1
|
Gupta AK, Maier S, Thapa B, Raghavachari K. Toward Post-Hartree-Fock Accuracy for Protein-Ligand Affinities Using the Molecules-in-Molecules Fragmentation-Based Method. J Chem Theory Comput 2024; 20:2774-2785. [PMID: 38530869 DOI: 10.1021/acs.jctc.3c01293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
The complexity and size of large molecular systems, such as protein-ligand complexes, pose computational challenges for accurate post-Hartree-Fock calculations. This study delivers a thorough benchmarking of the Molecules-in-Molecules (MIM) method, presenting a clear and accessible strategy for layer/theory selections in post-Hartree-Fock computations on substantial molecular systems, notably protein-ligand complexes. An approach is articulated, enabling augmented computational efficiency by strategically canceling out common subsystem energy terms between complexes and proteins within the supermolecular equation. Employing DLPNO-based post-Hartree-Fock methods in conjunction with the three-layer MIM method (MIM3), this study demonstrates the achievement of protein-ligand binding energies with remarkable accuracy (errors <1 kcal mol-1), while significantly reducing computational costs. Furthermore, noteworthy correlations between theoretically computed interaction energies and their experimental equivalents were observed, with R2 values of approximately 0.90 and 0.78 for CDK2 and BZT-ITK sets, respectively, thus validating the efficacy of the MIM method in calculating binding energies. By highlighting the crucial role of diffuse or small Pople-style basis sets in the middle layer for reducing energy errors, this work provides valuable insights and practical methodologies for interaction energy computations in large molecular complexes and opens avenues for their application across a diverse range of molecular systems.
Collapse
Affiliation(s)
- Ankur K Gupta
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Sarah Maier
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Bishnu Thapa
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Krishnan Raghavachari
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
2
|
Csóka J, Hégely B, Nagy PR, Kállay M. Development of analytic gradients for the Huzinaga quantum embedding method and its applications to large-scale hybrid and double hybrid DFT forces. J Chem Phys 2024; 160:124113. [PMID: 38530010 DOI: 10.1063/5.0194463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/06/2024] [Indexed: 03/27/2024] Open
Abstract
The theory of analytic gradients is presented for the projector-based density functional theory (DFT) embedding approach utilizing the Huzinaga-equation. The advantages of the Huzinaga-equation-based formulation are demonstrated. In particular, it is shown that the projector employed does not appear in the Lagrangian, and the potential risk of numerical problems is avoided at the evaluation of the gradients. The efficient implementation of the analytic gradient theory is presented for approaches where hybrid DFT, second-order Møller-Plesset perturbation theory, or double hybrid DFT are embedded in lower-level DFT environments. To demonstrate the applicability of the method and to gain insight into its accuracy, it is applied to equilibrium geometry optimizations, transition state searches, and potential energy surface scans. Our results show that bond lengths and angles converge rapidly with the size of the embedded system. While providing structural parameters close to high-level quality for the embedded atoms, the embedding approach has the potential to relax the coordinates of the environment as well. Our demonstrations on a 171-atom zeolite and a 570-atom protein system show that the Huzinaga-equation-based embedding can accelerate (double) hybrid gradient computations by an order of magnitude with sufficient active regions and enables affordable force evaluations or geometry optimizations for molecules of hundreds of atoms.
Collapse
Affiliation(s)
- József Csóka
- Department of Physical Chemistry and Materials Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary
- HUN-REN-BME Quantum Chemistry Research Group, Műegyetem rkp. 3., H-1111 Budapest, Hungary
- MTA-BME Lendület Quantum Chemistry Research Group, Műegyetem rkp. 3., H-1111 Budapest, Hungary
| | - Bence Hégely
- Department of Physical Chemistry and Materials Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary
- HUN-REN-BME Quantum Chemistry Research Group, Műegyetem rkp. 3., H-1111 Budapest, Hungary
- MTA-BME Lendület Quantum Chemistry Research Group, Műegyetem rkp. 3., H-1111 Budapest, Hungary
| | - Péter R Nagy
- Department of Physical Chemistry and Materials Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary
- HUN-REN-BME Quantum Chemistry Research Group, Műegyetem rkp. 3., H-1111 Budapest, Hungary
- MTA-BME Lendület Quantum Chemistry Research Group, Műegyetem rkp. 3., H-1111 Budapest, Hungary
| | - Mihály Kállay
- Department of Physical Chemistry and Materials Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary
- HUN-REN-BME Quantum Chemistry Research Group, Műegyetem rkp. 3., H-1111 Budapest, Hungary
- MTA-BME Lendület Quantum Chemistry Research Group, Műegyetem rkp. 3., H-1111 Budapest, Hungary
| |
Collapse
|
3
|
Paciotti R, Marrone A, Coletti C, Re N. Improving the accuracy of the FMO binding affinity prediction of ligand-receptor complexes containing metals. J Comput Aided Mol Des 2023; 37:707-719. [PMID: 37743428 PMCID: PMC10618332 DOI: 10.1007/s10822-023-00532-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/07/2023] [Indexed: 09/26/2023]
Abstract
Polarization and charge transfer strongly characterize the ligand-receptor interaction when metal atoms are present, as for the Au(I)-biscarbene/DNA G-quadruplex complexes. In a previous work (J Comput Aided Mol Des2022, 36, 851-866) we used the ab initio FMO2 method at the RI-MP2/6-31G* level of theory with the PCM [1] solvation approach to calculate the binding energy (ΔEFMO) of two Au(I)-biscarbene derivatives, [Au(9-methylcaffein-8-ylidene)2]+ and [Au(1,3-dimethylbenzimidazole-2-ylidene)2]+, able to interact with DNA G-quadruplex motif. We found that ΔEFMO and ligand-receptor pair interaction energies (EINT) show very large negative values making the direct comparison with experimental data difficult and related this issue to the overestimation of the embedded charge transfer energy between fragments containing metal atoms. In this work, to improve the accuracy of the FMO method for predicting the binding affinity of metal-based ligands interacting with DNA G-quadruplex (Gq), we assess the effect of the following computational features: (i) the electron correlation, considering the Hartree-Fock (HF) and a post-HF method, namely RI-MP2; (ii) the two (FMO2) and three-body (FMO3) approaches; (iii) the basis set size (polarization functions and double-ζ vs. triple-ζ) and (iv) the embedding electrostatic potential (ESP). Moreover, the partial screening method was systematically adopted to simulate the solvent screening effect for each calculation. We found that the use of the ESP computed using the screened point charges for all atoms (ESP-SPTC) has a critical impact on the accuracy of both ΔEFMO and EINT, eliminating the overestimation of charge transfer energy and leading to energy values with magnitude comparable with typical experimental binding energies. With this computational approach, EINT values describe the binding efficiency of metal-based binders to DNA Gq more accurately than ΔEFMO. Therefore, to study the binding process of metal containing systems with the FMO method, the adoption of partial screening solvent method combined with ESP-SPCT should be considered. This computational protocol is suggested for FMO calculations on biological systems containing metals, especially when the adoption of the default ESP treatment leads to questionable results.
Collapse
Affiliation(s)
- R Paciotti
- Department of Pharmacy, Università "G. D'Annunzio" Di Chieti-Pescara, Chieti, Italy.
| | - A Marrone
- Department of Pharmacy, Università "G. D'Annunzio" Di Chieti-Pescara, Chieti, Italy
| | - C Coletti
- Department of Pharmacy, Università "G. D'Annunzio" Di Chieti-Pescara, Chieti, Italy
| | - N Re
- Department of Pharmacy, Università "G. D'Annunzio" Di Chieti-Pescara, Chieti, Italy
| |
Collapse
|
4
|
Galvez Vallejo JL, Snowdon C, Stocks R, Kazemian F, Yan Yu FC, Seidl C, Seeger Z, Alkan M, Poole D, Westheimer BM, Basha M, De La Pierre M, Rendell A, Izgorodina EI, Gordon MS, Barca GMJ. Toward an extreme-scale electronic structure system. J Chem Phys 2023; 159:044112. [PMID: 37497819 DOI: 10.1063/5.0156399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 07/03/2023] [Indexed: 07/28/2023] Open
Abstract
Electronic structure calculations have the potential to predict key matter transformations for applications of strategic technological importance, from drug discovery to material science and catalysis. However, a predictive physicochemical characterization of these processes often requires accurate quantum chemical modeling of complex molecular systems with hundreds to thousands of atoms. Due to the computationally demanding nature of electronic structure calculations and the complexity of modern high-performance computing hardware, quantum chemistry software has historically failed to operate at such large molecular scales with accuracy and speed that are useful in practice. In this paper, novel algorithms and software are presented that enable extreme-scale quantum chemistry capabilities with particular emphasis on exascale calculations. This includes the development and application of the multi-Graphics Processing Unit (GPU) library LibCChem 2.0 as part of the General Atomic and Molecular Electronic Structure System package and of the standalone Extreme-scale Electronic Structure System (EXESS), designed from the ground up for scaling on thousands of GPUs to perform high-performance accurate quantum chemistry calculations at unprecedented speed and molecular scales. Among various results, we report that the EXESS implementation enables Hartree-Fock/cc-pVDZ plus RI-MP2/cc-pVDZ/cc-pVDZ-RIFIT calculations on an ionic liquid system with 623 016 electrons and 146 592 atoms in less than 45 min using 27 600 GPUs on the Summit supercomputer with a 94.6% parallel efficiency.
Collapse
Affiliation(s)
| | - Calum Snowdon
- School of Computing, Australian National University, Canberra 2601, ACT, Australia
| | - Ryan Stocks
- School of Computing, Australian National University, Canberra 2601, ACT, Australia
| | - Fazeleh Kazemian
- School of Computing, Australian National University, Canberra 2601, ACT, Australia
| | - Fiona Chuo Yan Yu
- School of Computing, Australian National University, Canberra 2601, ACT, Australia
| | - Christopher Seidl
- School of Computing, Australian National University, Canberra 2601, ACT, Australia
| | - Zoe Seeger
- School of Chemistry, Monash University, Clayton 3800, VIC, Australia
| | - Melisa Alkan
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, USA
| | - David Poole
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Bryce M Westheimer
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, USA
| | - Mehaboob Basha
- Pawsey Supercomputing Research Centre, Kensington, WA 6151, Australia
| | | | - Alistair Rendell
- College of Science and Engineering, Flinders University, Adelaide, SA 5042, Australia
| | | | | | - Giuseppe M J Barca
- School of Computing, Australian National University, Canberra 2601, ACT, Australia
| |
Collapse
|
5
|
Sahu N, Khire SS, Gadre SR. Combining fragmentation method and high-performance computing: Geometry optimization and vibrational spectra of proteins. J Chem Phys 2023; 159:044309. [PMID: 37522406 DOI: 10.1063/5.0149572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 07/12/2023] [Indexed: 08/01/2023] Open
Abstract
Exploring the structures and spectral features of proteins with advanced quantum chemical methods is an uphill task. In this work, a fragment-based molecular tailoring approach (MTA) is appraised for the CAM-B3LYP/aug-cc-pVDZ-level geometry optimization and vibrational infrared (IR) spectra calculation of ten real proteins containing up to 407 atoms and 6617 basis functions. The use of MTA and the inherently parallel nature of the fragment calculations enables a rapid and accurate calculation of the IR spectrum. The applicability of MTA to optimize the protein geometry and evaluate its IR spectrum employing a polarizable continuum model with water as a solvent is also showcased. The typical errors in the total energy and IR frequencies computed by MTA vis-à-vis their full calculation (FC) counterparts for the studied protein are 5-10 millihartrees and 5 cm-1, respectively. Moreover, due to the independent execution of the fragments, large-scale parallelization can also be achieved. With increasing size and level of theory, MTA shows an appreciable advantage in computer time as well as memory and disk space requirement over the corresponding FCs. The present study suggests that the geometry optimization and IR computations on the biomolecules containing ∼1000 atoms and/or ∼15 000 basis functions using MTA and HPC facility can be clearly envisioned in the near future.
Collapse
Affiliation(s)
- Nityananda Sahu
- Theoretische Chemie, Philipps-Universität Marburg, 35032 Marburg, Germany
| | - Subodh S Khire
- RIKEN Center for Computational Science, Kobe 650-0047, Japan
| | - Shridhar R Gadre
- Departments of Scientific Computing, Modelling & Simulation and Chemistry, Savitribai Phule Pune University, Pune 411007, India
| |
Collapse
|
6
|
Bowman JM, Qu C, Conte R, Nandi A, Houston PL, Yu Q. Δ-Machine Learned Potential Energy Surfaces and Force Fields. J Chem Theory Comput 2023; 19:1-17. [PMID: 36527383 DOI: 10.1021/acs.jctc.2c01034] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
There has been great progress in developing machine-learned potential energy surfaces (PESs) for molecules and clusters with more than 10 atoms. Unfortunately, this number of atoms generally limits the level of electronic structure theory to less than the "gold standard" CCSD(T) level. Indeed, for the well-known MD17 dataset for molecules with 9-20 atoms, all of the energies and forces were obtained with DFT calculations (PBE). This Perspective is focused on a Δ-machine learning method that we recently proposed and applied to bring DFT-based PESs to close to CCSD(T) accuracy. This is demonstrated for hydronium, N-methylacetamide, acetyl acetone, and ethanol. For 15-atom tropolone, it appears that special approaches (e.g., molecular tailoring, local CCSD(T)) are needed to obtain the CCSD(T) energies. A new aspect of this approach is the extension of Δ-machine learning to force fields. The approach is based on many-body corrections to polarizable force field potentials. This is examined in detail using the TTM2.1 water potential. The corrections make use of our recent CCSD(T) datasets for 2-b, 3-b, and 4-b interactions for water. These datasets were used to develop a new fully ab initio potential for water, termed q-AQUA.
Collapse
Affiliation(s)
- Joel M Bowman
- Department of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
| | - Chen Qu
- Independent Researcher, Toronto, Canada 66777
| | - Riccardo Conte
- Dipartimento di Chimica, Università Degli Studi di Milano, via Golgi 19, 20133 Milano, Italy
| | - Apurba Nandi
- Department of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
| | - Paul L Houston
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States.,Department of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Qi Yu
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| |
Collapse
|
7
|
Paciotti R, Coletti C, Marrone A, Re N. The FMO2 analysis of the ligand-receptor binding energy: the Biscarbene-Gold(I)/DNA G-Quadruplex case study. J Comput Aided Mol Des 2022; 36:851-866. [PMID: 36318393 DOI: 10.1007/s10822-022-00484-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/16/2022] [Indexed: 11/24/2022]
Abstract
In this work, the ab initio fragment molecular orbital (FMO) method was applied to calculate and analyze the binding energy of two biscarbene-Au(I) derivatives, [Au(9-methylcaffein-8-ylidene)2]+ and [Au(1,3-dimethylbenzimidazol-2-ylidene)2]+, to the DNA G-Quadruplex structure. The FMO2 binding energy considers the ligand-receptor complex as well as the isolated forms of energy-minimum state of ligand and receptor, providing a better description of ligand-receptor affinity compared with simple pair interaction energies (PIE). Our results highlight important features of the binding process of biscarbene-Au(I) derivatives to DNA G-Quadruplex, indicating that the total deformation-polarization energy and desolvation penalty of the ligands are the main terms destabilizing the binding. The pair interaction energy decomposition analysis (PIEDA) between ligand and nucleobases suggest that the main interaction terms are electrostatic and charge-transfer energies supporting the hypothesis that Au(I) ion can be involved in π-cation interactions further stabilizing the ligand-receptor complex. Moreover, the presence of polar groups on the carbene ring, as C = O, can improve the charge-transfer interaction with K+ ion. These findings can be employed to design new powerful biscarbene-Au(I) DNA-G quadruplex binders as promising anticancer drugs. The procedure described in this work can be applied to investigate any ligand-receptor system and is particularly useful when the binding process is strongly characterized by polarization, charge-transfer and dispersion interactions, properly evaluated by ab initio methods.
Collapse
Affiliation(s)
- Roberto Paciotti
- Department of Pharmacy, Università "G. D'Annunzio" Di Chieti-Pescara, Chieti, Italy.
| | - Cecilia Coletti
- Department of Pharmacy, Università "G. D'Annunzio" Di Chieti-Pescara, Chieti, Italy
| | - Alessandro Marrone
- Department of Pharmacy, Università "G. D'Annunzio" Di Chieti-Pescara, Chieti, Italy
| | - Nazzareno Re
- Department of Pharmacy, Università "G. D'Annunzio" Di Chieti-Pescara, Chieti, Italy
| |
Collapse
|
8
|
Khire SS, Gurav ND, Nandi A, Gadre SR. Enabling Rapid and Accurate Construction of CCSD(T)-Level Potential Energy Surface of Large Molecules Using Molecular Tailoring Approach. J Phys Chem A 2022; 126:1458-1464. [PMID: 35170973 DOI: 10.1021/acs.jpca.2c00025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The construction of a potential energy surface (PES) of even a medium-sized molecule employing correlated theory, such as CCSD(T), is arduous due to the high computational cost involved. The present study reports the possibility of efficiently constructing such a PES of molecules containing up to 15 atoms and 550 basis functions by employing the fragment-based molecular tailoring approach (MTA) on off-the-shelf hardware. The MTA energies at the CCSD(T)/aug-cc-pVTZ level for several geometries of three test molecules, viz., acetylacetone, N-methylacetamide, and tropolone, are reported. These energies are in excellent agreement with their full calculation counterparts with a time advantage factor of 3-5. The energy barrier from the ground to transition state is also accurately captured. Further, we demonstrate the accuracy and efficiency of MTA for estimating the energy gradients at the CCSD(T) level. As a further application of our MTA methodology, the energies of acetylacetone at ∼430 geometries are computed at the CCSD(T)/aug-cc-pVTZ level and used for generating a Δ-machine learning (Δ-ML) PES. This leads to the H-transfer barrier of 3.02 kcal/mol, well in agreement with the benchmarked barrier of 3.19 kcal/mol. The fidelity of this Δ-ML PES is examined by geometry optimization and normal mode frequency calculations of global minima and saddle point geometries. We trust that the present work is a major development for the rapid and accurate construction of PES at the CCSD(T) level for molecules containing up to 20 atoms and 600 basis functions using off-the-shelf hardware.
Collapse
Affiliation(s)
- Subodh S Khire
- Department of Scientific Computing, Modelling and Simulation, Savitribai Phule Pune University, Pune 411 007, India
| | - Nalini D Gurav
- Department of Scientific Computing, Modelling and Simulation, Savitribai Phule Pune University, Pune 411 007, India
| | - Apurba Nandi
- Department of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
| | - Shridhar R Gadre
- Department of Scientific Computing, Modelling and Simulation, Savitribai Phule Pune University, Pune 411 007, India
| |
Collapse
|
9
|
Ahirwar MB, Gurav ND, Gadre SR, Deshmukh MM. Molecular Tailoring Approach for Estimating Individual Intermolecular Interaction Energies in Benzene Clusters. J Phys Chem A 2021; 125:6131-6140. [PMID: 34251827 DOI: 10.1021/acs.jpca.1c03907] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
There is no general method available for the estimation of individual intermolecular interaction energies in weakly bound molecular clusters, and such studies are limited only to the dimer. Recently, we proposed a molecular tailoring approach-based method for the estimation of individual O-H···O hydrogen bond energies in water clusters. In the present work, we extend the applicability of this method for estimating the individual intermolecular interaction energies in benzene clusters, which are expected to be small. The basis set superposition error (BSSE)-corrected individual intermolecular interaction energies in linear (LN) benzene clusters, LN-(Bz)n n = 3-7, were calculated to be in the range from -1.75 to -2.33 kcal/mol with the cooperativity contribution falling between 0.05 and 0.20 kcal/mol, calculated at the MP2.5/aug-cc-pVDZ level of theory. In the case of non-linear (NLN) benzene clusters, NLN-(Bz)n n = 3-5, the BSSE-corrected individual intermolecular interaction energies exhibit a wider range from -1.16 to -2.55 kcal/mol with cooperativity contribution in the range from 0.02 to -0.61 kcal/mol. The accuracy of these estimated values was validated by adding the sum of interaction energies to the sum of monomer energies. These estimated molecular energies of clusters were compared with their actual calculated values. The small difference (<0.3 kcal/mol) in these two values suggests that our estimated individual intermolecular interaction energies in benzene clusters are quite reliable.
Collapse
Affiliation(s)
- Mini Bharati Ahirwar
- Department of Chemistry, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar 470003, India
| | - Nalini D Gurav
- Department of Scientific Computing, Modelling and Simulation, Savitribai Phule Pune University, Pune 411 007, India
| | - Shridhar R Gadre
- Department of Scientific Computing, Modelling and Simulation, Savitribai Phule Pune University, Pune 411 007, India
| | - Milind M Deshmukh
- Department of Chemistry, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar 470003, India
| |
Collapse
|
10
|
Ahirwar MB, Gadre SR, Deshmukh MM. Direct and Reliable Method for Estimating the Hydrogen Bond Energies and Cooperativity in Water Clusters, W n, n = 3 to 8. J Phys Chem A 2020; 124:6699-6706. [PMID: 32786666 DOI: 10.1021/acs.jpca.0c05631] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
No direct method for estimating the individual O-H···O hydrogen bond (H-bond) energies in water clusters (Wn) exists in the literature. In this work, we propose such a direct method based on the molecular tailoring approach, which also enables the estimation of the cooperativity contributions. The calculated H-bond energies at MP2(full)/aug-cc-pVTZ and CCSD(T)/aug-cc-pVDZ levels for Wn, n = 3 to 8, agree well with one another and fall between 0.3 and 11.6 kcal mol-1 with the cooperativity contributions in the range of -1.2 and 7.0 kcal mol-1. For gauging the accuracy of our H-bond energies for a cluster, the H-bond energy sum is added to the sum of monomer energies, and the results are compared with the respective total energy. These two values agree with each other to within 8.3 mH (∼5 kcal mol-1), testifying the accuracy of our estimated H-bond energies. Further, these H-bond strengths show a good correlation with the respective O-H stretching frequencies and the molecular electron density values at the (3, -1) O-H···O H-bond critical point.
Collapse
Affiliation(s)
- Mini Bharati Ahirwar
- Department of Chemistry, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar 470003, India
| | - Shridhar R Gadre
- Interdisciplinary School of Scientific Computing and Department of Chemistry, Savitribai Phule Pune University, Pune 411 007, India
| | - Milind M Deshmukh
- Department of Chemistry, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar 470003, India
| |
Collapse
|
11
|
Noffke BW, Beckett D, Li LS, Raghavachari K. Aromatic Fragmentation Based on a Ring Overlap Scheme: An Algorithm for Large Polycyclic Aromatic Hydrocarbons Using the Molecules-in-Molecules Fragmentation-Based Method. J Chem Theory Comput 2020; 16:2160-2171. [DOI: 10.1021/acs.jctc.9b00566] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Benjamin W. Noffke
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Daniel Beckett
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Liang-shi Li
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Krishnan Raghavachari
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
12
|
Jones LO, Mosquera MA, Schatz GC, Ratner MA. Embedding Methods for Quantum Chemistry: Applications from Materials to Life Sciences. J Am Chem Soc 2020; 142:3281-3295. [PMID: 31986877 DOI: 10.1021/jacs.9b10780] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Quantum mechanical embedding methods hold the promise to transform not just the way calculations are performed, but to significantly reduce computational costs and improve scaling for macro-molecular systems containing hundreds if not thousands of atoms. The field of embedding has grown increasingly broad with many approaches of different intersecting flavors. In this perspective, we lay out the methods into two streams: QM:MM and QM:QM, showcasing the advantages and disadvantages of both. We provide a review of the literature, the underpinning theories including our contributions, and we highlight current applications with select examples spanning both materials and life sciences. We conclude with prospects and future outlook on embedding, and our view on the use of universal test case scenarios for cross-comparisons of the many available (and future) embedding theories.
Collapse
Affiliation(s)
- Leighton O Jones
- Department of Chemistry , Northwestern University , Evanston , Illinois 60208 , United States
| | - Martín A Mosquera
- Department of Chemistry , Northwestern University , Evanston , Illinois 60208 , United States
| | - George C Schatz
- Department of Chemistry , Northwestern University , Evanston , Illinois 60208 , United States
| | - Mark A Ratner
- Department of Chemistry , Northwestern University , Evanston , Illinois 60208 , United States
| |
Collapse
|
13
|
Abstract
Since the introduction of the fragment molecular orbital method 20 years ago, fragment-based approaches have occupied a small but growing niche in quantum chemistry. These methods decompose a large molecular system into subsystems small enough to be amenable to electronic structure calculations, following which the subsystem information is reassembled in order to approximate an otherwise intractable supersystem calculation. Fragmentation sidesteps the steep rise (with respect to system size) in the cost of ab initio calculations, replacing it with a distributed cost across numerous computer processors. Such methods are attractive, in part, because they are easily parallelizable and therefore readily amenable to exascale computing. As such, there has been hope that distributed computing might offer the proverbial "free lunch" in quantum chemistry, with the entrée being high-level calculations on very large systems. While fragment-based quantum chemistry can count many success stories, there also exists a seedy underbelly of rarely acknowledged problems. As these methods begin to mature, it is time to have a serious conversation about what they can and cannot be expected to accomplish in the near future. Both successes and challenges are highlighted in this Perspective.
Collapse
Affiliation(s)
- John M Herbert
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
14
|
Meyer B, Genoni A. Libraries of Extremely Localized Molecular Orbitals. 3. Construction and Preliminary Assessment of the New Databanks. J Phys Chem A 2018; 122:8965-8981. [PMID: 30339393 DOI: 10.1021/acs.jpca.8b09056] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The fast and reliable determination of wave functions and electron densities of macromolecules has been one of the goals of theoretical chemistry for a long time, and in this context, several linear scaling techniques have been successfully devised over the years. Different approaches have been adopted to tackle this problem, and one of them exploits the fact that, according to the traditional chemical perception, molecules can be seen as constituted of recurring units (e.g., functional groups) with well-defined chemical features. This has led to the development of methods in which the global wave functions or electron densities of macromolecules are obtained by simply transferring density matrices or fuzzy electron densities associated with molecular fragments. In this context, we propose an alternative strategy that aims at quickly reconstructing wave functions and electron densities of proteins through the transfer of extremely localized molecular orbitals (ELMOs), which are orbitals strictly localized on small molecular units and, for this reason, easily transferable from molecule to molecule. To accomplish this task we have constructed original libraries of ELMOs that cover all the possible elementary fragments of the 20 natural amino acids in all their possible protonation states and forms. Our preliminary test calculations have shown that, compared to more traditional methods of quantum chemistry, the transfers from the novel ELMO databanks allow to obtain wave function and electron densities of large polypeptides and proteins at a significantly reduced computational cost. Furthermore, notwithstanding expected discrepancies, the obtained electron distributions and electrostatic potentials are in very good agreement with those obtained at Hartree-Fock and density functional theory (DFT) levels. Therefore, the results encourage to use the new libraries as alternatives to the popular pseudoatom-databases of crystallography in the refinement of crystallographic structures of macromolecules. In particular, in this context, we have already envisaged the coupling of the ELMO databanks with the promising Hirshfeld atom refinement technique to extend the applicability of the latter to very large systems.
Collapse
Affiliation(s)
- Benjamin Meyer
- Université de Lorraine and CNRS, Laboratoire de Physique et Chimie Théoriques (LPCT), UMR CNRS 7019 , 1 Boulevard Arago , F-57078 Metz , France
| | - Alessandro Genoni
- Université de Lorraine and CNRS, Laboratoire de Physique et Chimie Théoriques (LPCT), UMR CNRS 7019 , 1 Boulevard Arago , F-57078 Metz , France
| |
Collapse
|
15
|
Khire SS, Bartolotti LJ, Gadre SR. Harmonizing accuracy and efficiency: A pragmatic approach to fragmentation of large molecules. J Chem Phys 2018; 149:064112. [PMID: 30111143 DOI: 10.1063/1.5036595] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Fragmentation methods offer an attractive alternative for ab initio treatment of large molecules and molecular clusters. However, balancing the accuracy and efficiency of these methods is a tight-rope-act. With this in view, we present an algorithm for automatic molecular fragmentation within Molecular Tailoring Approach (MTA) achieving this delicate balance. The automated code is tested out on a variety of molecules and clusters at the Hartree-Fock (HF)- and Møller-Plesset second order perturbation theory as well as density functional theory employing augmented Dunning basis sets. The results show remarkable accuracy and efficiency vis-à-vis the respective full calculations. Thus the present work forms an important step toward the development of an MTA-based black box code for implementation of HF as well as correlated quantum chemical calculations on large molecular systems.
Collapse
Affiliation(s)
- Subodh S Khire
- Interdisciplinary School of Scientific Computing, Savitribai Phule Pune University, Pune 411007, India
| | - Libero J Bartolotti
- Department of Physical and Computational Chemistry, East Carolina University, Greenville, North Carolina 27858, USA
| | - Shridhar R Gadre
- Interdisciplinary School of Scientific Computing, Savitribai Phule Pune University, Pune 411007, India
| |
Collapse
|
16
|
Thapa B, Beckett D, Jovan Jose KV, Raghavachari K. Assessment of Fragmentation Strategies for Large Proteins Using the Multilayer Molecules-in-Molecules Approach. J Chem Theory Comput 2018; 14:1383-1394. [DOI: 10.1021/acs.jctc.7b01198] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Bishnu Thapa
- Department of Chemistry, Indiana University, Bloomington 47405, Indiana, United States
| | - Daniel Beckett
- Department of Chemistry, Indiana University, Bloomington 47405, Indiana, United States
| | - K. V. Jovan Jose
- Department of Chemistry, Indiana University, Bloomington 47405, Indiana, United States
| | - Krishnan Raghavachari
- Department of Chemistry, Indiana University, Bloomington 47405, Indiana, United States
| |
Collapse
|
17
|
Fedorov DG. The fragment molecular orbital method: theoretical development, implementation in
GAMESS
, and applications. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2017. [DOI: 10.1002/wcms.1322] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Dmitri G. Fedorov
- Research Center for Computational Design of Advanced Functional Materials (CD‐FMat)National Institute of Advanced Industrial Science and Technology (AIST)TsukubaJapan
| |
Collapse
|
18
|
Kjærgaard T, Baudin P, Bykov D, Kristensen K, Jørgensen P. The divide–expand–consolidate coupled cluster scheme. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2017. [DOI: 10.1002/wcms.1319] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
| | - Pablo Baudin
- Department of ChemistryAarhus UniversityAarhusDenmark
| | - Dmytro Bykov
- Department of ChemistryAarhus UniversityAarhusDenmark
| | | | | |
Collapse
|
19
|
Kjærgaard T. The Laplace transformed divide-expand-consolidate resolution of the identity second-order Møller-Plesset perturbation (DEC-LT-RIMP2) theory method. J Chem Phys 2017; 146:044103. [PMID: 28147513 DOI: 10.1063/1.4973710] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The divide-expand-consolidate resolution of the identity second-order Møller-Plesset perturbation (DEC-RI-MP2) theory method introduced in Baudin et al. [J. Chem. Phys. 144, 054102 (2016)] is significantly improved by introducing the Laplace transform of the orbital energy denominator in order to construct the double amplitudes directly in the local basis. Furthermore, this paper introduces the auxiliary reduction procedure, which reduces the set of the auxiliary functions employed in the individual fragments. The resulting Laplace transformed divide-expand-consolidate resolution of the identity second-order Møller-Plesset perturbation method is applied to the insulin molecule where we obtain a factor 9.5 speedup compared to the DEC-RI-MP2 method.
Collapse
Affiliation(s)
- Thomas Kjærgaard
- qLEAP Center for Theoretical Chemistry, Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| |
Collapse
|
20
|
Sahu N, Gadre SR. Vibrational infrared and Raman spectra of polypeptides: Fragments-in-fragments within molecular tailoring approach. J Chem Phys 2017; 144:114113. [PMID: 27004868 DOI: 10.1063/1.4943966] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The present work reports the calculation of vibrational infrared (IR) and Raman spectra of large molecular systems employing molecular tailoring approach (MTA). Further, it extends the grafting procedure for the accurate evaluation of IR and Raman spectra of large molecular systems, employing a new methodology termed as Fragments-in-Fragments (FIF), within MTA. Unlike the previous MTA-based studies, the accurate estimation of the requisite molecular properties is achieved without performing any full calculations (FC). The basic idea of the grafting procedure is implemented by invoking the nearly basis-set-independent nature of the MTA-based error vis-à-vis the respective FCs. FIF has been tested out for the estimation of the above molecular properties for three isomers, viz., β-strand, 310- and α-helix of acetyl(alanine)nNH2 (n = 10, 15) polypeptides, three conformers of doubly protonated gramicidin S decapeptide and trpzip2 protein (PDB id: 1LE1), respectively, employing BP86/TZVP, M06/6-311G**, and M05-2X/6-31G** levels of theory. For most of the cases, a maximum difference of 3 cm(-1) is achieved between the grafted-MTA frequencies and the corresponding FC values. Further, a comparison of the BP86/TZVP level IR and Raman spectra of α-helical (alanine)20 and its N-deuterated derivative shows an excellent agreement with the existing experimental spectra. In view of the requirement of only MTA-based calculations and the ability of FIF to work at any level of theory, the current methodology provides a cost-effective solution for obtaining accurate spectra of large molecular systems.
Collapse
Affiliation(s)
- Nityananda Sahu
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208 016, India
| | - Shridhar R Gadre
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208 016, India
| |
Collapse
|
21
|
Sahu N, Singh G, Nandi A, Gadre SR. Toward an Accurate and Inexpensive Estimation of CCSD(T)/CBS Binding Energies of Large Water Clusters. J Phys Chem A 2016; 120:5706-14. [PMID: 27351269 DOI: 10.1021/acs.jpca.6b04519] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Owing to the steep scaling behavior, highly accurate CCSD(T) calculations, the contemporary gold standard of quantum chemistry, are prohibitively difficult for moderate- and large-sized water clusters even with the high-end hardware. The molecular tailoring approach (MTA), a fragmentation-based technique is found to be useful for enabling such high-level ab initio calculations. The present work reports the CCSD(T) level binding energies of many low-lying isomers of large (H2O)n (n = 16, 17, and 25) clusters employing aug-cc-pVDZ and aug-cc-pVTZ basis sets within the MTA framework. Accurate estimation of the CCSD(T) level binding energies [within 0.3 kcal/mol of the respective full calculation (FC) results] is achieved after effecting the grafting procedure, a protocol for minimizing the errors in the MTA-derived energies arising due to the approximate nature of MTA. The CCSD(T) level grafting procedure presented here hinges upon the well-known fact that the MP2 method, which scales as O(N(5)), can be a suitable starting point for approximating to the highly accurate CCSD(T) [that scale as O(N(7))] energies. On account of the requirement of only an MP2-level FC on the entire cluster, the current methodology ultimately leads to a cost-effective solution for the CCSD(T) level accurate binding energies of large-sized water clusters even at the complete basis set limit utilizing off-the-shelf hardware.
Collapse
Affiliation(s)
- Nityananda Sahu
- Department of Chemistry, Indian Institute of Technology Kanpur , Kanpur 208 016, India
| | - Gurmeet Singh
- Department of Chemistry, Indian Institute of Technology Kanpur , Kanpur 208 016, India
| | - Apurba Nandi
- Department of Chemistry, Indian Institute of Technology Kanpur , Kanpur 208 016, India
| | - Shridhar R Gadre
- Department of Chemistry, Indian Institute of Technology Kanpur , Kanpur 208 016, India
| |
Collapse
|
22
|
Baudin P, Ettenhuber P, Reine S, Kristensen K, Kjærgaard T. Efficient linear-scaling second-order Møller-Plesset perturbation theory: The divide-expand-consolidate RI-MP2 model. J Chem Phys 2016; 144:054102. [PMID: 26851903 DOI: 10.1063/1.4940732] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The Resolution of the Identity second-order Møller-Plesset perturbation theory (RI-MP2) method is implemented within the linear-scaling Divide-Expand-Consolidate (DEC) framework. In a DEC calculation, the full molecular correlated calculation is replaced by a set of independent fragment calculations each using a subset of the total orbital space. The number of independent fragment calculations scales linearly with the system size, rendering the method linear-scaling and massively parallel. The DEC-RI-MP2 method can be viewed as an approximation to the DEC-MP2 method where the RI approximation is utilized in each fragment calculation. The individual fragment calculations scale with the fifth power of the fragment size for both methods. However, the DEC-RI-MP2 method has a reduced prefactor compared to DEC-MP2 and is well-suited for implementation on massively parallel supercomputers, as demonstrated by test calculations on a set of medium-sized molecules. The DEC error control ensures that the standard RI-MP2 energy can be obtained to the predefined precision. The errors associated with the RI and DEC approximations are compared, and it is shown that the DEC-RI-MP2 method can be applied to systems far beyond the ones that can be treated with a conventional RI-MP2 implementation.
Collapse
Affiliation(s)
- Pablo Baudin
- qLEAP Center for Theoretical Chemistry, Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| | - Patrick Ettenhuber
- qLEAP Center for Theoretical Chemistry, Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| | - Simen Reine
- Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Oslo, P.O. Box 1033, N-1315 Blindern, Norway
| | - Kasper Kristensen
- qLEAP Center for Theoretical Chemistry, Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| | - Thomas Kjærgaard
- qLEAP Center for Theoretical Chemistry, Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| |
Collapse
|
23
|
Sahu N, Gadre SR. Accurate vibrational spectra via molecular tailoring approach: a case study of water clusters at MP2 level. J Chem Phys 2016; 142:014107. [PMID: 25573553 DOI: 10.1063/1.4905004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In spite of the recent advents in parallel algorithms and computer hardware, high-level calculation of vibrational spectra of large molecules is still an uphill task. To overcome this, significant effort has been devoted to the development of new algorithms based on fragmentation methods. The present work provides the details of an efficient and accurate procedure for computing the vibrational spectra of large clusters employing molecular tailoring approach (MTA). The errors in the Hessian matrix elements and dipole derivatives arising due to the approximation nature of MTA are reduced by grafting the corrections from a smaller basis set. The algorithm has been tested out for obtaining vibrational spectra of neutral and charged water clusters at Møller-Plesset second order level of theory, and benchmarking them against the respective full calculation (FC) and/or experimental results. For (H2O)16 clusters, the estimated vibrational frequencies are found to differ by a maximum of 2 cm(-1) with reference to the corresponding FC values. Unlike the FC, the MTA-based calculations including grafting procedure can be performed on a limited hardware, yet take a fraction of the FC time. The present methodology, thus, opens a possibility of the accurate estimation of the vibrational spectra of large molecular systems, which is otherwise impossible or formidable.
Collapse
Affiliation(s)
- Nityananda Sahu
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208 016, India
| | - Shridhar R Gadre
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208 016, India
| |
Collapse
|
24
|
Sahu N, Gadre SR, Rakshit A, Bandyopadhyay P, Miliordos E, Xantheas SS. Low energy isomers of (H2O)25 from a hierarchical method based on Monte Carlo temperature basin paving and molecular tailoring approaches benchmarked by MP2 calculations. J Chem Phys 2015; 141:164304. [PMID: 25362296 DOI: 10.1063/1.4897535] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We report new global minimum candidate structures for the (H2O)25 cluster that are lower in energy than the ones reported previously and correspond to hydrogen bonded networks with 42 hydrogen bonds and an interior, fully coordinated water molecule. These were obtained as a result of a hierarchical approach based on initial Monte Carlo Temperature Basin Paving sampling of the cluster's Potential Energy Surface with the Effective Fragment Potential, subsequent geometry optimization using the Molecular Tailoring Approach with the fragments treated at the second order Møller-Plesset (MP2) perturbation (MTA-MP2) and final refinement of the entire cluster at the MP2 level of theory. The MTA-MP2 optimized cluster geometries, constructed from the fragments, were found to be within <0.5 kcal/mol from the minimum geometries obtained from the MP2 optimization of the entire (H2O)25 cluster. In addition, the grafting of the MTA-MP2 energies yields electronic energies that are within <0.3 kcal/mol from the MP2 energies of the entire cluster while preserving their energy rank order. Finally, the MTA-MP2 approach was found to reproduce the MP2 harmonic vibrational frequencies, constructed from the fragments, quite accurately when compared to the MP2 ones of the entire cluster in both the HOH bending and the OH stretching regions of the spectra.
Collapse
Affiliation(s)
- Nityananda Sahu
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Shridhar R Gadre
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Avijit Rakshit
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Pradipta Bandyopadhyay
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Evangelos Miliordos
- Physical Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999, MS K1-83, Richland, Washington 99352, USA
| | - Sotiris S Xantheas
- Physical Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999, MS K1-83, Richland, Washington 99352, USA
| |
Collapse
|
25
|
Richard RM, Lao KU, Herbert JM. Understanding the many-body expansion for large systems. I. Precision considerations. J Chem Phys 2014; 141:014108. [DOI: 10.1063/1.4885846] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Ryan M. Richard
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | - Ka Un Lao
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | - John M. Herbert
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
26
|
Richard RM, Lao KU, Herbert JM. Approaching the complete-basis limit with a truncated many-body expansion. J Chem Phys 2013; 139:224102. [DOI: 10.1063/1.4836637] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
27
|
Howard JC, Tschumper GS. N-body:Many-body QM:QM vibrational frequencies: Application to small hydrogen-bonded clusters. J Chem Phys 2013; 139:184113. [DOI: 10.1063/1.4829463] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
28
|
Sahu N, Yeole SD, Gadre SR. Appraisal of molecular tailoring approach for large clusters. J Chem Phys 2013; 138:104101. [PMID: 23514459 DOI: 10.1063/1.4793706] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
High level ab initio investigations on molecular clusters are generally restricted to those of small size essentially due to the nonlinear scaling of corresponding computational cost. Molecular tailoring approach (MTA) is a fragmentation-based method, which offers an economical and efficient route for studying larger clusters. However, due to its approximate nature, the MTA-energies carry some errors vis-à-vis their full calculation counterparts. These errors in the MTA-energies are reduced by grafting the correction at a lower basis set (e.g., 6-31+G(d)) onto a higher basis set (e.g., aug-cc-pvdz or aug-cc-pvtz) calculation at MP2 level of theory. Further, better estimates of energies are obtained by making use of many-body interaction analysis. For this purpose, R-goodness (Rg) parameters for the three- and four-body interactions in a fragmentation scheme are proposed. The procedure employing grafting and many-body analysis has been tested out on molecular clusters of water, benzene, acetylene and carbon dioxide. It is found that for the fragmentation scheme having higher three- and four-body Rg-values, the errors in MTA-grafted energies are reduced typically to ~0.2 mH at MP2 level calculation. Coupled with the advantage in terms of computational resources and CPU time, the present method opens a possibility of accurate treatment of large molecular clusters.
Collapse
|
29
|
Kurbanov EK, Leverentz HR, Truhlar DG, Amin EA. Analysis of the Errors in the Electrostatically Embedded Many-Body Expansion of the Energy and the Correlation Energy for Zn and Cd Coordination Complexes with Five and Six Ligands and Use of the Analysis to Develop a Generally Successful Fragmentation Strategy. J Chem Theory Comput 2013; 9:2617-2628. [PMID: 23814509 DOI: 10.1021/ct4001872] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In the present paper, we apply the electrostatically embedded many-body expansion of the correlation energy (EE-MB-CE) to the calculation of zinc-ligand and cadmium-ligand bond dissociation energies, and we analyze the errors due to various fragmentation schemes in a variety of neutral, positively charged, and negatively charged Zn2+ and Cd2+ coordination complexes. As a result of the analysis, we are able to present a new, simple, and unambiguous fragmentation strategy. Following this strategy, we show that both methods perform well for zinc-ligand and cadmium-ligand bond dissociation energies for all systems studied in the paper, including a model of the catalytic site of the zinc-bearing anthrax toxin lethal factor (LF), which has garnered substantial attention as a target for drug development. To draw general conclusions we consider ten pentacoordinate and hexacoordinate zinc and cadmium containing coordination complexes, each with 10 or 15 different fragmentation schemes. By analyzing errors, we developed a prescription for the optimal fragmentation strategy. With this scheme, and using MP2 correlation energies as a test, we find that the electrostatically embedded three-body expansion of the correlation energy (EE-3B-CE) method is able to reproduce all 53 conventionally calculated bond energies with an average absolute error of only 0.59 kcal/mol. The paper also presents EE-MB-CE calculations using the CCSD(T) level of theory on an LF model system. With CCSD(T), EE-3B-CE has an average error of 0.30 kcal/mol.
Collapse
Affiliation(s)
- Elbek K Kurbanov
- Department of Medicinal Chemistry, Department of Chemistry, and Supercomputing Institute, University of Minnesota, Minneapolis, MN 55414
| | | | | | | |
Collapse
|
30
|
Li W. Linear scaling explicitly correlated MP2-F12 and ONIOM methods for the long-range interactions of the nanoscale clusters in methanol aqueous solutions. J Chem Phys 2013; 138:014106. [DOI: 10.1063/1.4773011] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
31
|
Richard RM, Herbert JM. A generalized many-body expansion and a unified view of fragment-based methods in electronic structure theory. J Chem Phys 2012; 137:064113. [DOI: 10.1063/1.4742816] [Citation(s) in RCA: 155] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
32
|
Katouda M, Nagase S. Application of second-order Møller–Plesset perturbation theory with resolution-of-identity approximation to periodic systems. J Chem Phys 2010; 133:184103. [DOI: 10.1063/1.3503153] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|