1
|
Taylor M, Mun H, Ho J. Predicting Carbonic Anhydrase Binding Affinity: Insights from QM Cluster Models. J Phys Chem B 2025; 129:1475-1485. [PMID: 39874048 DOI: 10.1021/acs.jpcb.4c06393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
A systematic series of QM cluster models has been developed to predict the trend in the carbonic anhydrase binding affinity of a structurally diverse dataset of ligands. Reference DLPNO-CCSD(T)/CBS binding energies were generated for a cluster model and used to evaluate the performance of contemporary density functional theory methods, including Grimme's "3c" DFT composite methods (r2SCAN-3c and ωB97X-3c). It is demonstrated that when validated QM methods are used, the predictive power of the cluster models improves systematically with the size of the cluster models. This provided valuable insights into the key interactions that need to be modeled quantum mechanically and could inform how the QM region should be defined in hybrid quantum mechanics/molecular mechanics (QM/MM) models. The use of r2SCAN-3c on the largest cluster model composed of 16 residues appears to be an economical approach to predicting binding trends compared with using more robust DFT methods such as ωB97M-V and provides a significant improvement compared with docking.
Collapse
Affiliation(s)
- Mackenzie Taylor
- School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Haedam Mun
- School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Junming Ho
- School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
2
|
Wang QQ, Song J, Wei D. Origin of Chemoselectivity of Halohydrin Dehalogenase-Catalyzed Epoxide Ring-Opening Reactions. J Chem Inf Model 2024; 64:4530-4541. [PMID: 38808649 DOI: 10.1021/acs.jcim.4c00640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
By performing molecular dynamics (MD), quantum mechanical/molecular mechanical (QM/MM) calculations, and QM cluster calculations, the origin of chemoselectivity of halohydrin dehalogenase (HHDH)-catalyzed ring-opening reactions of epoxide with the nucleophilic reagent NO2- has been explored. Four possible chemoselective pathways were considered, and the computed results indicate that the pathway associated with the nucleophilic attack on the Cα position of epoxide by NO2- is most energetically favorable and has an energy barrier of 12.9 kcal/mol, which is close to 14.1 kcal/mol derived from experimental kinetic data. A hydrogen bonding network formed by residues Ser140, Tyr153, and Arg157 can strengthen the electrophilicity of the active site of the epoxide substrate to affect chemoselectivity. To predict the energy barrier trends of the chemoselective transition states, multiple analyses including distortion analysis and electrophilic Parr function (Pk+) analysis were carried out with or without an enzyme environment. The obtained insights should be valuable for the rational design of enzyme-catalyzed and biomimetic organocatalytic epoxide ring-opening reactions with special chemoselectivity.
Collapse
Affiliation(s)
- Qian-Qian Wang
- College of Chemistry, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, Henan, P. R. China
| | - Jinshuai Song
- College of Chemistry, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, Henan, P. R. China
| | - Donghui Wei
- College of Chemistry, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, Henan, P. R. China
| |
Collapse
|
3
|
Bowling PE, Dasgupta S, Herbert JM. Eliminating Imaginary Vibrational Frequencies in Quantum-Chemical Cluster Models of Enzymatic Active Sites. J Chem Inf Model 2024; 64:3912-3922. [PMID: 38648614 DOI: 10.1021/acs.jcim.4c00221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
In constructing finite models of enzyme active sites for quantum-chemical calculations, atoms at the periphery of the model must be constrained to prevent unphysical rearrangements during geometry relaxation. A simple fixed-atom or "coordinate-lock" approach is commonly employed but leads to undesirable artifacts in the form of small imaginary frequencies. These preclude evaluation of finite-temperature free-energy corrections, limiting thermochemical calculations to enthalpies only. Full-dimensional vibrational frequency calculations are possible by replacing the fixed-atom constraints with harmonic confining potentials. Here, we compare that approach to an alternative strategy in which fixed-atom contributions to the Hessian are simply omitted. While the latter strategy does eliminate imaginary frequencies, it tends to underestimate both the zero-point energy and the vibrational entropy while introducing artificial rigidity. Harmonic confining potentials eliminate imaginary frequencies and provide a flexible means to construct active-site models that can be used in unconstrained geometry relaxations, affording better convergence of reaction energies and barrier heights with respect to the model size, as compared to models with fixed-atom constraints.
Collapse
Affiliation(s)
- Paige E Bowling
- Biophysics Graduate Program, The Ohio State University, Columbus, Ohio 43210, United States
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Saswata Dasgupta
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
- Department of Chemistry and Biochemistry, University of California-San Diego, La Jolla, California 92093, United States
| | - John M Herbert
- Biophysics Graduate Program, The Ohio State University, Columbus, Ohio 43210, United States
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
4
|
Cao YC, Liao RZ. QM Calculations Revealed that Outer-Sphere Electron Transfer Boosted O-O Bond Cleavage in the Multiheme-Dependent Cytochrome bd Oxygen Reductase. Inorg Chem 2023; 62:4066-4075. [PMID: 36857027 DOI: 10.1021/acs.inorgchem.2c03742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
The cytochrome bd oxygen reductase catalyzes the four-electron reduction of dioxygen to two water molecules. The structure of this enzyme reveals three heme molecules in the active site, which differs from that of heme-copper cytochrome c oxidase. The quantum chemical cluster approach was used to uncover the reaction mechanism of this intriguing metalloenzyme. The calculations suggested that a proton-coupled electron transfer reduction occurs first to generate a ferrous heme b595. This is followed by the dioxygen binding at the heme d center coupled with an outer-sphere electron transfer from the ferrous heme b595 to the dioxygen moiety, affording a ferric ion superoxide intermediate. A second proton-coupled electron transfer produces a heme d ferric hydroperoxide, which undergoes efficient O-O bond cleavage facilitated by an outer-sphere electron transfer from the ferrous heme b595 to the O-O σ* orbital and an inner-sphere proton transfer from the heme d hydroxyl group to the leaving hydroxide. The synergistic benefits of the two types of hemes rationalize the highly efficient oxygen reduction repertoire for the multi-heme-dependent cytochrome bd oxygen reductase family.
Collapse
Affiliation(s)
- Yu-Chen Cao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Rong-Zhen Liao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| |
Collapse
|
5
|
Unraveling the Role of the Tyrosine Tetrad from the Binding Site of the Epigenetic Writer MLL3 in the Catalytic Mechanism and Methylation Multiplicity. Int J Mol Sci 2022; 23:ijms231810339. [PMID: 36142254 PMCID: PMC9499395 DOI: 10.3390/ijms231810339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/17/2022] Open
Abstract
MLL3, also known as KMT2C, is a lysine mono-methyltransferase in charge of the writing of an epigenetic mark on lysine 4 from histone 3. The catalytic site of MLL3 is composed of four tyrosines, namely, Y44, Y69, Y128, and Y130. Tyrosine residues are highly conserved among lysine methyltransferases’ catalytic sites, although their complete function is still unclear. The exploration of how modifications on these residues from the enzymatic machinery impact the enzymatic activity of MLL3 could shed light transversally into the inner functioning of enzymes with similar characteristics. Through the use of QMMM calculations, we focus on the effect of the mutation of each tyrosine from the catalytic site on the enzymatic activity and the product specificity in the current study. While we found that the mutations of Y44 and Y128 by phenylalanine inactivated the enzyme, the mutation of Y128 by alanine reactivated the enzymatic activity of MLL3. Moreover, according to our models, the Y128A mutant was even found to be capable of di- and tri-methylate lysine 4 from histone 3, what would represent a gain of function mutation, and could be responsible for the development of diseases. Finally, we were able to establish the inactivation mechanism, which involved the use of Y130 as a water occlusion structure, whose conformation, once perturbed by its mutation or Y128 mutant, allows the access of water molecules that sequester the electron pair from lysine 4 avoiding its methylation process and, thus, increasing the barrier height.
Collapse
|
6
|
Tzeliou CE, Mermigki MA, Tzeli D. Review on the QM/MM Methodologies and Their Application to Metalloproteins. Molecules 2022; 27:molecules27092660. [PMID: 35566011 PMCID: PMC9105939 DOI: 10.3390/molecules27092660] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/12/2022] [Accepted: 04/18/2022] [Indexed: 12/04/2022] Open
Abstract
The multiscaling quantum mechanics/molecular mechanics (QM/MM) approach was introduced in 1976, while the extensive acceptance of this methodology started in the 1990s. The combination of QM/MM approach with molecular dynamics (MD) simulation, otherwise known as the QM/MM/MD approach, is a powerful and promising tool for the investigation of chemical reactions’ mechanism of complex molecular systems, drug delivery, properties of molecular devices, organic electronics, etc. In the present review, the main methodologies in the multiscaling approaches, i.e., density functional theory (DFT), semiempirical methodologies (SE), MD simulations, MM, and their new advances are discussed in short. Then, a review on calculations and reactions on metalloproteins is presented, where particular attention is given to nitrogenase that catalyzes the conversion of atmospheric nitrogen molecules N₂ into NH₃ through the process known as nitrogen fixation and the FeMo-cofactor.
Collapse
Affiliation(s)
- Christina Eleftheria Tzeliou
- Laboratory of Physical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 157 71 Athens, Greece; (C.E.T.); (M.A.M.)
| | - Markella Aliki Mermigki
- Laboratory of Physical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 157 71 Athens, Greece; (C.E.T.); (M.A.M.)
| | - Demeter Tzeli
- Laboratory of Physical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 157 71 Athens, Greece; (C.E.T.); (M.A.M.)
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., 116 35 Athens, Greece
- Correspondence: ; Tel.: +30-210-727-4307
| |
Collapse
|
7
|
Brás NF, Ashirbaev SS, Zipse H. Combined in Silico and in Vitro Approaches To Uncover the Oxidation and Schiff Base Reaction of Baicalein as an Inhibitor of Amyloid Protein Aggregation. Chemistry 2022; 28:e202104240. [DOI: 10.1002/chem.202104240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Indexed: 11/07/2022]
Affiliation(s)
- Natércia F. Brás
- LAQV, REQUIMTE Departamento de Química e Bioquímica Faculdade de Ciências Universidade do Porto Rua do Campo Alegre s/n 4169-007 Porto Portugal
- Department Chemie Ludwig-Maximilians-Universität Muenchen 81377 Muenchen Germany
| | - Salavat S. Ashirbaev
- Department Chemie Ludwig-Maximilians-Universität Muenchen 81377 Muenchen Germany
| | - Hendrik Zipse
- Department Chemie Ludwig-Maximilians-Universität Muenchen 81377 Muenchen Germany
| |
Collapse
|
8
|
Exploration of the Activation Mechanism of the Epigenetic Regulator MLL3: A QM/MM Study. Biomolecules 2021; 11:biom11071051. [PMID: 34356675 PMCID: PMC8301819 DOI: 10.3390/biom11071051] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/07/2021] [Accepted: 07/10/2021] [Indexed: 11/17/2022] Open
Abstract
The mixed lineage leukemia 3 or MLL3 is the enzyme in charge of the writing of an epigenetic mark through the methylation of lysine 4 from the N-terminal domain of histone 3 and its deregulation has been related to several cancer lines. An interesting feature of this enzyme comes from its regulation mechanism, which involves its binding to an activating dimer before it can be catalytically functional. Once the trimer is formed, the reaction mechanism proceeds through the deprotonation of the lysine followed by the methyl-transfer reaction. Here we present a detailed exploration of the activation mechanism through a QM/MM approach focusing on both steps of the reaction, aiming to provide new insights into the deprotonation process and the role of the catalytic machinery in the methyl-transfer reaction. Our finding suggests that the source of the activation mechanism comes from conformational restriction mediated by the formation of a network of salt-bridges between MLL3 and one of the activating subunits, which restricts and stabilizes the positioning of several residues relevant for the catalysis. New insights into the deprotonation mechanism of lysine are provided, identifying a valine residue as crucial in the positioning of the water molecule in charge of the process. Finally, a tyrosine residue was found to assist the methyl transfer from SAM to the target lysine.
Collapse
|
9
|
Sheng X, Himo F. Mechanisms of metal-dependent non-redox decarboxylases from quantum chemical calculations. Comput Struct Biotechnol J 2021; 19:3176-3186. [PMID: 34141138 PMCID: PMC8187880 DOI: 10.1016/j.csbj.2021.05.044] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/24/2021] [Accepted: 05/24/2021] [Indexed: 11/18/2022] Open
Abstract
Quantum chemical calculations are today an extremely valuable tool for studying enzymatic reaction mechanisms. In this mini-review, we summarize our recent work on several metal-dependent decarboxylases, where we used the so-called cluster approach to decipher the details of the reaction mechanisms, including elucidation of the identity of the metal cofactors and the origins of substrate specificity. Decarboxylases are of growing potential for biocatalytic applications, as they can be used in the synthesis of novel compounds of, e.g., pharmaceutical interest. They can also be employed in the reverse direction, providing a strategy to synthesize value‐added chemicals by CO2 fixation. A number of non-redox metal-dependent decarboxylases from the amidohydrolase superfamily have been demonstrated to have promiscuous carboxylation activities and have attracted great attention in the recent years. The computational mechanistic studies provide insights that are important for the further modification and utilization of these enzymes in industrial processes. The discussed enzymes are: 5‐carboxyvanillate decarboxylase, γ‐resorcylate decarboxylase, 2,3‐dihydroxybenzoic acid decarboxylase, and iso-orotate decarboxylase.
Collapse
Key Words
- 2,3-DHBD, 2,3‐dihydroxybenzoic acid decarboxylase
- 2,6-DHBD, 2,6‐dihydroxybenzoic acid decarboxylase
- 2-NR, 2-nitroresorcinol
- 5-CV, 5-carboxyvanillate
- 5-NV, 5-nitrovanillate
- 5caU, 5-carboxyuracil
- AHS, amidohydrolase superfamily
- Biocatalysis
- Decarboxylase
- Density functional theory
- IDCase, iso-orotate decarboxylase
- LigW, 5‐carboxyvanillate decarboxylase
- MIMS, membrane inlet mass spectrometry
- QM/MM, quantum mechanics/molecular mechanics
- Reaction mechanism
- Transition state
- γ-RS, γ-resorcylate
- γ-RSD, γ‐resorcylate decarboxylase
Collapse
Affiliation(s)
- Xiang Sheng
- National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, and National Technology Innovation Center for Synthetic Biology, Tianjin 300308, PR China
| | - Fahmi Himo
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-10691 Stockholm, Sweden
| |
Collapse
|
10
|
Sheng X, Himo F. Computational Study of Pictet–Spenglerase Strictosidine Synthase: Reaction Mechanism and Origins of Enantioselectivity of Natural and Non-Natural Substrates. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03758] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Xiang Sheng
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-10691 Stockholm, Sweden
| | - Fahmi Himo
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-10691 Stockholm, Sweden
| |
Collapse
|
11
|
Najibi A, Goerigk L. DFT
‐D4
counterparts of leading
meta‐
generalized‐gradient approximation and hybrid density functionals for energetics and geometries. J Comput Chem 2020; 41:2562-2572. [DOI: 10.1002/jcc.26411] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/10/2020] [Accepted: 08/12/2020] [Indexed: 12/25/2022]
Affiliation(s)
- Asim Najibi
- School of Chemistry The University of Melbourne Parkville Australia
| | - Lars Goerigk
- School of Chemistry The University of Melbourne Parkville Australia
| |
Collapse
|
12
|
Sheng X, Kazemi M, Planas F, Himo F. Modeling Enzymatic Enantioselectivity using Quantum Chemical Methodology. ACS Catal 2020. [DOI: 10.1021/acscatal.0c00983] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Xiang Sheng
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, Stockholm SE-106 91, Sweden
| | - Masoud Kazemi
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, Stockholm SE-106 91, Sweden
| | - Ferran Planas
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, Stockholm SE-106 91, Sweden
| | - Fahmi Himo
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, Stockholm SE-106 91, Sweden
| |
Collapse
|
13
|
Dasgupta S, Herbert JM. Using Atomic Confining Potentials for Geometry Optimization and Vibrational Frequency Calculations in Quantum-Chemical Models of Enzyme Active Sites. J Phys Chem B 2020; 124:1137-1147. [PMID: 31986049 DOI: 10.1021/acs.jpcb.9b11060] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Quantum-chemical studies of enzymatic reaction mechanisms sometimes use truncated active-site models as simplified alternatives to mixed quantum mechanics molecular mechanics (QM/MM) procedures. Eliminating the MM degrees of freedom reduces the complexity of the sampling problem, but the trade-off is the need to introduce geometric constraints in order to prevent structural collapse of the model system during geometry optimizations that do not contain a full protein backbone. These constraints may impair the efficiency of the optimization, and care must be taken to avoid artifacts such as imaginary vibrational frequencies. We introduce a simple alternative in which terminal atoms of the model system are placed in soft harmonic confining potentials rather than being rigidly constrained. This modification is simple to implement and straightforward to use in vibrational frequency calculations, unlike iterative constraint-satisfaction algorithms, and allows the optimization to proceed without constraint even though the practical result is to fix the anchor atoms in space. The new approach is more efficient for optimizing minima and transition states, as compared to the use of fixed-atom constraints, and also more robust against unwanted imaginary frequencies. We illustrate the method by application to several enzymatic reaction pathways where entropy makes a significant contribution to the relevant reaction barriers. The use of confining potentials correctly describes reaction paths and facilitates calculation of both vibrational zero-point and finite-temperature entropic corrections to barrier heights.
Collapse
Affiliation(s)
- Saswata Dasgupta
- Department of Chemistry and Biochemistry , The Ohio State University , Columbus , Ohio 43210 , United States
| | - John M Herbert
- Department of Chemistry and Biochemistry , The Ohio State University , Columbus , Ohio 43210 , United States
| |
Collapse
|
14
|
Wappett DA, Goerigk L. Toward a Quantum-Chemical Benchmark Set for Enzymatically Catalyzed Reactions: Important Steps and Insights. J Phys Chem A 2019; 123:7057-7074. [DOI: 10.1021/acs.jpca.9b05088] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
| | - Lars Goerigk
- School of Chemistry, The University of Melbourne, Victoria 3010, Australia
| |
Collapse
|
15
|
Wei WJ, Qian HX, Wang WJ, Liao RZ. Computational Understanding of the Selectivities in Metalloenzymes. Front Chem 2018; 6:638. [PMID: 30622942 PMCID: PMC6308299 DOI: 10.3389/fchem.2018.00638] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 12/07/2018] [Indexed: 01/26/2023] Open
Abstract
Metalloenzymes catalyze many different types of biological reactions with high efficiency and remarkable selectivity. The quantum chemical cluster approach and the combined quantum mechanics/molecular mechanics methods have proven very successful in the elucidation of the reaction mechanism and rationalization of selectivities in enzymes. In this review, recent progress in the computational understanding of various selectivities including chemoselectivity, regioselectivity, and stereoselectivity, in metalloenzymes, is discussed.
Collapse
Affiliation(s)
| | | | | | - Rong-Zhen Liao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
16
|
Kazemi M, Sheng X, Kroutil W, Himo F. Computational Study of Mycobacterium smegmatis Acyl Transferase Reaction Mechanism and Specificity. ACS Catal 2018. [DOI: 10.1021/acscatal.8b03360] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Masoud Kazemi
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-10691, Stockholm, Sweden
| | - Xiang Sheng
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-10691, Stockholm, Sweden
| | - Wolfgang Kroutil
- Department of Chemistry, University of Graz, Heinrichstrasse 28, A-8010 Graz, Austria
| | - Fahmi Himo
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-10691, Stockholm, Sweden
| |
Collapse
|
17
|
Hörberg J, Saenz-Mendez P, Eriksson LA. QM/MM Studies of Dph5 - A Promiscuous Methyltransferase in the Eukaryotic Biosynthetic Pathway of Diphthamide. J Chem Inf Model 2018; 58:1406-1414. [PMID: 29927239 DOI: 10.1021/acs.jcim.8b00217] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Eukaryotic diphthine synthase, Dph5, is a promiscuous methyltransferase that catalyzes an extraordinary N, O-tetramethylation of 2-(3-carboxy-3-aminopropyl)-l-histidine (ACP) to yield diphthine methyl ester (DTM). These are intermediates in the biosynthesis of the post-translationally modified histidine residue diphthamide (DTA), a unique and essential residue part of the eukaryotic elongation factor 2 (eEF2). Herein, the promiscuity of Saccharomyces cerevisiae Dph5 has been studied with in silico approaches, including homology modeling to provide the structure of Dph5, protein-protein docking and molecular dynamics to construct the Dph5-eEF2 complex, and quantum mechanics/molecular mechanics (QM/MM) calculations to outline a plausible mechanism. The calculations show that the methylation of ACP follows a typical SN2 mechanism, initiating with a complete methylation (trimethylation) at the N-position, followed by the single O-methylation. For each of the three N-methylation reactions, our calculations support a stepwise mechanism, which first involve proton transfer through a bridging water to a conserved aspartate residue D165, followed by a methyl transfer. Once fully methylated, the trimethyl amino group forms a weak electrostatic interaction with D165, which allows the carboxylate group of diphthine to attain the right orientation for the final methylation step to be accomplished.
Collapse
Affiliation(s)
- Johanna Hörberg
- Department of Chemistry and Molecular Biology , University of Gothenburg , 405 30 Göteborg , Sweden
| | - Patricia Saenz-Mendez
- Computational Chemistry and Biology Group, Facultad de Química , Universidad de la República , 11800 Montevideo , Uruguay
| | - Leif A Eriksson
- Department of Chemistry and Molecular Biology , University of Gothenburg , 405 30 Göteborg , Sweden
| |
Collapse
|
18
|
Lysine Possesses the Optimal Chain Length for Histone Lysine Methyltransferase Catalysis. Sci Rep 2017; 7:16148. [PMID: 29170487 PMCID: PMC5700997 DOI: 10.1038/s41598-017-16128-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 11/08/2017] [Indexed: 12/21/2022] Open
Abstract
Histone lysine methyltransferases (KMTs) represent an important class of epigenetic enzymes that play essential roles in regulation of gene expression in humans. Members of the KMT family catalyze the transfer of the methyl group from S-adenosylmethionine (SAM) to lysine residues in histone tails and core histones. Here we report combined MALDI-TOF MS experiments, NMR analyses and quantum mechanical/molecular dynamics studies on human KMT-catalyzed methylation of the most related shorter and longer lysine analogues, namely ornithine and homolysine, in model histone peptides. Our experimental work demonstrates that while lysine is an excellent natural substrate for KMTs, ornithine and homolysine are not. This study reveals that ornithine does not undergo KMT-catalyzed methylation reactions, whereas homolysine can be methylated by representative examples of human KMTs. The results demonstrate that the specificity of KMTs is highly sensitive to the side chain length of the residue to be methylated. The origin for the degree of the observed activities of KMTs on ornithine and homolysine is discussed.
Collapse
|
19
|
Abstract
The quantum chemical cluster approach is a powerful method for investigating enzymatic reactions. Over the past two decades, a large number of highly diverse systems have been studied and a great wealth of mechanistic insight has been developed using this technique. This Perspective reviews the current status of the methodology. The latest technical developments are highlighted, and challenges are discussed. Some recent applications are presented to illustrate the capabilities and progress of this approach, and likely future directions are outlined.
Collapse
Affiliation(s)
- Fahmi Himo
- Arrhenius Laboratory, Department of Organic Chemistry, Stockholm University , SE-106 91 Stockholm, Sweden
| |
Collapse
|
20
|
Wei WJ, Siegbahn PEM, Liao RZ. Theoretical Study of the Mechanism of the Nonheme Iron Enzyme EgtB. Inorg Chem 2017; 56:3589-3599. [PMID: 28277674 DOI: 10.1021/acs.inorgchem.6b03177] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
EgtB is a nonheme iron enzyme catalyzing the C-S bond formation between γ-glutamyl cysteine (γGC) and N-α-trimethyl histidine (TMH) in the ergothioneine biosynthesis. Density functional calculations were performed to elucidate and delineate the reaction mechanism of this enzyme. Two different mechanisms were considered, depending on whether the sulfoxidation or the S-C bond formation takes place first. The calculations suggest that the S-O bond formation occurs first between the thiolate and the ferric superoxide, followed by homolytic O-O bond cleavage, very similar to the case of cysteine dioxygenase. Subsequently, proton transfer from a second-shell residue Tyr377 to the newly generated iron-oxo moiety takes place, which is followed by proton transfer from the TMH imidazole to Tyr377, facilitated by two crystallographically observed water molecules. Next, the S-C bond is formed between γGC and TMH, followed by proton transfer from the imidazole CH moiety to Tyr377, which was calculated to be the rate-limiting step for the whole reaction, with a barrier of 17.9 kcal/mol in the quintet state. The calculated barrier for the rate-limiting step agrees quite well with experimental kinetic data. Finally, this proton is transferred back to the imidazole nitrogen to form the product. The alternative thiyl radical attack mechanism has a very high barrier, being 25.8 kcal/mol, ruling out this possibility.
Collapse
Affiliation(s)
- Wen-Jie Wei
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology , Wuhan 430074, China
| | - Per E M Siegbahn
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University , SE-10691 Stockholm, Sweden
| | - Rong-Zhen Liao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology , Wuhan 430074, China
| |
Collapse
|
21
|
Sheng X, Himo F. Theoretical Study of Enzyme Promiscuity: Mechanisms of Hydration and Carboxylation Activities of Phenolic Acid Decarboxylase. ACS Catal 2017. [DOI: 10.1021/acscatal.6b03249] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Xiang Sheng
- Department of Organic Chemistry,
Arrhenius Laboratory, Stockholm University, SE-10691 Stockholm, Sweden
| | - Fahmi Himo
- Department of Organic Chemistry,
Arrhenius Laboratory, Stockholm University, SE-10691 Stockholm, Sweden
| |
Collapse
|
22
|
An extended N-H bond, driven by a conserved second-order interaction, orients the flavin N5 orbital in cholesterol oxidase. Sci Rep 2017; 7:40517. [PMID: 28098177 PMCID: PMC5241826 DOI: 10.1038/srep40517] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 12/06/2016] [Indexed: 02/06/2023] Open
Abstract
The protein microenvironment surrounding the flavin cofactor in flavoenzymes is key to the efficiency and diversity of reactions catalysed by this class of enzymes. X-ray diffraction structures of oxidoreductase flavoenzymes have revealed recurrent features which facilitate catalysis, such as a hydrogen bond between a main chain nitrogen atom and the flavin redox center (N5). A neutron diffraction study of cholesterol oxidase has revealed an unusual elongated main chain nitrogen to hydrogen bond distance positioning the hydrogen atom towards the flavin N5 reactive center. Investigation of the structural features which could cause such an unusual occurrence revealed a positively charged lysine side chain, conserved in other flavin mediated oxidoreductases, in a second shell away from the FAD cofactor acting to polarize the peptide bond through interaction with the carbonyl oxygen atom. Double-hybrid density functional theory calculations confirm that this electrostatic arrangement affects the N-H bond length in the region of the flavin reactive center. We propose a novel second-order partial-charge interaction network which enables the correct orientation of the hydride receiving orbital of N5. The implications of these observations for flavin mediated redox chemistry are discussed.
Collapse
|
23
|
Abstract
![]()
Although QM/MM calculations
are the primary current tool for modeling enzymatic reactions, the
reliability of such calculations can be limited by the size of the
QM region. Thus, we examine in this work the dependence of QM/MM calculations
on the size of the QM region, using the reaction of catechol-O-methyl transferase (COMT) as a test case. Our study focuses
on the effect of adding residues to the QM region on the activation
free energy, obtained with extensive QM/MM sampling. It is found that
the sensitivity of the activation barrier to the size of the QM is
rather limited, while the dependence of the reaction free energy is
somewhat larger. Of course, the results depend on the inclusion of
the first solvation shell in the QM regions. For example, the inclusion
of the Mg2+ ion can change the activation barrier due to
charge transfer effects. However, such effects can easily be included
in semiempirical approaches by proper parametrization. Overall, we
establish that QM/MM calculations of activation barriers of enzymatic
reactions are not highly sensitive to the size of the QM region, beyond
the immediate region that describes the reacting atoms.
Collapse
|
24
|
Kromann JC, Christensen AS, Cui Q, Jensen JH. Towards a barrier height benchmark set for biologically relevant systems. PeerJ 2016; 4:e1994. [PMID: 27168993 PMCID: PMC4860304 DOI: 10.7717/peerj.1994] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 04/10/2016] [Indexed: 11/20/2022] Open
Abstract
We have collected computed barrier heights and reaction energies (and associated model structures) for five enzymes from studies published by Himo and co-workers. Using this data, obtained at the B3LYP/6- 311+G(2d,2p)[LANL2DZ]//B3LYP/6-31G(d,p) level of theory, we then benchmark PM6, PM7, PM7-TS, and DFTB3 and discuss the influence of system size, bulk solvation, and geometry re-optimization on the error. The mean absolute differences (MADs) observed for these five enzyme model systems are similar to those observed for PM6 and PM7 for smaller systems (10-15 kcal/mol), while DFTB results in a MAD that is significantly lower (6 kcal/mol). The MADs for PMx and DFTB3 are each dominated by large errors for a single system and if the system is disregarded the MADs fall to 4-5 kcal/mol. Overall, results for the condensed phase are neither more or less accurate relative to B3LYP than those in the gas phase. With the exception of PM7-TS, the MAD for small and large structural models are very similar, with a maximum deviation of 3 kcal/mol for PM6. Geometry optimization with PM6 shows that for one system this method predicts a different mechanism compared to B3LYP/6-31G(d,p). For the remaining systems, geometry optimization of the large structural model increases the MAD relative to single points, by 2.5 and 1.8 kcal/mol for barriers and reaction energies. For the small structural model, the corresponding MADs decrease by 0.4 and 1.2 kcal/mol, respectively. However, despite these small changes, significant changes in the structures are observed for some systems, such as proton transfer and hydrogen bonding rearrangements. The paper represents the first step in the process of creating a benchmark set of barriers computed for systems that are relatively large and representative of enzymatic reactions, a considerable challenge for any one research group but possible through a concerted effort by the community. We end by outlining steps needed to expand and improve the data set and how other researchers can contribute to the process.
Collapse
Affiliation(s)
- Jimmy C Kromann
- Department of Chemistry, University of Copenhagen , Copenhagen , Denmark
| | - Anders S Christensen
- Department of Chemistry, University of Wisconsin-Madison , Madison, WI , United States
| | - Qiang Cui
- Department of Chemistry, University of Wisconsin-Madison , Madison, WI , United States
| | - Jan H Jensen
- Department of Chemistry, University of Copenhagen , Copenhagen , Denmark
| |
Collapse
|
25
|
Svensson F, Engen K, Lundbäck T, Larhed M, Sköld C. Virtual Screening for Transition State Analogue Inhibitors of IRAP Based on Quantum Mechanically Derived Reaction Coordinates. J Chem Inf Model 2015; 55:1984-93. [DOI: 10.1021/acs.jcim.5b00359] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Fredrik Svensson
- Organic
Pharmaceutical Chemistry, Department of Medicinal Chemistry, BMC, Uppsala University, P.O.
Box 574, SE-751 23 Uppsala, Sweden
| | - Karin Engen
- Organic
Pharmaceutical Chemistry, Department of Medicinal Chemistry, BMC, Uppsala University, P.O.
Box 574, SE-751 23 Uppsala, Sweden
| | - Thomas Lundbäck
- Chemical
Biology Consortium Sweden, Science for Life Laboratory, Division of
Translational Medicine and Chemical Biology, Department of Medical
Biochemistry and Biophysics, Karolinska Institutet, Tomtebodavägen
23A, SE-171 65 Solna, Sweden
| | - Mats Larhed
- Science
for Life Laboratory, Department of Medicinal Chemistry, BMC, Uppsala University, P.O.
Box 574, SE-751 23 Uppsala, Sweden
| | - Christian Sköld
- Organic
Pharmaceutical Chemistry, Department of Medicinal Chemistry, BMC, Uppsala University, P.O.
Box 574, SE-751 23 Uppsala, Sweden
| |
Collapse
|
26
|
Liao RZ, Siegbahn PEM. Mechanism and selectivity of the dinuclear iron benzoyl-coenzyme A epoxidase BoxB. Chem Sci 2015; 6:2754-2764. [PMID: 28706665 PMCID: PMC5489048 DOI: 10.1039/c5sc00313j] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 03/02/2015] [Indexed: 12/22/2022] Open
Abstract
DFT calculations are used to elucidate the reaction mechanism and selectivity of BoxB catalyzed benzoyl-CoA epoxidation.
Benzoyl-CoA epoxidase is a dinuclear iron enzyme that catalyzes the epoxidation reaction of the aromatic ring of benzoyl-CoA with chemo-, regio- and stereo-selectivity. It has been suggested that this enzyme may also catalyze the deoxygenation reaction of epoxide, suggesting a unique bifunctionality among the diiron enzymes. We report a density functional theory study of this enzyme aimed at elucidating its mechanism and the various selectivities. The epoxidation is suggested to start with the binding of the O2 molecule to the diferrous center to generate a diferric peroxide complex, followed by concerted O–O bond cleavage and epoxide formation. Two different pathways have been located, leading to (2S,3R)-epoxy and (2R,3S)-epoxy products, with barriers of 17.6 and 20.4 kcal mol–1, respectively. The barrier difference is 2.8 kcal mol–1, corresponding to a diastereomeric excess of about 99 : 1. Further isomerization from epoxide to phenol is found to have quite a high barrier, which cannot compete with the product release step. After product release into solution, fast epoxide–oxepin isomerization and racemization can take place easily, leading to a racemic mixture of (2S,3R) and (2R,3S) products. The deoxygenation of epoxide to regenerate benzoyl-CoA by a diferrous form of the enzyme proceeds via a stepwise mechanism. The C2–O bond cleavage happens first, coupled with one electron transfer from one iron center to the substrate, to form a radical intermediate, which is followed by the second C3–O bond cleavage. The first step is rate-limiting with a barrier of only 10.8 kcal mol–1. Further experimental studies are encouraged to verify our results.
Collapse
Affiliation(s)
- Rong-Zhen Liao
- Key Laboratory for Large-Format Battery Materials and System , Ministry of Education , School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology , Wuhan 430074 , China .
| | - Per E M Siegbahn
- Department of Organic Chemistry , Arrhenius Laboratory , Stockholm University , SE-10691 Stockholm , Sweden .
| |
Collapse
|
27
|
Cui X, He R, Yang Q, Shen W, Li M. Theoretical study on the chemical mechanism of enoyl-CoA hydratase and the form of inhibitor binding. J Mol Model 2014; 20:2411. [PMID: 25174944 DOI: 10.1007/s00894-014-2411-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 07/30/2014] [Indexed: 10/24/2022]
Abstract
Enoyl-CoA hydratase (ECH) catalyzes the second step in the vital β-oxidation pathway of fatty acid metabolism. This enzyme catalyzes the syn-addition of a water molecule across the double bond of 4-(N,N-dimethylamino) cinnamoyl-CoA (DAC-CoA). In this work, the reaction mechanisms of ECH were investigated using the density functional theory (DFT) methods. The different protonation states in which the important residues Glu164 and Glu144 are either neutral or ionized were considered. Four models of the active site were designed based on the X-ray crystal structure of the enzyme. The calculations gave strong support to the proposed mechanism and confirmed that both Glu164 and Glu144 are in a deprotonated state in the reaction mechanism of ECH. In addition, we constructed a model of the active site with the inhibitor acetoacetyl-CoA based on the crystal structure. Caomparison of the calculated energy barriers showed that binding of the keto-enol form of the inhibitor is more reasonable than that of the di-keto form in the inhibition process. Moreover, acetoacetyl-CoA was found to exhibit a keto-enol tautomerism when it acts as an inhibitor in the reaction. The present theoretical results indicated that both residues Glu164 and Glu144 are unprotonated in ECH with the substrate bound, while only Glu164 is unprotonated when the inhibitor binds ECH.
Collapse
Affiliation(s)
- Xiaobin Cui
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 40071, China
| | | | | | | | | |
Collapse
|
28
|
Borowski T, Broclawik E. Bioinorganic Reaction Mechanisms – Quantum Chemistry Approach. ACTA ACUST UNITED AC 2014. [DOI: 10.1007/978-3-642-28554-7_22] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
29
|
Kellie JL, Wetmore SD. Selecting DFT methods for use in optimizations of enzyme active sites: applications to ONIOM treatments of DNA glycosylases. CAN J CHEM 2013. [DOI: 10.1139/cjc-2012-0506] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
When using a hybrid methodology to treat an enzymatic reaction, many factors contribute to selecting the method for the high-level region, which can be complicated by the presence of dispersion-driven interactions such as π–π stacking. In addition, the proper treatment of the reaction center often requires a large number of heavy atoms to be included in the high-level region, precluding the use of ab initio methods such as MP2 as well as large basis sets, in the optimization step. In the present work, popular DFT methods were tested to identify an appropriate functional for treating the high-level region in ONIOM optimizations of reactions catalyzed by nonmetalloenzymes. Eight different DFT methods (B3LYP, B97-2, MPW1K, MPWB1K, BB1K, B1B95, M06-2X, and ωB97X-D) in combination with four double-ζ quality Pople basis sets were tested for their ability to optimize noncovalent interactions (hydrogen bonding and π–π) and characterize reactions (proton transfer, SN2 hydrolysis, and unimolecular cleavage). Although the primary focus of this study is accurate structure determination, energetics were also examined at both the optimization level of theory, and with triple-ζ quality basis set and select (M06-2X or ωB97X-D) methods. If dispersion-driven interactions exist within the active site, then MPWB1K/6-31G(d,p) or M06-2X/6-31+G(d,p) are recommended for the optimization step with subsequent triple-ζ quality single-point energies. However, since dispersion-corrected functionals (M06-2X and ωB97X-D) generally require diffuse functions to yield appropriate geometries, the possible size of the high-level region is greatly limited with these methods. In contrast, if the model is large enough to recover steric constraints on π–π interactions, then B3LYP with a small basis set performs comparatively well for the optimization step and is significantly less computationally expensive. Interestingly, the functionals that afford the best geometries often do not yield the best energetics, which emphasizes the importance of structural benchmark studies.
Collapse
Affiliation(s)
- Jennifer L. Kellie
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, AB T1K 3M4, Canada
| | - Stacey D. Wetmore
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, AB T1K 3M4, Canada
| |
Collapse
|
30
|
Quantum-chemical approach to determining the high potency of clorgyline as an irreversible acetylenic monoamine oxidase inhibitor. J Neural Transm (Vienna) 2013; 120:875-82. [DOI: 10.1007/s00702-013-1016-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 03/23/2013] [Indexed: 01/18/2023]
|
31
|
Lind MES, Himo F. Quantum chemistry as a tool in asymmetric biocatalysis: limonene epoxide hydrolase test case. Angew Chem Int Ed Engl 2013; 52:4563-7. [PMID: 23512539 PMCID: PMC3734700 DOI: 10.1002/anie.201300594] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Indexed: 12/24/2022]
Affiliation(s)
- Maria E S Lind
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, 10691 Stockholm, Sweden
| | | |
Collapse
|
32
|
Why is the molybdenum-substituted tungsten-dependent formaldehyde ferredoxin oxidoreductase not active? A quantum chemical study. J Biol Inorg Chem 2013; 18:175-181. [PMID: 23183892 DOI: 10.1007/s00775-012-0961-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 11/13/2012] [Indexed: 01/12/2023]
Abstract
Formaldehyde ferredoxin oxidoreductase is a tungsten-dependent enzyme that catalyzes the oxidative degradation of formaldehyde to formic acid. The molybdenum ion can be incorporated into the active site to displace the tungsten ion, but is without activity. Density functional calculations have been employed to understand the incapacitation of the enzyme caused by molybdenum substitution. The calculations show that the enzyme with molybdenum (Mo-FOR) has higher redox potential than that with tungsten, which makes the formation of the Mo(VI)=O complex endothermic by 14 kcal/mol. Following our previously suggested mechanism for this enzyme, the formaldehyde substrate oxidation was also investigated for Mo-FOR using the same quantum-mechanics-only model, except for the displacement of tungsten by molybdenum. The calculations demonstrate that formaldehyde oxidation occurs via a sequential two-step mechanism. Similarly to the tungsten-catalyzed reaction, the Mo(VI)=O species performs the nucleophilic attack on the formaldehyde carbon, followed by proton transfer in concert with two-electron reduction of the metal center. The first step is rate-limiting, with a total barrier of 28.2 kcal/mol. The higher barrier is mainly due to the large energy penalty for the formation of the Mo(VI)=O species.
Collapse
|
33
|
Mechanism of tungsten-dependent acetylene hydratase from quantum chemical calculations. Proc Natl Acad Sci U S A 2010; 107:22523-7. [PMID: 21149684 DOI: 10.1073/pnas.1014060108] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Acetylene hydratase is a tungsten-dependent enzyme that catalyzes the nonredox hydration of acetylene to acetaldehyde. Density functional theory calculations are used to elucidate the reaction mechanism of this enzyme with a large model of the active site devised on the basis of the native X-ray crystal structure. Based on the calculations, we propose a new mechanism in which the acetylene substrate first displaces the W-coordinated water molecule, and then undergoes a nucleophilic attack by the water molecule assisted by an ionized Asp13 residue at the active site. This is followed by proton transfer from Asp13 to the newly formed vinyl anion intermediate. In the subsequent isomerization, Asp13 shuttles a proton from the hydroxyl group of the vinyl alcohol to the α-carbon. Asp13 is thus a key player in the mechanism, but also W is directly involved in the reaction by binding and activating acetylene and providing electrostatic stabilization to the transition states and intermediates. Several other mechanisms are also considered but the energetic barriers are found to be very high, ruling out these possibilities.
Collapse
|