1
|
Ye YL, Zhang ZC, Ni BL, Yu D, Chen JH, Sun WM. Theoretical prediction of superatom WSi 12-based catalysts for CO oxidation by N 2O. Phys Chem Chem Phys 2023; 25:32525-32533. [PMID: 37997746 DOI: 10.1039/d3cp05363f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Catalytic conversion of N2O and CO into nonharmful gases is of great significance to reduce their adverse impact on the environment. The potential of the WSi12 superatom to serve as a new cluster catalyst for CO oxidation by N2O is examined for the first time. It is found that WSi12 prefers to adsorb the N2O molecule rather than the CO molecule, and the charge transfer from WSi12 to N2O results in the full activation of N2O into a physically absorbed N2 molecule and an activated oxygen atom that is attached to an edge of the hexagonal prism structure of WSi12. After the release of N2, the remaining oxygen atom can oxidize one CO molecule via overcoming a rate-limiting barrier of 28.19 kcal mol-1. By replacing the central W atom with Cr and Mo, the resulting MSi12 (M = Cr and Mo) superatoms exhibit catalytic performance for CO oxidation comparable to the parent WSi12. In particular, the catalytic ability of WSi12 for CO oxidation is well maintained when it is extended into tube-like WnSi6(n+1) (n = 2, 4, and 6) clusters with energy barriers of 25.63-29.50 kcal mol-1. Moreover, all these studied MSi12 (M = Cr, Mo, and W) and WnSi6(n+1) (n = 2, 4, and 6) species have high structural stability and can absorb sunlight to drive the catalytic process. This study not only opens a new door for the atomically precise design of new silicon-based nanoscale catalysts for various chemical reactions but also provides useful atomic-scale insights into the size effect of such catalysts in heterogeneous catalysis.
Collapse
Affiliation(s)
- Ya-Ling Ye
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, 350108, People's Republic of China.
- Department of Pharmacy, Nanping First Hospital Affiliated to Fujian Medical University, Nanping, Fujian, 353006, People's Republic of China
| | - Zhi-Chao Zhang
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, 350108, People's Republic of China.
| | - Bi-Lian Ni
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, 350108, People's Republic of China.
| | - Dan Yu
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, Guangdong, 510006, People's Republic of China
| | - Jing-Hua Chen
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, 350108, People's Republic of China.
| | - Wei-Ming Sun
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, 350108, People's Republic of China.
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, People's Republic of China
| |
Collapse
|
2
|
Zhang L, Zhang JC, Shi LF, Cheng X, Chen JH, Sun WM. On the possibility of using the Ti@Si 16 superatom as a novel drug delivery carrier for different drugs: A DFT study. J Mol Graph Model 2023; 118:108378. [PMID: 36423518 DOI: 10.1016/j.jmgm.2022.108378] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 11/05/2022] [Accepted: 11/15/2022] [Indexed: 11/17/2022]
Abstract
The potential application of an experimentally synthesized superatom Ti@Si16 as a novel drug carrier for cisplatin (DDP), isoniazid (INH), acetylsalicylic acid (ASA), 5-fluorouracil (5-Fu), and favipiravir (FPV) has been explored by density functional theory. It is observed that the Pt atom of DDP can be effectively absorbed on Ti@Si16 via a "donation-back donation" electron transfer mechanism, resulting in a moderate adsorption energy of -19.95 kcal/mol for DDP@[Ti@Si16]. As for INH, it prefers to combine with Ti@Si16 via the N atom of pyridine ring by forming a strongly polar N-Si bond. Differently, the interaction between Ti@Si16 and the ASA, 5-Fu, and FPV drugs is dominated by the Van der Waals interaction. Our results reveal that DDP@[Ti@Si16] possesses a moderate recovery time under body temperature, which benefits the desorption of DDP from Ti@Si16. More importantly, the release of DDP drug from the Ti@Si16 surface can be effectively controlled by exerting small orientation external electric fields on the DDP@[Ti@Si16] complex. Therefore, this study demonstrates that Ti@Si16 can serve as a promising drug carrier for DDP, and thus will further expand its practical applications in the biomedical field.
Collapse
Affiliation(s)
- Li Zhang
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, The School of Pharmacy, Fujian Medical University, Fuzhou, 350108, PR China; Department of Pharmacy, Sanming First Hospital, Affiliated Hospital of Fujian Medical University, Sanming, 365000, Fujian Province, PR China
| | - Jia-Chen Zhang
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, The School of Pharmacy, Fujian Medical University, Fuzhou, 350108, PR China
| | - Ling-Fei Shi
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, The School of Pharmacy, Fujian Medical University, Fuzhou, 350108, PR China
| | - Xin Cheng
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, The School of Pharmacy, Fujian Medical University, Fuzhou, 350108, PR China
| | - Jing-Hua Chen
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, The School of Pharmacy, Fujian Medical University, Fuzhou, 350108, PR China.
| | - Wei-Ming Sun
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, The School of Pharmacy, Fujian Medical University, Fuzhou, 350108, PR China; School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, PR China.
| |
Collapse
|
3
|
Affiliation(s)
- Jijun Zhao
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024, China
| | - Qiuying Du
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024, China
| | - Si Zhou
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024, China
| | - Vijay Kumar
- Center for Informatics, School of Natural Sciences, Shiv Nadar University, NH-91, Tehsil Dadri, Gautam Buddha Nagar 201314, U. P., India
- Dr. Vijay Kumar Foundation, 1969 Sector 4, Gurgaon 122001, Haryana, India
| |
Collapse
|
6
|
Xu HG, Kong XY, Deng XJ, Zhang ZG, Zheng WJ. Smallest fullerene-like silicon cage stabilized by a V2 unit. J Chem Phys 2014; 140:024308. [DOI: 10.1063/1.4861053] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|