceutical Sciences, School of Pharmacy , University of Maryland , Baltimore , Maryland 21201 , United States
| | - Benoît Roux
- Department of Biochemistry and Molecular Biophysics , University of Chicago , Chicago , Illinois 60637 , United States
| |
Collapse
|
45
|
Xu P, Guidez EB, Bertoni C, Gordon MS. Perspective:Ab initioforce field methods derived from quantum mechanics. J Chem Phys 2018. [DOI: 10.1063/1.5009551] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- Peng Xu
- Department of Chemistry and Ames Laboratory, Iowa State University, Ames, Iowa 50011, USA
| | - Emilie B. Guidez
- Department of Chemistry, University of Colorado Denver, Denver, Colorado 80217, USA
| | - Colleen Bertoni
- Argonne Leadership Computing Facility, Argonne, Illinois 60439, USA
| | - Mark S. Gordon
- Department of Chemistry and Ames Laboratory, Iowa State University, Ames, Iowa 50011, USA
| |
Collapse
|
46
|
Li Y, Li H, Pickard FC, Narayanan B, Sen FG, Chan MKY, Sankaranarayanan SKRS, Brooks BR, Roux B. Machine Learning Force Field Parameters from Ab Initio Data. J Chem Theory Comput 2017; 13:4492-4503. [PMID: 28800233 DOI: 10.1021/acs.jctc.7b00521] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Machine learning (ML) techniques with the genetic algorithm (GA) have been applied to determine a polarizable force field parameters using only ab initio data from quantum mechanics (QM) calculations of molecular clusters at the MP2/6-31G(d,p), DFMP2(fc)/jul-cc-pVDZ, and DFMP2(fc)/jul-cc-pVTZ levels to predict experimental condensed phase properties (i.e., density and heat of vaporization). The performance of this ML/GA approach is demonstrated on 4943 dimer electrostatic potentials and 1250 cluster interaction energies for methanol. Excellent agreement between the training data set from QM calculations and the optimized force field model was achieved. The results were further improved by introducing an offset factor during the machine learning process to compensate for the discrepancy between the QM calculated energy and the energy reproduced by optimized force field, while maintaining the local "shape" of the QM energy surface. Throughout the machine learning process, experimental observables were not involved in the objective function, but were only used for model validation. The best model, optimized from the QM data at the DFMP2(fc)/jul-cc-pVTZ level, appears to perform even better than the original AMOEBA force field (amoeba09.prm), which was optimized empirically to match liquid properties. The present effort shows the possibility of using machine learning techniques to develop descriptive polarizable force field using only QM data. The ML/GA strategy to optimize force fields parameters described here could easily be extended to other molecular systems.
Collapse
Affiliation(s)
- Ying Li
- Argonne Leadership Computing Facility, Argonne National Laboratory , Argonne, Illinois 60439, United States
| | - Hui Li
- Department of Biochemistry and Molecular Biophysics, University of Chicago , Chicago, Illinois 60637, United States
| | - Frank C Pickard
- Laboratory of Computational Biology, National Heart, Lung and Blood Institute, National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Badri Narayanan
- Center for Nanoscale Materials, Argonne National Laboratory , Argonne, Illinois 60439, United States
| | - Fatih G Sen
- Center for Nanoscale Materials, Argonne National Laboratory , Argonne, Illinois 60439, United States
| | - Maria K Y Chan
- Center for Nanoscale Materials, Argonne National Laboratory , Argonne, Illinois 60439, United States.,Computational Institute, University of Chicago , Chicago, Illinois 60637, United States
| | - Subramanian K R S Sankaranarayanan
- Center for Nanoscale Materials, Argonne National Laboratory , Argonne, Illinois 60439, United States.,Computational Institute, University of Chicago , Chicago, Illinois 60637, United States
| | - Bernard R Brooks
- Laboratory of Computational Biology, National Heart, Lung and Blood Institute, National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Benoît Roux
- Department of Biochemistry and Molecular Biophysics, University of Chicago , Chicago, Illinois 60637, United States.,Center for Nanoscale Materials, Argonne National Laboratory , Argonne, Illinois 60439, United States.,Computational Institute, University of Chicago , Chicago, Illinois 60637, United States
| |
Collapse
|
47
|
Henriksen NM, Gilson MK. Evaluating Force Field Performance in Thermodynamic Calculations of Cyclodextrin Host-Guest Binding: Water Models, Partial Charges, and Host Force Field Parameters. J Chem Theory Comput 2017; 13:4253-4269. [PMID: 28696692 PMCID: PMC5606194 DOI: 10.1021/acs.jctc.7b00359] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
![]()
Computational
prediction of noncovalent binding free energies with
methods based on molecular mechanical force fields has become increasingly
routine in drug discovery projects, where they promise to speed the
discovery of small molecule ligands to bind targeted proteins with
high affinity. Because the reliability of free energy methods still
has significant room for improvement, new force fields, or modifications
of existing ones, are regularly introduced with the aim of improving
the accuracy of molecular simulations. However, comparatively little
work has been done to systematically assess how well force fields
perform, particularly in relation to the calculation of binding affinities.
Hardware advances have made these calculations feasible, but comprehensive
force field assessments for protein–ligand sized systems still
remain costly. Here, we turn to cyclodextrin host–guest systems,
which feature many hallmarks of protein–ligand binding interactions
but are generally much more tractable due to their small size. We
present absolute binding free energy and enthalpy calculations, using
the attach-pull-release (APR) approach, on a set of 43 cyclodextrin-guest
pairs for which experimental ITC data are available. The test set
comprises both α- and β-cyclodextrin hosts binding a series
of small organic guests, each with one of three functional groups:
ammonium, alcohol, or carboxylate. Four water models are considered
(TIP3P, TIP4Pew, SPC/E, and OPC), along with two partial charge assignment
procedures (RESP and AM1-BCC) and two cyclodextrin host force fields.
The results suggest a complex set of considerations when choosing
a force field for biomolecular simulations. For example, some force
field combinations clearly outperform others at the binding enthalpy
calculations but not for the binding free energy. Additionally, a
force field combination which we expected to be the worst performer
gave the most accurate binding free energies – but the least
accurate binding enthalpies. The results have implications for the
development of improved force fields, and we propose this test set,
and potential future elaborations of it, as a powerful validation
suite to evaluate new force fields and help guide future force field
development.
Collapse
Affiliation(s)
- Niel M Henriksen
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego , La Jolla, California 92093-0736, United States
| | - Michael K Gilson
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego , La Jolla, California 92093-0736, United States
| |
Collapse
|
48
|
A test of AMBER force fields in predicting the secondary structure of α-helical and β-hairpin peptides. Chem Phys Lett 2017. [DOI: 10.1016/j.cplett.2017.04.074] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
49
|
Abstract
Metal ions play significant roles in numerous fields including chemistry, geochemistry, biochemistry, and materials science. With computational tools increasingly becoming important in chemical research, methods have emerged to effectively face the challenge of modeling metal ions in the gas, aqueous, and solid phases. Herein, we review both quantum and classical modeling strategies for metal ion-containing systems that have been developed over the past few decades. This Review focuses on classical metal ion modeling based on unpolarized models (including the nonbonded, bonded, cationic dummy atom, and combined models), polarizable models (e.g., the fluctuating charge, Drude oscillator, and the induced dipole models), the angular overlap model, and valence bond-based models. Quantum mechanical studies of metal ion-containing systems at the semiempirical, ab initio, and density functional levels of theory are reviewed as well with a particular focus on how these methods inform classical modeling efforts. Finally, conclusions and future prospects and directions are offered that will further enhance the classical modeling of metal ion-containing systems.
Collapse
Affiliation(s)
| | - Kenneth M. Merz
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute of Cyber-Enabled Research, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
50
|
Qiao B, Ferru G, Ellis RJ. Complexation Enhancement Drives Water-to-Oil Ion Transport: A Simulation Study. Chemistry 2016; 23:427-436. [DOI: 10.1002/chem.201604470] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Indexed: 01/14/2023]
Affiliation(s)
- Baofu Qiao
- Chemical Sciences and Engineering Division; Argonne National Laboratory; Argonne Illinois 60439 USA
| | - Geoffroy Ferru
- Chemical Sciences and Engineering Division; Argonne National Laboratory; Argonne Illinois 60439 USA
| | - Ross J. Ellis
- Chemical Sciences and Engineering Division; Argonne National Laboratory; Argonne Illinois 60439 USA
- Chemical Sciences Division; Oak Ridge National Laboratory; Oak Ridge Tennessee 37831 USA
| |
Collapse
|