1
|
Feng H, Cottrell S, Hozumi Y, Wei GW. Multiscale differential geometry learning of networks with applications to single-cell RNA sequencing data. Comput Biol Med 2024; 171:108211. [PMID: 38422960 PMCID: PMC10965033 DOI: 10.1016/j.compbiomed.2024.108211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/02/2024] [Accepted: 02/25/2024] [Indexed: 03/02/2024]
Abstract
Single-cell RNA sequencing (scRNA-seq) has emerged as a transformative technology, offering unparalleled insights into the intricate landscape of cellular diversity and gene expression dynamics. scRNA-seq analysis represents a challenging and cutting-edge frontier within the field of biological research. Differential geometry serves as a powerful mathematical tool in various applications of scientific research. In this study, we introduce, for the first time, a multiscale differential geometry (MDG) strategy for addressing the challenges encountered in scRNA-seq data analysis. We assume that intrinsic properties of cells lie on a family of low-dimensional manifolds embedded in the high-dimensional space of scRNA-seq data. Multiscale cell-cell interactive manifolds are constructed to reveal complex relationships in the cell-cell network, where curvature-based features for cells can decipher the intricate structural and biological information. We showcase the utility of our novel approach by demonstrating its effectiveness in classifying cell types. This innovative application of differential geometry in scRNA-seq analysis opens new avenues for understanding the intricacies of biological networks and holds great potential for network analysis in other fields.
Collapse
Affiliation(s)
- Hongsong Feng
- Department of Mathematics, Michigan State University, East Lansing, MI 48824, USA
| | - Sean Cottrell
- Department of Mathematics, Michigan State University, East Lansing, MI 48824, USA
| | - Yuta Hozumi
- Department of Mathematics, Michigan State University, East Lansing, MI 48824, USA
| | - Guo-Wei Wei
- Department of Mathematics, Michigan State University, East Lansing, MI 48824, USA; Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824, USA; Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
2
|
Zhao S, Ijaodoro I, McGowan M, Alexov E. Calculation of electrostatic free energy for the nonlinear Poisson-Boltzmann model based on the dimensionless potential. JOURNAL OF COMPUTATIONAL PHYSICS 2024; 497:112634. [PMID: 38045553 PMCID: PMC10688429 DOI: 10.1016/j.jcp.2023.112634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
The Poisson-Boltzmann (PB) equation governing the electrostatic potential with a unit is often transformed to a normalized form for a dimensionless potential in numerical studies. To calculate the electrostatic free energy (EFE) of biological interests, a unit conversion has to be conducted, because the existing PB energy functionals are all described in terms of the original potential. To bypass this conversion, this paper proposes energy functionals in terms of the dimensionless potential for the first time in the literature, so that the normalized PB equation can be directly derived by using the Euler-Lagrange variational analysis. Moreover, alternative energy forms have been rigorously derived to avoid approximating the gradient of singular functions in the electrostatic stress term. A systematic study has been carried out to examine the surface integrals involved in alternative energy forms and their dependence on finite domain size and mesh step size, which leads to a recommendation on the EFE forms for efficient computation of protein systems. The calculation of the EFE in the regularization formulation, which is an analytical approach for treating singular charge sources of the PB equation, has also been studied. The proposed energy forms have been validated by considering smooth dielectric settings, such as diffuse interface and super-Gaussian, for which the EFE of the nonlinear PB model is found to be significantly different from that of the linearized PB model. All proposed energy functionals and EFE forms are designed such that the dimensionless potential can be simply plugged in to compute the EFE in the unit of kcal/mol, and they can also be applied in the classical sharp interface PB model.
Collapse
Affiliation(s)
- Shan Zhao
- Department of Mathematics, University of Alabama, Tuscaloosa, AL 35487, USA
| | - Idowu Ijaodoro
- Department of Mathematics, University of Alabama, Tuscaloosa, AL 35487, USA
| | - Mark McGowan
- Department of Mathematics, University of Alabama, Tuscaloosa, AL 35487, USA
| | - Emil Alexov
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
3
|
Rana MM, Nguyen DD. EISA-Score: Element Interactive Surface Area Score for Protein–Ligand Binding Affinity Prediction. J Chem Inf Model 2022; 62:4329-4341. [DOI: 10.1021/acs.jcim.2c00697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Md Masud Rana
- Department of Mathematics, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Duc Duy Nguyen
- Department of Mathematics, University of Kentucky, Lexington, Kentucky 40506, United States
| |
Collapse
|
4
|
Gupta A, Mukherjee A. Capturing surface complementarity in proteins using unsupervised learning and robust curvature measure. Proteins 2022; 90:1669-1683. [DOI: 10.1002/prot.26345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/06/2022] [Accepted: 04/01/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Abhijit Gupta
- Department of Chemistry Indian Institute of Science Education and Research Pune Maharashtra India
| | - Arnab Mukherjee
- Department of Chemistry Indian Institute of Science Education and Research Pune Maharashtra India
| |
Collapse
|
5
|
Alfarraj A, Wei GW. Geometric algebra generation of molecular surfaces. J R Soc Interface 2022; 19:20220117. [PMID: 35414214 PMCID: PMC9006026 DOI: 10.1098/rsif.2022.0117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Geometric algebra is a powerful framework that unifies mathematics and physics. Since its revival in the 1960s, it has attracted great attention and has been exploited in fields like physics, computer science and engineering. This work introduces a geometric algebra method for the molecular surface generation that uses the Clifford-Fourier transform (CFT) which is a generalization of the classical Fourier transform. Notably, the classical Fourier transform and CFT differ in the derivative property in [Formula: see text] for k even. This distinction is due to the non-commutativity of geometric product of pseudoscalars with multivectors and has significant consequences in applications. We use the CFT in [Formula: see text] to benefit from the derivative property in solving partial differential equations (PDEs). The CFT is used to solve the mode decomposition process in PDE transform. Two different initial cases are proposed to make the initial shapes in the present method. The proposed method is applied first to small molecules and proteins. To validate the method, the molecular surfaces generated are compared to surfaces of other definitions. Applications are considered to protein electrostatic surface potentials and solvation free energy. This work opens the door for further applications of geometric algebra and CFT in biological sciences.
Collapse
Affiliation(s)
- Azzam Alfarraj
- Department of Mathematics, Michigan State University, East Lansing, MI 48824, USA.,Department of Mathematics, King Fahd University of Petroleum and Minerals, Dhahran 31261, KSA
| | - Guo-Wei Wei
- Department of Mathematics, Michigan State University, East Lansing, MI 48824, USA.,Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824, USA.,Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
6
|
Chen J, Zhao R, Tong Y, Wei GW. EVOLUTIONARY DE RHAM-HODGE METHOD. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS. SERIES B 2021; 26:3785-3821. [PMID: 34675756 DOI: 10.3934/dcdsb.2020257] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The de Rham-Hodge theory is a landmark of the 20th Century's mathematics and has had a great impact on mathematics, physics, computer science, and engineering. This work introduces an evolutionary de Rham-Hodge method to provide a unified paradigm for the multiscale geometric and topological analysis of evolving manifolds constructed from a filtration, which induces a family of evolutionary de Rham complexes. While the present method can be easily applied to close manifolds, the emphasis is given to more challenging compact manifolds with 2-manifold boundaries, which require appropriate analysis and treatment of boundary conditions on differential forms to maintain proper topological properties. Three sets of unique evolutionary Hodge Laplacians are proposed to generate three sets of topology-preserving singular spectra, for which the multiplicities of zero eigenvalues correspond to exactly the persistent Betti numbers of dimensions 0, 1 and 2. Additionally, three sets of non-zero eigenvalues further reveal both topological persistence and geometric progression during the manifold evolution. Extensive numerical experiments are carried out via the discrete exterior calculus to demonstrate the potential of the proposed paradigm for data representation and shape analysis of both point cloud data and density maps. To demonstrate the utility of the proposed method, the application is considered to the protein B-factor predictions of a few challenging cases for which existing biophysical models break down.
Collapse
Affiliation(s)
- Jiahui Chen
- Department of Mathematics, Michigan State University, MI 48824, USA
| | - Rundong Zhao
- Department of Computer Science and Engineering, Michigan State University, MI 48824, USA
| | - Yiying Tong
- Department of Computer Science and Engineering, Michigan State University, MI 48824, USA
| | - Guo-Wei Wei
- Department of Mathematics, Michigan State University, MI 48824, USA
| |
Collapse
|
7
|
Wang S, Alexov E, Zhao S. On regularization of charge singularities in solving the Poisson-Boltzmann equation with a smooth solute-solvent boundary. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2021; 18:1370-1405. [PMID: 33757190 PMCID: PMC9871984 DOI: 10.3934/mbe.2021072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Numerical treatment of singular charges is a grand challenge in solving the Poisson-Boltzmann (PB) equation for analyzing electrostatic interactions between the solute biomolecules and the surrounding solvent with ions. For diffuse interface PB models in which solute and solvent are separated by a smooth boundary, no effective algorithm for singular charges has been developed, because the fundamental solution with a space dependent dielectric function is intractable. In this work, a novel regularization formulation is proposed to capture the singularity analytically, which is the first of its kind for diffuse interface PB models. The success lies in a dual decomposition - besides decomposing the potential into Coulomb and reaction field components, the dielectric function is also split into a constant base plus space changing part. Using the constant dielectric base, the Coulomb potential is represented analytically via Green's functions. After removing the singularity, the reaction field potential satisfies a regularized PB equation with a smooth source. To validate the proposed regularization, a Gaussian convolution surface (GCS) is also introduced, which efficiently generates a diffuse interface for three-dimensional realistic biomolecules. The performance of the proposed regularization is examined by considering both analytical and GCS diffuse interfaces, and compared with the trilinear method. Moreover, the proposed GCS-regularization algorithm is validated by calculating electrostatic free energies for a set of proteins and by estimating salt affinities for seven protein complexes. The results are consistent with experimental data and estimates of sharp interface PB models.
Collapse
Affiliation(s)
- Siwen Wang
- Department of Mathematics, University of Alabama, Tuscaloosa, AL 35487,USA
| | - Emil Alexov
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA
| | - Shan Zhao
- Department of Mathematics, University of Alabama, Tuscaloosa, AL 35487,USA
| |
Collapse
|
8
|
Zhao R, Wang M, Chen J, Tong Y, Wei GW. The de Rham-Hodge Analysis and Modeling of Biomolecules. Bull Math Biol 2020; 82:108. [PMID: 32770408 PMCID: PMC8137271 DOI: 10.1007/s11538-020-00783-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 07/20/2020] [Indexed: 12/18/2022]
Abstract
Biological macromolecules have intricate structures that underpin their biological functions. Understanding their structure-function relationships remains a challenge due to their structural complexity and functional variability. Although de Rham-Hodge theory, a landmark of twentieth-century mathematics, has had a tremendous impact on mathematics and physics, it has not been devised for macromolecular modeling and analysis. In this work, we introduce de Rham-Hodge theory as a unified paradigm for analyzing the geometry, topology, flexibility, and Hodge mode analysis of biological macromolecules. Geometric characteristics and topological invariants are obtained either from the Helmholtz-Hodge decomposition of the scalar, vector, and/or tensor fields of a macromolecule or from the spectral analysis of various Laplace-de Rham operators defined on the molecular manifolds. We propose Laplace-de Rham spectral-based models for predicting macromolecular flexibility. We further construct a Laplace-de Rham-Helfrich operator for revealing cryo-EM natural frequencies. Extensive experiments are carried out to demonstrate that the proposed de Rham-Hodge paradigm is one of the most versatile tools for the multiscale modeling and analysis of biological macromolecules and subcellular organelles. Accurate, reliable, and topological structure-preserving algorithms for implementing discrete exterior calculus (DEC) have been developed to facilitate the aforementioned modeling and analysis of biological macromolecules. The proposed de Rham-Hodge paradigm has potential applications to subcellular organelles and the structure construction from medium- or low-resolution cryo-EM maps, and functional predictions from massive biomolecular datasets.
Collapse
Affiliation(s)
- Rundong Zhao
- Department of Computer Science and Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - Menglun Wang
- Department of Mathematics, Michigan State University, East Lansing, MI, 48824, USA
| | - Jiahui Chen
- Department of Mathematics, Michigan State University, East Lansing, MI, 48824, USA
| | - Yiying Tong
- Department of Computer Science and Engineering, Michigan State University, East Lansing, MI, 48824, USA.
| | - Guo-Wei Wei
- Department of Mathematics, Michigan State University, East Lansing, MI, 48824, USA.
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI, 48824, USA.
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
9
|
Weighted persistent homology for osmolyte molecular aggregation and hydrogen-bonding network analysis. Sci Rep 2020; 10:9685. [PMID: 32546801 PMCID: PMC7297731 DOI: 10.1038/s41598-020-66710-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 05/20/2020] [Indexed: 12/24/2022] Open
Abstract
It has long been observed that trimethylamine N-oxide (TMAO) and urea demonstrate dramatically different properties in a protein folding process. Even with the enormous theoretical and experimental research work on these two osmolytes, various aspects of their underlying mechanisms still remain largely elusive. In this paper, we propose to use the weighted persistent homology to systematically study the osmolytes molecular aggregation and their hydrogen-bonding network from a local topological perspective. We consider two weighted models, i.e., localized persistent homology (LPH) and interactive persistent homology (IPH). Boltzmann persistent entropy (BPE) is proposed to quantitatively characterize the topological features from LPH and IPH, together with persistent Betti number (PBN). More specifically, from the localized persistent homology models, we have found that TMAO and urea have very different local topology. TMAO is found to exhibit a local network structure. With the concentration increase, the circle elements in these networks show a clear increase in their total numbers and a decrease in their relative sizes. In contrast, urea shows two types of local topological patterns, i.e., local clusters around 6 Å and a few global circle elements at around 12 Å. From the interactive persistent homology models, it has been found that our persistent radial distribution function (PRDF) from the global-scale IPH has same physical properties as the traditional radial distribution function. Moreover, PRDFs from the local-scale IPH can also be generated and used to characterize the local interaction information. Other than the clear difference of the first peak value of PRDFs at filtration size 4 Å, TMAO and urea also shows very different behaviors at the second peak region from filtration size 5 Å to 10 Å. These differences are also reflected in the PBNs and BPEs of the local-scale IPH. These localized topological information has never been revealed before. Since graphs can be transferred into simplicial complexes by the clique complex, our weighted persistent homology models can be used in the analysis of various networks and graphs from any molecular structures and aggregation systems.
Collapse
|
10
|
Abstract
Recently, machine learning (ML) has established itself in various worldwide benchmarking competitions in computational biology, including Critical Assessment of Structure Prediction (CASP) and Drug Design Data Resource (D3R) Grand Challenges. However, the intricate structural complexity and high ML dimensionality of biomolecular datasets obstruct the efficient application of ML algorithms in the field. In addition to data and algorithm, an efficient ML machinery for biomolecular predictions must include structural representation as an indispensable component. Mathematical representations that simplify the biomolecular structural complexity and reduce ML dimensionality have emerged as a prime winner in D3R Grand Challenges. This review is devoted to the recent advances in developing low-dimensional and scalable mathematical representations of biomolecules in our laboratory. We discuss three classes of mathematical approaches, including algebraic topology, differential geometry, and graph theory. We elucidate how the physical and biological challenges have guided the evolution and development of these mathematical apparatuses for massive and diverse biomolecular data. We focus the performance analysis on protein-ligand binding predictions in this review although these methods have had tremendous success in many other applications, such as protein classification, virtual screening, and the predictions of solubility, solvation free energies, toxicity, partition coefficients, protein folding stability changes upon mutation, etc.
Collapse
Affiliation(s)
- Duc Duy Nguyen
- Department of Mathematics, Michigan State University, MI 48824, USA.
| | - Zixuan Cang
- Department of Mathematics, Michigan State University, MI 48824, USA.
| | - Guo-Wei Wei
- Department of Mathematics, Michigan State University, MI 48824, USA. and Department of Biochemistry and Molecular Biology, Michigan State University, MI 48824, USA and Department of Electrical and Computer Engineering, Michigan State University, MI 48824, USA
| |
Collapse
|
11
|
Martinez X, Krone M, Alharbi N, Rose AS, Laramee RS, O'Donoghue S, Baaden M, Chavent M. Molecular Graphics: Bridging Structural Biologists and Computer Scientists. Structure 2019; 27:1617-1623. [PMID: 31564470 DOI: 10.1016/j.str.2019.09.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 08/02/2019] [Accepted: 09/10/2019] [Indexed: 01/20/2023]
Abstract
Visualization of molecular structures is one of the most common tasks carried out by structural biologists, typically using software, such as Chimera, COOT, PyMOL, or VMD. In this Perspective article, we outline how past developments in computer graphics and data visualization have expanded the understanding of biomolecular function, and we summarize recent advances that promise to further transform structural biology. We also highlight how progress in molecular graphics has been impeded by communication barriers between two communities: the computer scientists driving these advances, and the structural and computational biologists who stand to benefit. By pointing to canonical papers and explaining technical progress underlying new graphical developments in simple terms, we aim to improve communication between these communities; this, in turn, would help shape future developments in molecular graphics.
Collapse
Affiliation(s)
- Xavier Martinez
- Laboratoire de Biochimie Théorique, CNRS, UPR9080, Institut de Biologie Physico-Chimique, Paris, France
| | - Michael Krone
- Big Data Visual Analytics in Life Sciences, University of Tübingen, Tübingen, Germany
| | - Naif Alharbi
- Department of Computer Science, Swansea University, Swansea, Wales, United Kingdom
| | - Alexander S Rose
- RCSB Protein Data Bank, San Diego Supercomputer Center, University of California, San Diego, USA
| | - Robert S Laramee
- Department of Computer Science, Swansea University, Swansea, Wales, United Kingdom
| | - Sean O'Donoghue
- Garvan Institute of Medical Research, Sydney, Australia; University of New South Wales (UNSW), Sydney, Australia; CSIRO Data61, Sydney, Australia
| | - Marc Baaden
- Laboratoire de Biochimie Théorique, CNRS, UPR9080, Institut de Biologie Physico-Chimique, Paris, France
| | - Matthieu Chavent
- Institut de Pharmacologie et de Biologie Structurale IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France.
| |
Collapse
|
12
|
Zhao R, Cang Z, Tong Y, Wei GW. Protein pocket detection via convex hull surface evolution and associated Reeb graph. Bioinformatics 2019; 34:i830-i837. [PMID: 30423105 DOI: 10.1093/bioinformatics/bty598] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Motivation Protein pocket information is invaluable for drug target identification, agonist design, virtual screening and receptor-ligand binding analysis. A recent study indicates that about half holoproteins can simultaneously bind multiple interacting ligands in a large pocket containing structured sub-pockets. Although this hierarchical pocket and sub-pocket structure has a significant impact to multi-ligand synergistic interactions in the protein binding site, there is no method available for this analysis. This work introduces a computational tool based on differential geometry, algebraic topology and physics-based simulation to address this pressing issue. Results We propose to detect protein pockets by evolving the convex hull surface inwards until it touches the protein surface everywhere. The governing partial differential equations (PDEs) include the mean curvature flow combined with the eikonal equation commonly used in the fast marching algorithm in the Eulerian representation. The surface evolution induced Morse function and Reeb graph are utilized to characterize the hierarchical pocket and sub-pocket structure in controllable detail. The proposed method is validated on PDBbind refined sets of 4414 protein-ligand complexes. Extensive numerical tests indicate that the proposed method not only provides a unique description of pocket-sub-pocket relations, but also offers efficient estimations of pocket surface area, pocket volume and pocket depth. Availability and implementation Source code available at https://github.com/rdzhao/ProteinPocketDetection. Webserver available at http://weilab.math.msu.edu/PPD/.
Collapse
Affiliation(s)
- Rundong Zhao
- Department of Computer Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Zixuan Cang
- Department of Mathematics, Michigan State University, East Lansing, MI, USA
| | - Yiying Tong
- Department of Computer Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Guo-Wei Wei
- Department of Mathematics, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
13
|
A super-Gaussian Poisson-Boltzmann model for electrostatic free energy calculation: smooth dielectric distribution for protein cavities and in both water and vacuum states. J Math Biol 2019; 79:631-672. [PMID: 31030299 PMCID: PMC9841320 DOI: 10.1007/s00285-019-01372-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 12/16/2018] [Indexed: 01/18/2023]
Abstract
Calculations of electrostatic potential and solvation free energy of macromolecules are essential for understanding the mechanism of many biological processes. In the classical implicit solvent Poisson-Boltzmann (PB) model, the macromolecule and water are modeled as two-dielectric media with a sharp border. However, the dielectric property of interior cavities and ion-channels is difficult to model realistically in a two-dielectric setting. In fact, the detection of water molecules in a protein cavity remains to be an experimental challenge. This introduces an uncertainty, which affects the subsequent solvation free energy calculation. In order to compensate this uncertainty, a novel super-Gaussian dielectric PB model is introduced in this work, which devices an inhomogeneous dielectric distribution to represent the compactness of atoms and characterizes empty cavities via a gap dielectric value. Moreover, the minimal molecular surface level set function is adopted so that the dielectric profile remains to be smooth when the protein is transferred from water phase to vacuum. An important feature of this new model is that as the order of super-Gaussian function approaches the infinity, the dielectric distribution reduces to a piecewise constant of the two-dielectric model. Mathematically, an effective dielectric constant analysis is introduced in this work to benchmark the dielectric model and select optimal parameter values. Computationally, a pseudo-time alternative direction implicit (ADI) algorithm is utilized for solving the super-Gaussian PB equation, which is found to be unconditionally stable in a smooth dielectric setting. Solvation free energy calculation of a Kirkwood sphere and various proteins is carried out to validate the super-Gaussian model and ADI algorithm. One macromolecule with both water filled and empty cavities is employed to demonstrate how the cavity uncertainty in protein structure can be bypassed through dielectric modeling in biomolecular electrostatic analysis.
Collapse
|
14
|
Nguyen DD, Wei GW. DG-GL: Differential geometry-based geometric learning of molecular datasets. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2019; 35:e3179. [PMID: 30693661 PMCID: PMC6598676 DOI: 10.1002/cnm.3179] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/21/2018] [Accepted: 12/06/2018] [Indexed: 05/11/2023]
Abstract
MOTIVATION Despite its great success in various physical modeling, differential geometry (DG) has rarely been devised as a versatile tool for analyzing large, diverse, and complex molecular and biomolecular datasets because of the limited understanding of its potential power in dimensionality reduction and its ability to encode essential chemical and biological information in differentiable manifolds. RESULTS We put forward a differential geometry-based geometric learning (DG-GL) hypothesis that the intrinsic physics of three-dimensional (3D) molecular structures lies on a family of low-dimensional manifolds embedded in a high-dimensional data space. We encode crucial chemical, physical, and biological information into 2D element interactive manifolds, extracted from a high-dimensional structural data space via a multiscale discrete-to-continuum mapping using differentiable density estimators. Differential geometry apparatuses are utilized to construct element interactive curvatures in analytical forms for certain analytically differentiable density estimators. These low-dimensional differential geometry representations are paired with a robust machine learning algorithm to showcase their descriptive and predictive powers for large, diverse, and complex molecular and biomolecular datasets. Extensive numerical experiments are carried out to demonstrate that the proposed DG-GL strategy outperforms other advanced methods in the predictions of drug discovery-related protein-ligand binding affinity, drug toxicity, and molecular solvation free energy. AVAILABILITY AND IMPLEMENTATION http://weilab.math.msu.edu/DG-GL/ Contact: wei@math.msu.edu.
Collapse
Affiliation(s)
- Duc Duy Nguyen
- Department of Mathematics, Michigan State University, East Lansing, 48824, Michigan
| | - Guo-Wei Wei
- Department of Mathematics, Michigan State University, East Lansing, 48824, Michigan
- Department of Electrical and Computer Engineering, Michigan State University, MI 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, Michigan
| |
Collapse
|
15
|
Gui S, Khan D, Wang Q, Yan DM, Lu BZ. Frontiers in biomolecular mesh generation and molecular visualization systems. Vis Comput Ind Biomed Art 2018; 1:7. [PMID: 32240387 PMCID: PMC7099538 DOI: 10.1186/s42492-018-0007-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 07/01/2018] [Indexed: 11/25/2022] Open
Abstract
With the development of biomolecular modeling and simulation, especially implicit solvent modeling, higher requirements are set for the stability, efficiency and mesh quality of molecular mesh generation software. In this review, we summarize the recent works in biomolecular mesh generation and molecular visualization. First, we introduce various definitions of molecular surface and corresponding meshing software. Second, as the mesh quality significantly influences biomolecular simulation, we investigate some remeshing methods in the fields of computer graphics and molecular modeling. Then, we show the application of biomolecular mesh in the boundary element method (BEM) and the finite element method (FEM). Finally, to conveniently visualize the numerical results based on the mesh, we present two types of molecular visualization systems.
Collapse
Affiliation(s)
- Sheng Gui
- LSEC, NCMIS, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, 100190, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Dawar Khan
- National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qin Wang
- LSEC, NCMIS, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dong-Ming Yan
- National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ben-Zhuo Lu
- LSEC, NCMIS, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
16
|
Two New Triply Periodic Bicontinuous Network Structures for Molten Block Copolymers. Macromol Res 2018. [DOI: 10.1007/s13233-018-6054-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
17
|
Yang X, Lei H, Gao P, Thomas DG, Mobley DL, Baker NA. Atomic Radius and Charge Parameter Uncertainty in Biomolecular Solvation Energy Calculations. J Chem Theory Comput 2018; 14:759-767. [PMID: 29293342 DOI: 10.1021/acs.jctc.7b00905] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Atomic radii and charges are two major parameters used in implicit solvent electrostatics and energy calculations. The optimization problem for charges and radii is underdetermined, leading to uncertainty in the values of these parameters and in the results of solvation energy calculations using these parameters. This paper presents a new method for quantifying this uncertainty in implicit solvation calculations of small molecules using surrogate models based on generalized polynomial chaos (gPC) expansions. There are relatively few atom types used to specify radii parameters in implicit solvation calculations; therefore, surrogate models for these low-dimensional spaces could be constructed using least-squares fitting. However, there are many more types of atomic charges; therefore, construction of surrogate models for the charge parameter space requires compressed sensing combined with an iterative rotation method to enhance problem sparsity. We demonstrate the application of the method by presenting results for the uncertainties in small molecule solvation energies based on these approaches. The method presented in this paper is a promising approach for efficiently quantifying uncertainty in a wide range of force field parametrization problems, including those beyond continuum solvation calculations. The intent of this study is to provide a way for developers of implicit solvent model parameter sets to understand the sensitivity of their target properties (solvation energy) on underlying choices for solute radius and charge parameters.
Collapse
Affiliation(s)
| | | | | | | | - David L Mobley
- Department of Pharmaceutical Sciences, University of California Irvine , Irvine, California 92697, United States
| | - Nathan A Baker
- Division of Applied Mathematics, Brown University , Providence, Rhode Island 02912, United States
| |
Collapse
|
18
|
Zhao R, Wang M, Tong Y, Wei GW. Divide-and-conquer strategy for large-scale Eulerian solvent excluded surface. COMMUNICATIONS IN INFORMATION AND SYSTEMS 2018; 18:299-329. [PMID: 31327932 DOI: 10.4310/cis.2018.v18.n4.a5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
MOTIVATION Surface generation and visualization are some of the most important tasks in biomolecular modeling and computation. Eulerian solvent excluded surface (ESES) software provides analytical solvent excluded surface (SES) in the Cartesian grid, which is necessary for simulating many biomolecular electrostatic and ion channel models. However, large biomolecules and/or fine grid resolutions give rise to excessively large memory requirements in ESES construction. We introduce an out-of-core and parallel algorithm to improve the ESES software. RESULTS The present approach drastically improves the spatial and temporal efficiency of ESES. The memory footprint and time complexity are analyzed and empirically verified through extensive tests with a large collection of biomolecule examples. Our results show that our algorithm can successfully reduce memory footprint through a straightforward divide-and-conquer strategy to perform the calculation of arbitrarily large proteins on a typical commodity personal computer. On multi-core computers or clusters, our algorithm can reduce the execution time by parallelizing most of the calculation as disjoint subproblems. Various comparisons with the state-of-the-art Cartesian grid based SES calculation were done to validate the present method and show the improved efficiency. This approach makes ESES a robust software for the construction of analytical solvent excluded surfaces. AVAILABILITY AND IMPLEMENTATION http://weilab.math.msu.edu/ESES.
Collapse
Affiliation(s)
- Rundong Zhao
- Department of Computer Science and Engineering, Michigan State University, MI 48824, USA
| | - Menglun Wang
- Department of Mathematics, Michigan State University, MI 48824, USA
| | - Yiying Tong
- Department of Computer Science and Engineering, Michigan State University, MI 48824, USA
| | - Guo-Wei Wei
- Department of Mathematics, and Department of Electrical and Computer Engineering, and Department of Biochemistry and Molecular Biology, Michigan State University, MI 48824, USA
| |
Collapse
|
19
|
Cang Z, Mu L, Wei GW. Representability of algebraic topology for biomolecules in machine learning based scoring and virtual screening. PLoS Comput Biol 2018; 14:e1005929. [PMID: 29309403 PMCID: PMC5774846 DOI: 10.1371/journal.pcbi.1005929] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 01/19/2018] [Accepted: 12/15/2017] [Indexed: 12/05/2022] Open
Abstract
This work introduces a number of algebraic topology approaches, including multi-component persistent homology, multi-level persistent homology, and electrostatic persistence for the representation, characterization, and description of small molecules and biomolecular complexes. In contrast to the conventional persistent homology, multi-component persistent homology retains critical chemical and biological information during the topological simplification of biomolecular geometric complexity. Multi-level persistent homology enables a tailored topological description of inter- and/or intra-molecular interactions of interest. Electrostatic persistence incorporates partial charge information into topological invariants. These topological methods are paired with Wasserstein distance to characterize similarities between molecules and are further integrated with a variety of machine learning algorithms, including k-nearest neighbors, ensemble of trees, and deep convolutional neural networks, to manifest their descriptive and predictive powers for protein-ligand binding analysis and virtual screening of small molecules. Extensive numerical experiments involving 4,414 protein-ligand complexes from the PDBBind database and 128,374 ligand-target and decoy-target pairs in the DUD database are performed to test respectively the scoring power and the discriminatory power of the proposed topological learning strategies. It is demonstrated that the present topological learning outperforms other existing methods in protein-ligand binding affinity prediction and ligand-decoy discrimination.
Collapse
Affiliation(s)
- Zixuan Cang
- Department of Mathematics, Michigan State University, East Lansing, Michigan, United States of America
| | - Lin Mu
- Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
| | - Guo-Wei Wei
- Department of Mathematics, Michigan State University, East Lansing, Michigan, United States of America
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, United States of America
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan, United States of America
| |
Collapse
|
20
|
Singh K, Lahiri T. An Improved Protein Surface Extraction Method Using Rotating Cylinder Probe. Interdiscip Sci 2017; 9:65-71. [PMID: 27878456 DOI: 10.1007/s12539-016-0201-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 09/07/2015] [Accepted: 09/07/2015] [Indexed: 06/06/2023]
Abstract
For extraction of information on binding sites of a protein, the commonly known geometry-based methods utilize the corresponding PDB file to extract its surface as a first step. Finally, the surface is used to find the binding site atoms. As shown in this paper work, since none of the mostly used surface extraction methods can retrieve a sizeable percentage of the binding site atoms, the scope of development of a better method remains. In this direction, this paper presents a new benchmarking criteria based on utilization of binding site information to compare performance of these surface extraction methods. Also, a new surface extraction method is introduced based on the use of a rotating cylinder probe adapting from the work of Weisel et al. (Chem Cent J 1:7-23, 2007. doi: 10.1186/1752-153X-1-7 ). The result of the new method shows a significant improvement of performance in comparison to the existing methods.
Collapse
Affiliation(s)
- Kalpana Singh
- Division of Applied Science, Indian Institute of Information Technology, Jhalwa Campus, Allahabad, UP, 211012, India
| | - Tapobrata Lahiri
- Division of Applied Science, Indian Institute of Information Technology, Jhalwa Campus, Allahabad, UP, 211012, India.
| |
Collapse
|
21
|
Liu B, Wang B, Zhao R, Tong Y, Wei GW. ESES: Software for Eulerian solvent excluded surface. J Comput Chem 2017; 38:446-466. [PMID: 28052350 DOI: 10.1002/jcc.24682] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 11/02/2016] [Accepted: 11/09/2016] [Indexed: 12/17/2022]
Abstract
Solvent excluded surface (SES) is one of the most popular surface definitions in biophysics and molecular biology. In addition to its usage in biomolecular visualization, it has been widely used in implicit solvent models, in which SES is usually immersed in a Cartesian mesh. Therefore, it is important to construct SESs in the Eulerian representation for biophysical modeling and computation. This work describes a software package called Eulerian solvent excluded surface (ESES) for the generation of accurate SESs in Cartesian grids. ESES offers the description of the solvent and solute domains by specifying all the intersection points between the SES and the Cartesian grid lines. Additionally, the interface normal at each intersection point is evaluated. Furthermore, for a given biomolecule, the ESES software not only provides the whole surface area, but also partitions the surface area according to atomic types. Homology theory is utilized to detect topological features, such as loops and cavities, on the complex formed by the SES. The sizes of loops and cavities are measured based on persistent homology with an evolutionary partial differential equation-based filtration. ESES is extensively validated by surface visualization, electrostatic solvation free energy computation, surface area and volume calculations, and loop and cavity detection and their size estimation. We used the Amber PBSA test set in our electrostatic solvation energy, area, and volume validations. Our results are either calibrated by analytical values or compared with those from the MSMS software. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Beibei Liu
- Department of Computer Science and Engineering, Michigan State University, East Lansing, Michigan, 48824
| | - Bao Wang
- Department of Mathematics, Michigan State University, East Lansing, Michigan, 48824
| | - Rundong Zhao
- Department of Computer Science and Engineering, Michigan State University, East Lansing, Michigan, 48824
| | - Yiying Tong
- Department of Computer Science and Engineering, Michigan State University, East Lansing, Michigan, 48824
| | - Guo-Wei Wei
- Department of Mathematics, Michigan State University, East Lansing, Michigan, 48824.,Department of Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan, 48824.,Department of Biochemistry and, Molecular Biology, Michigan State University, East Lansing, Michigan, 48824
| |
Collapse
|
22
|
|
23
|
Nguyen DD, Wei GW. The impact of surface area, volume, curvature, and Lennard-Jones potential to solvation modeling. J Comput Chem 2016; 38:24-36. [PMID: 27718270 DOI: 10.1002/jcc.24512] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 08/17/2016] [Accepted: 08/30/2016] [Indexed: 12/24/2022]
Abstract
This article explores the impact of surface area, volume, curvature, and Lennard-Jones (LJ) potential on solvation free energy predictions. Rigidity surfaces are utilized to generate robust analytical expressions for maximum, minimum, mean, and Gaussian curvatures of solvent-solute interfaces, and define a generalized Poisson-Boltzmann (GPB) equation with a smooth dielectric profile. Extensive correlation analysis is performed to examine the linear dependence of surface area, surface enclosed volume, maximum curvature, minimum curvature, mean curvature, and Gaussian curvature for solvation modeling. It is found that surface area and surfaces enclosed volumes are highly correlated to each other's, and poorly correlated to various curvatures for six test sets of molecules. Different curvatures are weakly correlated to each other for six test sets of molecules, but are strongly correlated to each other within each test set of molecules. Based on correlation analysis, we construct twenty six nontrivial nonpolar solvation models. Our numerical results reveal that the LJ potential plays a vital role in nonpolar solvation modeling, especially for molecules involving strong van der Waals interactions. It is found that curvatures are at least as important as surface area or surface enclosed volume in nonpolar solvation modeling. In conjugation with the GPB model, various curvature-based nonpolar solvation models are shown to offer some of the best solvation free energy predictions for a wide range of test sets. For example, root mean square errors from a model constituting surface area, volume, mean curvature, and LJ potential are less than 0.42 kcal/mol for all test sets. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Duc D Nguyen
- Department of Mathematics, Michigan State University, Michigan, 48824
| | - Guo-Wei Wei
- Department of Mathematics, Michigan State University, Michigan, 48824.,Department of Electrical and Computer Engineering, Michigan State University, Michigan, 48824.,Department of Biochemistry and Molecular Biology, Michigan State University, Michigan, 48824
| |
Collapse
|
24
|
Li J, Li S. Multiscale models of compact bone. INT J BIOMATH 2016. [DOI: 10.1142/s1793524516500479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
This work is concerned about multiscale models of compact bone. We focus on the lacuna–canalicular system. The interstitial fluid and the ions in it are regarded as solvent and others are treated as solute. The system has the characteristic of solvation process as well as non-equilibrium dynamics. The differential geometry theory of surfaces is adopted. We use this theory to separate the macroscopic domain of solvent from the microscopic domain of solute. We also use it to couple continuum and discrete descriptions. The energy functionals are constructed and then the variational principle is applied to the energy functionals so as to derive desirable governing equations. We consider both long-range polar interactions and short-range nonpolar interactions. The solution of governing equations leads to the minimization of the total energy.
Collapse
Affiliation(s)
- Junfeng Li
- School of Mathematics and Statistics, Central China Normal University, Wuhan 430079, P. R. China
| | - Shugang Li
- School of Mathematics and Statistics, Central China Normal University, Wuhan 430079, P. R. China
| |
Collapse
|
25
|
Zhao F, Xie X. Energy minimization in medical image analysis: Methodologies and applications. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2016; 32:e02733. [PMID: 26186171 DOI: 10.1002/cnm.2733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 06/23/2015] [Accepted: 06/23/2015] [Indexed: 06/04/2023]
Abstract
Energy minimization is of particular interest in medical image analysis. In the past two decades, a variety of optimization schemes have been developed. In this paper, we present a comprehensive survey of the state-of-the-art optimization approaches. These algorithms are mainly classified into two categories: continuous method and discrete method. The former includes Newton-Raphson method, gradient descent method, conjugate gradient method, proximal gradient method, coordinate descent method, and genetic algorithm-based method, while the latter covers graph cuts method, belief propagation method, tree-reweighted message passing method, linear programming method, maximum margin learning method, simulated annealing method, and iterated conditional modes method. We also discuss the minimal surface method, primal-dual method, and the multi-objective optimization method. In addition, we review several comparative studies that evaluate the performance of different minimization techniques in terms of accuracy, efficiency, or complexity. These optimization techniques are widely used in many medical applications, for example, image segmentation, registration, reconstruction, motion tracking, and compressed sensing. We thus give an overview on those applications as well.
Collapse
Affiliation(s)
- Feng Zhao
- Department of Computer Science, Swansea University, Swansea, SA2 8PP, UK
| | - Xianghua Xie
- Department of Computer Science, Swansea University, Swansea, SA2 8PP, UK
| |
Collapse
|
26
|
Abstract
Persistent homology provides a new approach for the topological simplification of big data via measuring the life time of intrinsic topological features in a filtration process and has found its success in scientific and engineering applications. However, such a success is essentially limited to qualitative data classification and analysis. Indeed, persistent homology has rarely been employed for quantitative modeling and prediction. Additionally, the present persistent homology is a passive tool, rather than a proactive technique, for classification and analysis. In this work, we outline a general protocol to construct object-oriented persistent homology methods. By means of differential geometry theory of surfaces, we construct an objective functional, namely, a surface free energy defined on the data of interest. The minimization of the objective functional leads to a Laplace-Beltrami operator which generates a multiscale representation of the initial data and offers an objective oriented filtration process. The resulting differential geometry based object-oriented persistent homology is able to preserve desirable geometric features in the evolutionary filtration and enhances the corresponding topological persistence. The cubical complex based homology algorithm is employed in the present work to be compatible with the Cartesian representation of the Laplace-Beltrami flow. The proposed Laplace-Beltrami flow based persistent homology method is extensively validated. The consistence between Laplace-Beltrami flow based filtration and Euclidean distance based filtration is confirmed on the Vietoris-Rips complex for a large amount of numerical tests. The convergence and reliability of the present Laplace-Beltrami flow based cubical complex filtration approach are analyzed over various spatial and temporal mesh sizes. The Laplace-Beltrami flow based persistent homology approach is utilized to study the intrinsic topology of proteins and fullerene molecules. Based on a quantitative model which correlates the topological persistence of fullerene central cavity with the total curvature energy of the fullerene structure, the proposed method is used for the prediction of fullerene isomer stability. The efficiency and robustness of the present method are verified by more than 500 fullerene molecules. It is shown that the proposed persistent homology based quantitative model offers good predictions of total curvature energies for ten types of fullerene isomers. The present work offers the first example to design object-oriented persistent homology to enhance or preserve desirable features in the original data during the filtration process and then automatically detect or extract the corresponding topological traits from the data.
Collapse
Affiliation(s)
- Bao Wang
- Department of Mathematics Michigan State University, MI 48824, USA
| | - Guo-Wei Wei
- Mathematical Biosciences Institute, The Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
27
|
Cang Z, Mu L, Wu K, Opron K, Xia K, Wei GW. A topological approach for protein classification. COMPUTATIONAL AND MATHEMATICAL BIOPHYSICS 2015. [DOI: 10.1515/mlbmb-2015-0009] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
AbstractProtein function and dynamics are closely related to its sequence and structure.However, prediction of protein function and dynamics from its sequence and structure is still a fundamental challenge in molecular biology. Protein classification, which is typically done through measuring the similarity between proteins based on protein sequence or physical information, serves as a crucial step toward the understanding of protein function and dynamics. Persistent homology is a new branch of algebraic topology that has found its success in the topological data analysis in a variety of disciplines, including molecular biology. The present work explores the potential of using persistent homology as an independent tool for protein classification. To this end, we propose a molecular topological fingerprint based support vector machine (MTF-SVM) classifier. Specifically,we construct machine learning feature vectors solely fromprotein topological fingerprints,which are topological invariants generated during the filtration process. To validate the presentMTF-SVMapproach, we consider four types of problems. First, we study protein-drug binding by using the M2 channel protein of influenza A virus. We achieve 96% accuracy in discriminating drug bound and unbound M2 channels. Secondly, we examine the use of MTF-SVM for the classification of hemoglobin molecules in their relaxed and taut forms and obtain about 80% accuracy. Thirdly, the identification of all alpha, all beta, and alpha-beta protein domains is carried out using 900 proteins.We have found a 85% success in this identification. Finally, we apply the present technique to 55 classification tasks of protein superfamilies over 1357 samples and 246 tasks over 11944 samples. Average accuracies of 82% and 73% are attained. The present study establishes computational topology as an independent and effective alternative for protein classification.
Collapse
|
28
|
Wang B, Wei GW. Parameter optimization in differential geometry based solvation models. J Chem Phys 2015; 143:134119. [PMID: 26450304 PMCID: PMC4602332 DOI: 10.1063/1.4932342] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 09/22/2015] [Indexed: 01/01/2023] Open
Abstract
Differential geometry (DG) based solvation models are a new class of variational implicit solvent approaches that are able to avoid unphysical solvent-solute boundary definitions and associated geometric singularities, and dynamically couple polar and non-polar interactions in a self-consistent framework. Our earlier study indicates that DG based non-polar solvation model outperforms other methods in non-polar solvation energy predictions. However, the DG based full solvation model has not shown its superiority in solvation analysis, due to its difficulty in parametrization, which must ensure the stability of the solution of strongly coupled nonlinear Laplace-Beltrami and Poisson-Boltzmann equations. In this work, we introduce new parameter learning algorithms based on perturbation and convex optimization theories to stabilize the numerical solution and thus achieve an optimal parametrization of the DG based solvation models. An interesting feature of the present DG based solvation model is that it provides accurate solvation free energy predictions for both polar and non-polar molecules in a unified formulation. Extensive numerical experiment demonstrates that the present DG based solvation model delivers some of the most accurate predictions of the solvation free energies for a large number of molecules.
Collapse
Affiliation(s)
- Bao Wang
- Department of Mathematics, Michigan State University, East Lansing, Michigan 48824, USA
| | - G W Wei
- Department of Mathematics, Michigan State University, East Lansing, Michigan 48824, USA
| |
Collapse
|
29
|
Xia K, Wei GW. Persistent topology for cryo-EM data analysis. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2015; 31:n/a-n/a. [PMID: 25851063 DOI: 10.1002/cnm.2719] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 03/13/2015] [Accepted: 03/31/2015] [Indexed: 06/04/2023]
Abstract
In this work, we introduce persistent homology for the analysis of cryo-electron microscopy (cryo-EM) density maps. We identify the topological fingerprint or topological signature of noise, which is widespread in cryo-EM data. For low signal-to-noise ratio (SNR) volumetric data, intrinsic topological features of biomolecular structures are indistinguishable from noise. To remove noise, we employ geometric flows that are found to preserve the intrinsic topological fingerprints of cryo-EM structures and diminish the topological signature of noise. In particular, persistent homology enables us to visualize the gradual separation of the topological fingerprints of cryo-EM structures from those of noise during the denoising process, which gives rise to a practical procedure for prescribing a noise threshold to extract cryo-EM structure information from noise contaminated data after certain iterations of the geometric flow equation. To further demonstrate the utility of persistent homology for cryo-EM data analysis, we consider a microtubule intermediate structure Electron Microscopy Data (EMD 1129). Three helix models, an alpha-tubulin monomer model, an alpha-tubulin and beta-tubulin model, and an alpha-tubulin and beta-tubulin dimer model, are constructed to fit the cryo-EM data. The least square fitting leads to similarly high correlation coefficients, which indicates that structure determination via optimization is an ill-posed inverse problem. However, these models have dramatically different topological fingerprints. Especially, linkages or connectivities that discriminate one model from another, play little role in the traditional density fitting or optimization but are very sensitive and crucial to topological fingerprints. The intrinsic topological features of the microtubule data are identified after topological denoising. By a comparison of the topological fingerprints of the original data and those of three models, we found that the third model is topologically favored. The present work offers persistent homology based new strategies for topological denoising and for resolving ill-posed inverse problems.
Collapse
Affiliation(s)
- Kelin Xia
- Department of Mathematics, Michigan State University, MI 48824, USA
| | - Guo-Wei Wei
- Department of Mathematics, Michigan State University, MI 48824, USA
- Department of Electrical and Computer Engineering, Michigan State University, MI 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, MI 48824, USA
| |
Collapse
|
30
|
Xia K, Wei GW. Multidimensional persistence in biomolecular data. J Comput Chem 2015; 36:1502-20. [PMID: 26032339 PMCID: PMC4485576 DOI: 10.1002/jcc.23953] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 04/02/2015] [Accepted: 04/19/2015] [Indexed: 12/24/2022]
Abstract
Persistent homology has emerged as a popular technique for the topological simplification of big data, including biomolecular data. Multidimensional persistence bears considerable promise to bridge the gap between geometry and topology. However, its practical and robust construction has been a challenge. We introduce two families of multidimensional persistence, namely pseudomultidimensional persistence and multiscale multidimensional persistence. The former is generated via the repeated applications of persistent homology filtration to high-dimensional data, such as results from molecular dynamics or partial differential equations. The latter is constructed via isotropic and anisotropic scales that create new simiplicial complexes and associated topological spaces. The utility, robustness, and efficiency of the proposed topological methods are demonstrated via protein folding, protein flexibility analysis, the topological denoising of cryoelectron microscopy data, and the scale dependence of nanoparticles. Topological transition between partial folded and unfolded proteins has been observed in multidimensional persistence. The separation between noise topological signatures and molecular topological fingerprints is achieved by the Laplace-Beltrami flow. The multiscale multidimensional persistent homology reveals relative local features in Betti-0 invariants and the relatively global characteristics of Betti-1 and Betti-2 invariants.
Collapse
Affiliation(s)
- Kelin Xia
- Department of Mathematics, Michigan State University, MI 48824, USA
| | - Guo-Wei Wei
- Department of Mathematics, Michigan State University, MI 48824, USA
- Department of Electrical and Computer Engineering, Michigan State University, MI 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, MI 48824, USA
| |
Collapse
|
31
|
Parameterization for molecular Gaussian surface and a comparison study of surface mesh generation. J Mol Model 2015; 21:113. [PMID: 25862632 DOI: 10.1007/s00894-015-2654-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 03/16/2015] [Indexed: 10/23/2022]
Abstract
The molecular Gaussian surface has been frequently used in the field of molecular modeling and simulation. Typically, the Gaussian surface is defined using two controlling parameters; the decay rate and isovalue. Currently, there is a lack of studies in which a systematic approach in the determination of optimal parameterization according to the geometric features has been done. In this paper, surface area, volume enclosed by the surface and Hausdorff distance are used as three criteria for the parameterization to make the Gaussian surface approximate the solvent excluded surface (SES) well. For each of these three criteria, a search of the parameter space is carried out in order to determine the optimal parameter values. The resulted parameters are close to each other and result in similar calculated molecular properties. Approximation of the VDW surface is also done by analyzing the explicit expressions of the Gaussian surface and VDW surface, which analysis and parameters can be similarly applied to the solvent accessible surface (SAS) due to its geometric similarity to the VDW surface. Once the optimal parameters are obtained, we compare the performance of our Gaussian surface generation software TMSmesh with other commonly used software programs, focusing primarily on mesh quality and fidelity. Additionally, the Poisson-Boltzmann solvation energies based on the surface meshes generated by TMSmesh and those generated by other software programs are calculated and compared for a set of molecules with different sizes. The results of these comparisons validate both the accuracy and the applicability of the parameterized Gaussian surface.
Collapse
|
32
|
Xia K, Wei GW. A Galerkin formulation of the MIB method for three dimensional elliptic interface problems. COMPUTERS & MATHEMATICS WITH APPLICATIONS (OXFORD, ENGLAND : 1987) 2014; 68:719-745. [PMID: 25309038 PMCID: PMC4190480 DOI: 10.1016/j.camwa.2014.07.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
We develop a three dimensional (3D) Galerkin formulation of the matched interface and boundary (MIB) method for solving elliptic partial differential equations (PDEs) with discontinuous coefficients, i.e., the elliptic interface problem. The present approach builds up two sets of elements respectively on two extended subdomains which both include the interface. As a result, two sets of elements overlap each other near the interface. Fictitious solutions are defined on the overlapping part of the elements, so that the differentiation operations of the original PDEs can be discretized as if there was no interface. The extra coefficients of polynomial basis functions, which furnish the overlapping elements and solve the fictitious solutions, are determined by interface jump conditions. Consequently, the interface jump conditions are rigorously enforced on the interface. The present method utilizes Cartesian meshes to avoid the mesh generation in conventional finite element methods (FEMs). We implement the proposed MIB Galerkin method with three different elements, namely, rectangular prism element, five-tetrahedron element and six-tetrahedron element, which tile the Cartesian mesh without introducing any new node. The accuracy, stability and robustness of the proposed 3D MIB Galerkin are extensively validated over three types of elliptic interface problems. In the first type, interfaces are analytically defined by level set functions. These interfaces are relatively simple but admit geometric singularities. In the second type, interfaces are defined by protein surfaces, which are truly arbitrarily complex. The last type of interfaces originates from multiprotein complexes, such as molecular motors. Near second order accuracy has been confirmed for all of these problems. To our knowledge, it is the first time for an FEM to show a near second order convergence in solving the Poisson equation with realistic protein surfaces. Additionally, the present work offers the first known near second order accurate method for C1 continuous or H2 continuous solutions associated with a Lipschitz continuous interface in a 3D setting.
Collapse
Affiliation(s)
- Kelin Xia
- Department of Mathematics, Michigan State University, East Lansing, MI 48824, USA
| | - Guo-Wei Wei
- Department of Mathematics, Michigan State University, East Lansing, MI 48824, USA
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
33
|
Xia K, Wei GW. Persistent homology analysis of protein structure, flexibility, and folding. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2014; 30:814-44. [PMID: 24902720 PMCID: PMC4131872 DOI: 10.1002/cnm.2655] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Revised: 05/19/2014] [Accepted: 05/21/2014] [Indexed: 05/04/2023]
Abstract
Proteins are the most important biomolecules for living organisms. The understanding of protein structure, function, dynamics, and transport is one of the most challenging tasks in biological science. In the present work, persistent homology is, for the first time, introduced for extracting molecular topological fingerprints (MTFs) based on the persistence of molecular topological invariants. MTFs are utilized for protein characterization, identification, and classification. The method of slicing is proposed to track the geometric origin of protein topological invariants. Both all-atom and coarse-grained representations of MTFs are constructed. A new cutoff-like filtration is proposed to shed light on the optimal cutoff distance in elastic network models. On the basis of the correlation between protein compactness, rigidity, and connectivity, we propose an accumulated bar length generated from persistent topological invariants for the quantitative modeling of protein flexibility. To this end, a correlation matrix-based filtration is developed. This approach gives rise to an accurate prediction of the optimal characteristic distance used in protein B-factor analysis. Finally, MTFs are employed to characterize protein topological evolution during protein folding and quantitatively predict the protein folding stability. An excellent consistence between our persistent homology prediction and molecular dynamics simulation is found. This work reveals the topology-function relationship of proteins.
Collapse
Affiliation(s)
- Kelin Xia
- Department of Mathematics, Michigan State University, MI 48824, USA
- Center for Mathematical Molecular Biosciences, Michigan State University, MI 48824, USA
| | - Guo-Wei Wei
- Department of Mathematics, Michigan State University, MI 48824, USA
- Center for Mathematical Molecular Biosciences, Michigan State University, MI 48824, USA
- Department of Electrical and Computer Engineering, Michigan State University, MI 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, MI 48824, USA
| |
Collapse
|
34
|
Daily MD, Chun J, Heredia-Langner A, Wei G, Baker NA. Origin of parameter degeneracy and molecular shape relationships in geometric-flow calculations of solvation free energies. J Chem Phys 2014; 139:204108. [PMID: 24289345 DOI: 10.1063/1.4832900] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Implicit solvent models are important tools for calculating solvation free energies for chemical and biophysical studies since they require fewer computational resources but can achieve accuracy comparable to that of explicit-solvent models. In past papers, geometric flow-based solvation models have been established for solvation analysis of small and large compounds. In the present work, the use of realistic experiment-based parameter choices for the geometric flow models is studied. We find that the experimental parameters of solvent internal pressure p = 172 MPa and surface tension γ = 72 mN/m produce solvation free energies within 1 RT of the global minimum root-mean-squared deviation from experimental data over the expanded set. Our results demonstrate that experimental values can be used for geometric flow solvent model parameters, thus eliminating the need for additional parameterization. We also examine the correlations between optimal values of p and γ which are strongly anti-correlated. Geometric analysis of the small molecule test set shows that these results are inter-connected with an approximately linear relationship between area and volume in the range of molecular sizes spanned by the data set. In spite of this considerable degeneracy between the surface tension and pressure terms in the model, both terms are important for the broader applicability of the model.
Collapse
Affiliation(s)
- Michael D Daily
- Fundamental and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, USA
| | | | | | | | | |
Collapse
|
35
|
Tian W, Zhao S. A fast alternating direction implicit algorithm for geometric flow equations in biomolecular surface generation. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2014; 30:490-516. [PMID: 24574191 DOI: 10.1002/cnm.2613] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 10/15/2013] [Accepted: 10/15/2013] [Indexed: 06/03/2023]
Abstract
In this paper, a new alternating direction implicit (ADI) method is introduced to solve potential driven geometric flow PDEs for biomolecular surface generation. For such PDEs, an extra factor is usually added to stabilize the explicit time integration. However, two existing implicit ADI schemes are also based on the scaled form, which involves nonlinear cross derivative terms that have to be evaluated explicitly. This affects the stability and accuracy of these ADI schemes. To overcome these difficulties, we propose a new ADI algorithm based on the unscaled form so that cross derivatives are not involved. Central finite differences are employed to discretize the nonhomogenous diffusion process of the geometric flow. The proposed ADI algorithm is validated through benchmark examples with analytical solutions, reference solutions, or literature results. Moreover, quantitative indicators of a biomolecular surface, including surface area, surface-enclosed volume, and solvation free energy, are analyzed for various proteins. The proposed ADI method is found to be unconditionally stable and more accurate than the existing ADI schemes in all tests. This enables the use of a large time increment in the steady state simulation so that the proposed ADI algorithm is very efficient for biomolecular surface generation.
Collapse
Affiliation(s)
- Wufeng Tian
- Department of Mathematics, University of Alabama, Tuscaloosa, AL 35487, USA
| | | |
Collapse
|
36
|
Xia K, Feng X, Chen Z, Tong Y, Wei GW. Multiscale geometric modeling of macromolecules I: Cartesian representation. JOURNAL OF COMPUTATIONAL PHYSICS 2014; 257:10.1016/j.jcp.2013.09.034. [PMID: 24327772 PMCID: PMC3855405 DOI: 10.1016/j.jcp.2013.09.034] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
This paper focuses on the geometric modeling and computational algorithm development of biomolecular structures from two data sources: Protein Data Bank (PDB) and Electron Microscopy Data Bank (EMDB) in the Eulerian (or Cartesian) representation. Molecular surface (MS) contains non-smooth geometric singularities, such as cusps, tips and self-intersecting facets, which often lead to computational instabilities in molecular simulations, and violate the physical principle of surface free energy minimization. Variational multiscale surface definitions are proposed based on geometric flows and solvation analysis of biomolecular systems. Our approach leads to geometric and potential driven Laplace-Beltrami flows for biomolecular surface evolution and formation. The resulting surfaces are free of geometric singularities and minimize the total free energy of the biomolecular system. High order partial differential equation (PDE)-based nonlinear filters are employed for EMDB data processing. We show the efficacy of this approach in feature-preserving noise reduction. After the construction of protein multiresolution surfaces, we explore the analysis and characterization of surface morphology by using a variety of curvature definitions. Apart from the classical Gaussian curvature and mean curvature, maximum curvature, minimum curvature, shape index, and curvedness are also applied to macromolecular surface analysis for the first time. Our curvature analysis is uniquely coupled to the analysis of electrostatic surface potential, which is a by-product of our variational multiscale solvation models. As an expository investigation, we particularly emphasize the numerical algorithms and computational protocols for practical applications of the above multiscale geometric models. Such information may otherwise be scattered over the vast literature on this topic. Based on the curvature and electrostatic analysis from our multiresolution surfaces, we introduce a new concept, the polarized curvature, for the prediction of protein binding sites.
Collapse
Affiliation(s)
- Kelin Xia
- Department of Mathematics, Michigan State University, MI 48824, USA
| | - Xin Feng
- Department of Computer Science and Engineering, Michigan State University, MI 48824, USA
| | - Zhan Chen
- Department of Mathematics, Michigan State University, MI 48824, USA
| | - Yiying Tong
- Department of Computer Science and Engineering, Michigan State University, MI 48824, USA
- Corresponding author.
| | - Guo Wei Wei
- Department of Mathematics, Michigan State University, MI 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, MI 48824, USA
- Corresponding author.
| |
Collapse
|
37
|
Li J, Mach P, Koehl P. Measuring the shapes of macromolecules - and why it matters. Comput Struct Biotechnol J 2013; 8:e201309001. [PMID: 24688748 PMCID: PMC3962087 DOI: 10.5936/csbj.201309001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 11/22/2013] [Accepted: 11/22/2013] [Indexed: 11/22/2022] Open
Abstract
The molecular basis of life rests on the activity of biological macromolecules, mostly nucleic acids and proteins. A perhaps surprising finding that crystallized over the last handful of decades is that geometric reasoning plays a major role in our attempt to understand these activities. In this paper, we address this connection between geometry and biology, focusing on methods for measuring and characterizing the shapes of macromolecules. We briefly review existing numerical and analytical approaches that solve these problems. We cover in more details our own work in this field, focusing on the alpha shape theory as it provides a unifying mathematical framework that enable the analytical calculations of the surface area and volume of a macromolecule represented as a union of balls, the detection of pockets and cavities in the molecule, and the quantification of contacts between the atomic balls. We have shown that each of these quantities can be related to physical properties of the molecule under study and ultimately provides insight on its activity. We conclude with a brief description of new challenges for the alpha shape theory in modern structural biology.
Collapse
Affiliation(s)
- Jie Li
- Genome Center, University of California, Davis, 451 Health Sciences Drive, Davis, CA 95616, United States
| | - Paul Mach
- Graduate Group of Applied Mathematics, University of California, Davis, 1, Shields Ave, Davis, CA, 95616, United States
| | - Patrice Koehl
- Department of Computer Science and Genome Center, University of California, Davis, 1, Shields Ave, Davis, CA, 95616, United States
| |
Collapse
|
38
|
Wei GW. Multiscale Multiphysics and Multidomain Models I: Basic Theory. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2013; 12:10.1142/S021963361341006X. [PMID: 25382892 PMCID: PMC4220694 DOI: 10.1142/s021963361341006x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
This work extends our earlier two-domain formulation of a differential geometry based multiscale paradigm into a multidomain theory, which endows us the ability to simultaneously accommodate multiphysical descriptions of aqueous chemical, physical and biological systems, such as fuel cells, solar cells, nanofluidics, ion channels, viruses, RNA polymerases, molecular motors and large macromolecular complexes. The essential idea is to make use of the differential geometry theory of surfaces as a natural means to geometrically separate the macroscopic domain of solvent from the microscopic domain of solute, and dynamically couple continuum and discrete descriptions. Our main strategy is to construct energy functionals to put on an equal footing of multiphysics, including polar (i.e., electrostatic) solvation, nonpolar solvation, chemical potential, quantum mechanics, fluid mechanics, molecular mechanics, coarse grained dynamics and elastic dynamics. The variational principle is applied to the energy functionals to derive desirable governing equations, such as multidomain Laplace-Beltrami (LB) equations for macromolecular morphologies, multidomain Poisson-Boltzmann (PB) equation or Poisson equation for electrostatic potential, generalized Nernst-Planck (NP) equations for the dynamics of charged solvent species, generalized Navier-Stokes (NS) equation for fluid dynamics, generalized Newton's equations for molecular dynamics (MD) or coarse-grained dynamics and equation of motion for elastic dynamics. Unlike the classical PB equation, our PB equation is an integral-differential equation due to solvent-solute interactions. To illustrate the proposed formalism, we have explicitly constructed three models, a multidomain solvation model, a multidomain charge transport model and a multidomain chemo-electro-fluid-MD-elastic model. Each solute domain is equipped with distinct surface tension, pressure, dielectric function, and charge density distribution. In addition to long-range Coulombic interactions, various non-electrostatic solvent-solute interactions are considered in the present modeling. We demonstrate the consistency between the non-equilibrium charge transport model and the equilibrium solvation model by showing the systematical reduction of the former to the latter at equilibrium. This paper also offers a brief review of the field.
Collapse
Affiliation(s)
- Guo-Wei Wei
- Department of Mathematics Michigan State University, MI 48824, USA Department of Electrical and Computer Engineering Michigan State University, MI 48824, USA Department of Biochemistry and Molecular Biology Michigan State University, MI 48824, USA
| |
Collapse
|
39
|
Parulek J, Brambilla A. Fast blending scheme for molecular surface representation. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2013; 19:2653-2662. [PMID: 24051832 DOI: 10.1109/tvcg.2013.158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Representation of molecular surfaces is a well established way to study the interaction of molecules. The state-of-the-art molecular representation is the SES model, which provides a detailed surface visualization. Nevertheless, it is computationally expensive, so the less accurate Gaussian model is traditionally preferred. We introduce a novel surface representation that resembles the SES and approaches the rendering performance of the Gaussian model. Our technique is based on the iterative blending of implicit functions and avoids any pre-computation. Additionally, we propose a GPU-based ray-casting algorithm that efficiently visualize our molecular representation. A qualitative and quantitative comparison of our model with respect to the Gaussian and SES models is presented. As showcased in the paper, our technique is a valid and appealing alternative to the Gaussian representation. This is especially relevant in all the applications where the cost of the SES is prohibitive.
Collapse
|
40
|
Feng X, Xia K, Chen Z, Tong Y, Wei GW. Multiscale geometric modeling of macromolecules II: Lagrangian representation. J Comput Chem 2013; 34:2100-20. [PMID: 23813599 PMCID: PMC3760017 DOI: 10.1002/jcc.23364] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2013] [Revised: 05/10/2013] [Accepted: 05/26/2013] [Indexed: 12/16/2022]
Abstract
Geometric modeling of biomolecules plays an essential role in the conceptualization of biolmolecular structure, function, dynamics, and transport. Qualitatively, geometric modeling offers a basis for molecular visualization, which is crucial for the understanding of molecular structure and interactions. Quantitatively, geometric modeling bridges the gap between molecular information, such as that from X-ray, NMR, and cryo-electron microscopy, and theoretical/mathematical models, such as molecular dynamics, the Poisson-Boltzmann equation, and the Nernst-Planck equation. In this work, we present a family of variational multiscale geometric models for macromolecular systems. Our models are able to combine multiresolution geometric modeling with multiscale electrostatic modeling in a unified variational framework. We discuss a suite of techniques for molecular surface generation, molecular surface meshing, molecular volumetric meshing, and the estimation of Hadwiger's functionals. Emphasis is given to the multiresolution representations of biomolecules and the associated multiscale electrostatic analyses as well as multiresolution curvature characterizations. The resulting fine resolution representations of a biomolecular system enable the detailed analysis of solvent-solute interaction, and ion channel dynamics, whereas our coarse resolution representations highlight the compatibility of protein-ligand bindings and possibility of protein-protein interactions.
Collapse
Affiliation(s)
- Xin Feng
- Department of Computer Science and Engineering Michigan State University, MI 48824, USA
| | - Kelin Xia
- Department of Mathematics Michigan State University, MI 48824, USA
| | - Zhan Chen
- Department of Mathematics Michigan State University, MI 48824, USA
| | - Yiying Tong
- Department of Computer Science and Engineering Michigan State University, MI 48824, USA
| | - Guo-Wei Wei
- Department of Mathematics Michigan State University, MI 48824, USA
- Department of Biochemistry and Molecular Biology Michigan State University, MI 48824, USA
| |
Collapse
|
41
|
An approximate approach to calculate the potential acting on an electron in a molecule and construct the molecular face. COMPUT THEOR CHEM 2013. [DOI: 10.1016/j.comptc.2013.06.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
42
|
Advances in biomolecular surface meshing and its applications to mathematical modeling. CHINESE SCIENCE BULLETIN-CHINESE 2013. [DOI: 10.1007/s11434-013-5829-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
43
|
Hischenhuber B, Havlicek H, Todoric J, Höllrigl-Binder S, Schreiner W, Knapp B. Differential geometric analysis of alterations in MH α-helices. J Comput Chem 2013; 34:1862-79. [PMID: 23703160 PMCID: PMC3739936 DOI: 10.1002/jcc.23328] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 04/12/2013] [Accepted: 04/13/2013] [Indexed: 01/03/2023]
Abstract
Antigen presenting cells present processed peptides via their major histocompatibility (MH) complex to the T cell receptors (TRs) of T cells. If a peptide is immunogenic, a signaling cascade can be triggered within the T cell. However, the binding of different peptides and/or different TRs to MH is also known to influence the spatial arrangement of the MH α-helices which could itself be an additional level of T cell regulation. In this study, we introduce a new methodology based on differential geometric parameters to describe MH deformations in a detailed and comparable way. For this purpose, we represent MH α-helices by curves. On the basis of these curves, we calculate in a first step the curvature and torsion to describe each α-helix independently. In a second step, we calculate the distribution parameter and the conical curvature of the ruled surface to describe the relative orientation of the two α-helices. On the basis of four different test sets, we show how these differential geometric parameters can be used to describe changes in the spatial arrangement of the MH α-helices for different biological challenges. In the first test set, we illustrate on the basis of all available crystal structures for (TR)/pMH complexes how the binding of TRs influences the MH helices. In the second test set, we show a cross evaluation of different MH alleles with the same peptide and the same MH allele with different peptides. In the third test set, we present the spatial effects of different TRs on the same peptide/MH complex. In the fourth test set, we illustrate how a severe conformational change in an α-helix can be described quantitatively. Taken together, we provide a novel structural methodology to numerically describe subtle and severe alterations in MH α-helices for a broad range of applications.
Collapse
Affiliation(s)
- Birgit Hischenhuber
- Center for Medical Statistics, Informatics, and Intelligent Systems, Section for Biosimulation and Bioinformatics, Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | |
Collapse
|
44
|
Fully implicit ADI schemes for solving the nonlinear Poisson-Boltzmann equation. COMPUTATIONAL AND MATHEMATICAL BIOPHYSICS 2013. [DOI: 10.2478/mlbmb-2013-0006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AbstractThe Poisson-Boltzmann (PB) model is an effective approach
for the electrostatics analysis of solvated biomolecules. The
nonlinearity associated with the PB equation is critical when
the underlying electrostatic potential is strong, but is extremely
difficult to solve numerically. In this paper, we construct
two operator splitting alternating direction implicit (ADI)
schemes to efficiently and stably solve the nonlinear PB equation
in a pseudo-transient continuation approach. The operator
splitting framework enables an analytical integration of
the nonlinear term that suppresses the nonlinear instability.
A standard finite difference scheme weighted by piecewise
dielectric constants varying across the molecular surface is
employed to discretize the nonhomogeneous diffusion term of
the nonlinear PB equation, and yields tridiagonal matrices in
the Douglas and Douglas-Rachford type ADI schemes. The
proposed time splitting ADI schemes are different from all existing
pseudo-transient continuation approaches for solving
the classical nonlinear PB equation in the sense that they are
fully implicit. In a numerical benchmark example, the steady
state solutions of the fully-implicit ADI schemes based on different
initial values all converge to the time invariant analytical
solution, while those of the explicit Euler and semi-implicit
ADI schemes blow up when the magnitude of the initial solution
is large. For the solvation analysis in applications to real
biomolecules with various sizes, the time stability of the proposed
ADI schemes can be maintained even using very large
time increments, demonstrating the efficiency and stability of
the present methods for biomolecular simulation.
Collapse
|
45
|
Decherchi S, Rocchia W. A general and robust ray-casting-based algorithm for triangulating surfaces at the nanoscale. PLoS One 2013; 8:e59744. [PMID: 23577073 PMCID: PMC3618509 DOI: 10.1371/journal.pone.0059744] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 02/19/2013] [Indexed: 12/05/2022] Open
Abstract
We present a general, robust, and efficient ray-casting-based approach to triangulating complex manifold surfaces arising in the nano-bioscience field. This feature is inserted in a more extended framework that: i) builds the molecular surface of nanometric systems according to several existing definitions, ii) can import external meshes, iii) performs accurate surface area estimation, iv) performs volume estimation, cavity detection, and conditional volume filling, and v) can color the points of a grid according to their locations with respect to the given surface. We implemented our methods in the publicly available NanoShaper software suite (www.electrostaticszone.eu). Robustness is achieved using the CGAL library and an ad hoc ray-casting technique. Our approach can deal with any manifold surface (including nonmolecular ones). Those explicitly treated here are the Connolly-Richards (SES), the Skin, and the Gaussian surfaces. Test results indicate that it is robust to rotation, scale, and atom displacement. This last aspect is evidenced by cavity detection of the highly symmetric structure of fullerene, which fails when attempted by MSMS and has problems in EDTSurf. In terms of timings, NanoShaper builds the Skin surface three times faster than the single threaded version in Lindow et al. on a 100,000 atoms protein and triangulates it at least ten times more rapidly than the Kruithof algorithm. NanoShaper was integrated with the DelPhi Poisson-Boltzmann equation solver. Its SES grid coloring outperformed the DelPhi counterpart. To test the viability of our method on large systems, we chose one of the biggest molecular structures in the Protein Data Bank, namely the 1VSZ entry, which corresponds to the human adenovirus (180,000 atoms after Hydrogen addition). We were able to triangulate the corresponding SES and Skin surfaces (6.2 and 7.0 million triangles, respectively, at a scale of 2 grids per Å) on a middle-range workstation.
Collapse
Affiliation(s)
- Sergio Decherchi
- Department of Drug Discovery and Development, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Walter Rocchia
- Department of Drug Discovery and Development, Istituto Italiano di Tecnologia, Genoa, Italy
- * E-mail:
| |
Collapse
|
46
|
Decherchi S, Colmenares J, Catalano CE, Spagnuolo M, Alexov E, Rocchia W. Between algorithm and model: different Molecular Surface definitions for the Poisson-Boltzmann based electrostatic characterization of biomolecules in solution. COMMUNICATIONS IN COMPUTATIONAL PHYSICS 2013; 13:61-89. [PMID: 23519863 PMCID: PMC3601494 DOI: 10.4208/cicp.050711.111111s] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The definition of a molecular surface which is physically sound and computationally efficient is a very interesting and long standing problem in the implicit solvent continuum modeling of biomolecular systems as well as in the molecular graphics field. In this work, two molecular surfaces are evaluated with respect to their suitability for electrostatic computation as alternatives to the widely used Connolly-Richards surface: the blobby surface, an implicit Gaussian atom centered surface, and the skin surface. As figures of merit, we considered surface differentiability and surface area continuity with respect to atom positions, and the agreement with explicit solvent simulations. Geometric analysis seems to privilege the skin to the blobby surface, and points to an unexpected relationship between the non connectedness of the surface, caused by interstices in the solute volume, and the surface area dependence on atomic centers. In order to assess the ability to reproduce explicit solvent results, specific software tools have been developed to enable the use of the skin surface in Poisson-Boltzmann calculations with the DelPhi solver. Results indicate that the skin and Connolly surfaces have a comparable performance from this last point of view.
Collapse
Affiliation(s)
- Sergio Decherchi
- Department of Drug Discovery and Development, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genova, Italy
| | - José Colmenares
- Department of Drug Discovery and Development, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genova, Italy
| | - Chiara Eva Catalano
- Institute for Applied Mathematics and Information Technologies, National Research Council of Italy, Genoa, Italy
| | - Michela Spagnuolo
- Institute for Applied Mathematics and Information Technologies, National Research Council of Italy, Genoa, Italy
| | - Emil Alexov
- Department of Physics, Clemson University, Clemson, South Carolina, USA
| | - Walter Rocchia
- Department of Drug Discovery and Development, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genova, Italy
| |
Collapse
|
47
|
High-order fractional partial differential equation transform for molecular surface construction. COMPUTATIONAL AND MATHEMATICAL BIOPHYSICS 2012. [PMID: 24364020 DOI: 10.2478/mlbmb-2012-0001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fractional derivative or fractional calculus plays a significant role in theoretical modeling of scientific and engineering problems. However, only relatively low order fractional derivatives are used at present. In general, it is not obvious what role a high fractional derivative can play and how to make use of arbitrarily high-order fractional derivatives. This work introduces arbitrarily high-order fractional partial differential equations (PDEs) to describe fractional hyperdiffusions. The fractional PDEs are constructed via fractional variational principle. A fast fractional Fourier transform (FFFT) is proposed to numerically integrate the high-order fractional PDEs so as to avoid stringent stability constraints in solving high-order evolution PDEs. The proposed high-order fractional PDEs are applied to the surface generation of proteins. We first validate the proposed method with a variety of test examples in two and three-dimensional settings. The impact of high-order fractional derivatives to surface analysis is examined. We also construct fractional PDE transform based on arbitrarily high-order fractional PDEs. We demonstrate that the use of arbitrarily high-order derivatives gives rise to time-frequency localization, the control of the spectral distribution, and the regulation of the spatial resolution in the fractional PDE transform. Consequently, the fractional PDE transform enables the mode decomposition of images, signals, and surfaces. The effect of the propagation time on the quality of resulting molecular surfaces is also studied. Computational efficiency of the present surface generation method is compared with the MSMS approach in Cartesian representation. We further validate the present method by examining some benchmark indicators of macromolecular surfaces, i.e., surface area, surface enclosed volume, surface electrostatic potential and solvation free energy. Extensive numerical experiments and comparison with an established surface model indicate that the proposed high-order fractional PDEs are robust, stable and efficient for biomolecular surface generation.
Collapse
|
48
|
Feng X, Xia K, Tong Y, Wei GW. Geometric modeling of subcellular structures, organelles, and multiprotein complexes. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2012; 28:1198-223. [PMID: 23212797 PMCID: PMC3568658 DOI: 10.1002/cnm.2532] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 10/16/2012] [Accepted: 11/02/2012] [Indexed: 05/11/2023]
Abstract
Recently, the structure, function, stability, and dynamics of subcellular structures, organelles, and multiprotein complexes have emerged as a leading interest in structural biology. Geometric modeling not only provides visualizations of shapes for large biomolecular complexes but also fills the gap between structural information and theoretical modeling, and enables the understanding of function, stability, and dynamics. This paper introduces a suite of computational tools for volumetric data processing, information extraction, surface mesh rendering, geometric measurement, and curvature estimation of biomolecular complexes. Particular emphasis is given to the modeling of cryo-electron microscopy data. Lagrangian-triangle meshes are employed for the surface presentation. On the basis of this representation, algorithms are developed for surface area and surface-enclosed volume calculation, and curvature estimation. Methods for volumetric meshing have also been presented. Because the technological development in computer science and mathematics has led to multiple choices at each stage of the geometric modeling, we discuss the rationales in the design and selection of various algorithms. Analytical models are designed to test the computational accuracy and convergence of proposed algorithms. Finally, we select a set of six cryo-electron microscopy data representing typical subcellular complexes to demonstrate the efficacy of the proposed algorithms in handling biomolecular surfaces and explore their capability of geometric characterization of binding targets. This paper offers a comprehensive protocol for the geometric modeling of subcellular structures, organelles, and multiprotein complexes.
Collapse
Affiliation(s)
- Xin Feng
- Department of Computer Science and Engineering, Michigan State University, MI 48824, USA
| | | | | | | |
Collapse
|
49
|
|
50
|
Triangulated manifold meshing method preserving molecular surface topology. J Mol Graph Model 2012; 38:411-8. [PMID: 23117290 DOI: 10.1016/j.jmgm.2012.09.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Revised: 09/14/2012] [Accepted: 09/29/2012] [Indexed: 11/21/2022]
Abstract
Generation of manifold mesh is an urgent issue in mathematical simulations of biomolecule using boundary element methods (BEM) or finite element method (FEM). Defects, such as not closed mesh, intersection of elements and missing of small structures, exist in surface meshes generated by most of the current meshing method. Usually the molecular surface meshes produced by existing methods need to be revised carefully by third party software to ensure the surface represents a continuous manifold before being used in a BEM and FEM calculations. Based on the trace technique proposed in our previous work, in this paper, we present an improved meshing method to avoid intersections and preserve the topology of the molecular Gaussian surface. The new method divides the whole Gaussian surface into single valued pieces along each of x, y, z directions by tracing the extreme points along the fold curves on the surface. Numerical test results show that the surface meshes produced by the new method are manifolds and preserve surface topologies. The result surface mesh can also be directly used in surface conforming volume mesh generation for FEM type simulation.
Collapse
|