1
|
Majumder S, Giri K. An insight into the binding mechanism of Viprinin and its morpholine and piperidine derivatives with HIV-1 Vpr: molecular dynamics simulation, principal component analysis and binding free energy calculation study. J Biomol Struct Dyn 2022; 40:10918-10930. [PMID: 34296659 DOI: 10.1080/07391102.2021.1954553] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
HIV-1 Vpr is an accessory protein responsible for a plethora of functions inside the host cell to promote viral pathogenesis. One of the major functions of Vpr is the G2 cell cycle arrest. Among several small molecule inhibitors, Viprinin, a coumarin derivative, has been shown to specifically inhibit the G2 cell cycle arrest activity of Vpr thus making it an excellent choice for a lead molecule to design antiretroviral drug. But the exact mechanism of binding of the Viprinin and its two potent derivatives with Vpr is still not understood. In this study with combined molecular docking, molecular dynamics simulation, Molecular Mechanics Poisson-Boltzmann Surface Area (MM-PBSA) method, Principal component analysis and Umbrella sampling simulation, we have explored the binding mechanism of Viprinin and its two derivatives with Vpr. MM-PBSA and Umbrella sampling calculations suggest that Viprinin and ViprininD1 have higher binding energy than ViprininD2. Molecular dynamics simulation shows that the ligands are not very stable inside the initial binding pocket and various hydrophobic interactions are responsible to hold the ligands with Vpr. Vpr backbone Principle Component Analysis (PCA) shows various unique essential motions of Vpr bound with Viprinin and its two derivatives. This study may give detailed insight of the mode of binding of the specified compounds at atomic scale and provide valuable information about the possibility of using these compounds as a potent Vpr inhibitor. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Kalyan Giri
- Department of Life Sciences, Presidency University, Kolkata
| |
Collapse
|
2
|
Chaudhuri D, Datta J, Majumder S, Giri K. In silico study on miRNA regulation and NSs protein interactome characterization of the SFTS virus. J Mol Graph Model 2022; 117:108291. [PMID: 35977432 DOI: 10.1016/j.jmgm.2022.108291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 01/14/2023]
Abstract
Severe fever with thrombocytopenia syndrome causing virus i.e. SFTS virus has increased in the last few years. The underlying cause and mechanism of disease progression and development of symptoms is not well known. Many viruses including Hepatitis B, Hepatitis C, HIV-1, Herpes virus, Dengue virus and many others have been seen to regulate their functions at the miRNA level. This study aimed to find out those cellular miRNAs, which can be mimicked or antagonized by the viral genome and analyze the effect of these miRNAs on various gene functions. Investigations in this study suggest a correlation between miRNA regulation with the disease symptoms and progression. By exhaustive literature survey we have tried to identify the interacting partners of the Non Structural S (NSs) protein and characterized the protein-protein interactions. The binding interface that can serve as target for therapeutic studies involving the interfacial residues was analyzed. This study would serve as an avenue to design therapeutics making use of not only protein-protein interactions but also miRNA based regulation as well.
Collapse
Affiliation(s)
| | - Joyeeta Datta
- Department of Life Sciences, Presidency University, Kolkata, India
| | | | - Kalyan Giri
- Department of Life Sciences, Presidency University, Kolkata, India.
| |
Collapse
|
3
|
Guo T, Liu P, Wang Z, Zheng Y, Huang W, Kong D, Ding L, Lv Q, Wang Z, Jiang H, Jiang Y, Sun L. Luteolin Binds Streptolysin O Toxin and Inhibits Its Hemolytic Effects and Cytotoxicity. Front Pharmacol 2022; 13:942180. [PMID: 35873567 PMCID: PMC9300923 DOI: 10.3389/fphar.2022.942180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
Group A streptococcus (GAS, Streptococcus pyogenes) is a common pathogen that can cause a variety of human diseases. Streptolysin O (SLO) is an exotoxin produced by GAS. It is a pore-forming toxin (PFT) that exhibits high in vivo toxicity. SLO enables GAS to evade phagocytosis and clearance by neutrophils, induces eukaryotic cell lysis, and activates inflammatory bodies. Luteolin is a natural compound that is produced by a wide range of plant species, and recent studies have shown that luteolin can inhibit the growth and alter the morphological of GAS. Here, we reported that luteolin can weaken the cytotoxicity and hemolytic activity of SLO in vitro. Briefly, luteolin bound SLO with high affinity, inhibited its dissolution of erythrocytes, affected its conformational stability and inhibited the formation of oligomers. To further verify the protective effect of luteolin, we used an in vitro SLO-induced human laryngeal carcinoma epithelial type-2 cells (HEp-2) model. Notably, our results showed luteolin protected HEp-2 cells from SLO induced cytotoxicity and changed in cell membrane permeability. In addition, we explored the role of luteolin in protecting mice from GAS-mediated injury using an aerosolized lung delivery model, and our results indicate that luteolin increases murine survival rate following inoculation with a lethal dose of GAS, and that survival was also associated with decreased pathological damage to lung tissue. Our results suggest that luteolin may be a novel drug candidate for the treatment of GAS infection.
Collapse
Affiliation(s)
- Tingting Guo
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Peng Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Zeyu Wang
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Yuling Zheng
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Wenhua Huang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Decong Kong
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Lizhong Ding
- Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Qingyu Lv
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Zhongtian Wang
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Hua Jiang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing, China
- *Correspondence: Hua Jiang, ; Yongqiang Jiang, ; Liping Sun,
| | - Yongqiang Jiang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing, China
- *Correspondence: Hua Jiang, ; Yongqiang Jiang, ; Liping Sun,
| | - Liping Sun
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
- *Correspondence: Hua Jiang, ; Yongqiang Jiang, ; Liping Sun,
| |
Collapse
|
4
|
Sengottiyan S, Malakar K, Kathiravan A, Velusamy M, Mikolajczyk A, Puzyn T. Integrated Approach to Interaction Studies of Pyrene Derivatives with Bovine Serum Albumin: Insights from Theory and Experiment. J Phys Chem B 2022; 126:3831-3843. [PMID: 35583491 PMCID: PMC9169062 DOI: 10.1021/acs.jpcb.2c00778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
This work aimed to
investigate the interaction of bovine serum
albumin with newly synthesized potent new pyrene derivatives (PS1
and PS2), which might prove useful to have a better antibacterial
character as found for similar compounds in the previous report [Low et al. 2014, 12, 2269−2284]. However, to date, binding studies with
plasma protein are still unknown. Steady-state fluorescence spectroscopy
and lifetime fluorescence studies show that the static interaction
binding mode and binding constants of PS1 and PS2 are 7.39 and 7.81
[Kb × 105 (M–1)], respectively. The experimental results suggest that hydrophobic
forces play a crucial role in interacting pyrene derivatives with
BSA protein. To verify this, molecular docking and molecular dynamics
simulations were performed to predict the nature of the interaction
and the dynamic behavior of the two compounds in the BSA complex,
PS1 and PS2, under physiological conditions of pH = 7.1. In addition,
the free energies of binding for the BSA-PS1 and BSA-PS2 complexes
were estimated at 300 K based on the molecular mechanics of the Poisson–Boltzmann
surface (MMPBSA) with the Gromacs package. PS2 was found to have a
higher binding affinity than PS1. To determine the behavior of the
orbital transitions in the ground state geometry, we found that both
compounds have similar orbital transitions from HOMO–LUMO via
π → π* and HOMO–1–LUMO+1 via n →
π*, which was included in the FMO analysis. A cytotoxicity study
was performed to determine the toxicity of the compounds. Based on
the MD study, the stability of the compounds with BSA and the dynamic
binding modes were further revealed, as well as the nature of the
binding force components involved and the important residues involved
in the binding process. From the binding energy analysis, it can be
assumed that PS2 may be more active than PS1.
Collapse
Affiliation(s)
- Selvaraj Sengottiyan
- Laboratory of Environmental Chemoinformatics, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, Gdansk, 80-308 Poland
| | - Kakoli Malakar
- Department of Chemistry, North Eastern Hill University, Shillong 793 022, Meghalaya, India
| | - Arunkumar Kathiravan
- Department of Chemistry, Vel Tech Rangarajan Dr. Sagunthala R & D Institute of Science and Technology, Avadi, Chennai 600 062, Tamil Nadu, India
| | - Marappan Velusamy
- Department of Chemistry, North Eastern Hill University, Shillong 793 022, Meghalaya, India
| | - Alicja Mikolajczyk
- Laboratory of Environmental Chemoinformatics, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, Gdansk, 80-308 Poland.,QSAR Lab Ltd., ul. Trzy Lipy 3, Gdansk, 80-266 Poland
| | - Tomasz Puzyn
- Laboratory of Environmental Chemoinformatics, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, Gdansk, 80-308 Poland.,QSAR Lab Ltd., ul. Trzy Lipy 3, Gdansk, 80-266 Poland
| |
Collapse
|
5
|
Chaudhuri D, Majumder S, Datta J, Giri K. Designing of nanobodies against Dengue virus Capsid: a computational affinity maturation approach. J Biomol Struct Dyn 2022; 41:2289-2299. [PMID: 35067204 DOI: 10.1080/07391102.2022.2029773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Dengue virus, an arbovirus, is one of the most prevalent diseases in the tropical environment and leads to huge number of casualties every year. No therapeutics are available till date against the viral disease and the only medications provide symptomatic relief. In this study, we have focused on utilizing conventional nanobodies and repurposing them for Dengue. Computationally affinity matured, best binding nanobodies tagged with constant antibody regions, could be proposed as therapeutics. These could also be applied for drug delivery purposes due to their high specificity against the viral Capsid. Another application of these nanobodies has been thought to utilize them for diagnostic purposes, to use the nanobodies for viral detection from patient samples at the earliest stage using ELISA. This study may open a new avenue for immunologic study in foreseeable future with the usage of the same molecules for multiple purposes. HighlightsNatural nanobodies against viruses were modified for use against Dengue virus Capsid conserved regions.Computational affinity maturation was performed making use of change in binding affinities upon mutating various residues in the complementary determining regions.Docking studies performed to inspect the docking groove, interface analysis and energy calculations.MM/GBSA calculations done to calculate binding free energy of the complex to determine stability of the complex.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | | | - Joyeeta Datta
- Department of Life Sciences, Presidency University, Kolkata, India
| | - Kalyan Giri
- Department of Life Sciences, Presidency University, Kolkata, India
| |
Collapse
|
6
|
Binding characteristics of hydroxylated polybrominated diphenyl ether with thyroid protein and its potential toxicity. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
7
|
Huang M, Huang X, Zuo Y, Yi Z, Liu H. Exploring the toxic effects and mechanism of methoxylated polybrominated diphenyl ethers (MeO-PBDEs) on thyroxine-binding globulin (TBG): Synergy between spectroscopic and computations. LUMINESCENCE 2021; 36:1621-1631. [PMID: 34107557 DOI: 10.1002/bio.4103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/29/2021] [Accepted: 06/03/2021] [Indexed: 01/03/2023]
Abstract
The interaction mechanism between thyroxine-binding globulin (TBG) and three methoxylated polybrominated diphenyl ethers (MeO-PBDEs) was analyzed by steady-state fluorescence, ultraviolet-visible (UV-visible) spectroscopy, circular dichroism (CD), molecular docking and molecular dynamics simulation methods. The results of the molecular docking technique revealed that 2'-MeO-BDE-3, 5-MeO-BDE-47, and 3-MeO-BDE-100 combined with TBG at the active site. The steady-state fluorescence spectra displayed that MeO-PBDEs quenched the endogenous fluorescence of TBG through static quenching mechanism, and complex formation between MeO-PBDEs and TBG was further indicated by UV-vis spectroscopy. The thermodynamic quantities showed that the binding process is spontaneous, and the major forces responsible for the binding are hydrogen bonding and hydrophobic interactions, which are consistent with the results of molecular docking to a certain extent. The results of CD confirmed that the secondary structure of TBG was changed after combining with MeO-PBDEs. The dynamic simulation results illustrated that the protein structure is more compact and changes in the secondary structure of TBG after binding to MeO-PBDEs. Additionally, we also utilized the molecular mechanics/Poisson-Boltzmann surface area (MM-PBSA) method to analyze the binding free energy of TBG and MeO-PBDEs. The results suggest that van der Waals force plays an essential role in the combination.
Collapse
Affiliation(s)
- Muwei Huang
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China
| | - Xiaomei Huang
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China
| | - Yanqiu Zuo
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China
| | - Zhongsheng Yi
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China
| | - Hongyan Liu
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China
| |
Collapse
|
8
|
Barage S, Karthic A, Bavi R, Desai N, Kumar R, Kumar V, Lee KW. Identification and characterization of novel RdRp and Nsp15 inhibitors for SARS-COV2 using computational approach. J Biomol Struct Dyn 2020; 40:2557-2574. [PMID: 33155531 PMCID: PMC7651200 DOI: 10.1080/07391102.2020.1841026] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The World Health Organization has declared COVID-19 as a global health emergency. COVID-19 is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and highlights an urgent need for therapeutics. Here, we have employed a series of computer-aided drug repurposing campaign to discover inhibitors of RNA dependent RNA polymerase (RdRp) and Nsp15/EndoU. Subsequently, MD simulation has been performed to observe dynamic behavior of identified leads at the active site of RdRp and Nsp15. We successfully identified novel lead molecule such as Alectinib for RdRp while Naldemedine and Ergotamine for NSP15. These lead molecules were accommodated in the active site of the enzyme and stabilized by the networks of the hydrogen bond, pi type and hydrophobic interaction with key residues of either target. Interestingly, identified compounds show molecular mimicry in terms of molecular interactions with key residues of RdRp and Nsp15 essential for catalysis and substrate interaction. Previously, Alectinib, Naldemedine and Ergotamine were used as drug in different diseases might be repurposed against selected protein targets of COVID19. Finally, we propose that the identified inhibitors represent a novel lead molecule to design a more effective inhibitor to stop the progress of pathogen. Communicated by Ramaswamy H. Sarma
Collapse
Affiliation(s)
- Sagar Barage
- Amity Institute of Biotechnology, Amity University, Mumbai, Maharashtra, India
| | - A Karthic
- Amity Institute of Biotechnology, Amity University, Mumbai, Maharashtra, India
| | - Rohit Bavi
- State Key Laboratory of Natural Medicines, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, China.,School of Chemical Sciences, Punyashlok Ahilyadevi Holkar Solapur University, Solapur, Maharashtra, India
| | - Neetin Desai
- SDSOS, NMIMS University, Mumbai, Maharashtra, India
| | - Raj Kumar
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, Himachal Pradesh, India
| | - Vikas Kumar
- Division of Life Science, Division of Applied Life Science (BK21 Plus), Plant Molecular Biology and Biotechnology Research Center (PMBBRC, Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), Jinju, Republic of Korea
| | - Keun Woo Lee
- Division of Life Science, Division of Applied Life Science (BK21 Plus), Plant Molecular Biology and Biotechnology Research Center (PMBBRC, Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), Jinju, Republic of Korea
| |
Collapse
|
9
|
Zeb A, Son M, Yoon S, Kim JH, Park SJ, Lee KW. Computational Simulations Identified Two Candidate Inhibitors of Cdk5/p25 to Abrogate Tau-associated Neurological Disorders. Comput Struct Biotechnol J 2019; 17:579-590. [PMID: 31073393 PMCID: PMC6495220 DOI: 10.1016/j.csbj.2019.04.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 04/14/2019] [Accepted: 04/17/2019] [Indexed: 01/26/2023] Open
Abstract
Deregulation of Cdk5 is a hallmark in neurodegenerative diseases and its complex with p25 forms Cdk5/p25, thereby causes severe neuropathological insults. Cdk5/p25 abnormally phosphorylates tau protein, and induces tau-associated neurofibrillary tangles in neurological disorders. Therefore, the pharmacological inhibition of Cdk5/p25 alleviates tau-associated neurological disorders. Herein, computational simulations probed two candidate inhibitors of Cdk5/p25. Structure-based pharmacophore investigated the essential complementary chemical features of ATP-binding site of Cdk5 in complex with roscovitine. Resultant pharmacophore harbored polar interactions with Cys83 and Asp86 residues and non-polar interactions with Ile10, Phe80, and Lys133 residues of Cdk5. The chemical space of selected pharmacophore was comprised of two hydrogen bond donors, one hydrogen bond acceptor, and three hydrophobic features. Decoy test validation of pharmacophore obtained highest Guner-Henry score (0.88) and enrichment factor score (7.23). The screening of natural product drug-like databases by validated pharmacophore retrieved 1126 compounds as candidate inhibitors of Cdk5/p25. The docking of candidate inhibitors filtered 10 molecules with docking score >80.00 and established polar and non-polar interactions with the ATP-binding site residues of Cdk5/p25. Finally, molecular dynamics simulation and binding free energy analyses identified two candidate inhibitors of Cdk5/p25. During 30 ns simulation, the candidate inhibitors established <3.0 Å root mean square deviation and stable hydrogen bond interactions with the ATP-binding site residues of Cdk5/p25. The final candidate inhibitors obtained lowest binding free energies of -122.18 kJ/mol and - 117.26 kJ/mol with Cdk5/p25. Overall, we recommend two natural product candidate inhibitors to target the pharmacological inhibition of Cdk5/p25 in tau-associated neurological disorders.
Collapse
Key Words
- 2D, Two-dimentional
- 3D, Three-dimentional
- AD, Alzheimer's disease
- ADMET, Absorption, distribution, metabolism, excretion, and toxicity
- ASP, Astex statistical potential
- Aβ, Amyloid beta
- BBB, Blood-brain barrier
- CGMC, Cyclin-dependent kinases, mitogen-activated protein kinases, glycogen synthase kinases, and Cdk-like kinases
- Cdk5, Cyclin-dependent kinase 5
- Cdk5/p25 inhibitors
- Cdks, Cyclin-dependent kinases
- DS, Discovery Studio
- EF, Enrichment factor
- GA, Genetic algorithm
- GFA, Genetic Function Approximation
- GH, Guner-Henry
- GOLD, Genetic optimization of ligand docking
- GROMACS, Groningen Machine for Chemical Simulation
- H-bond, Hydrogen bond
- HBA, Hydrogen bond acceptor
- HBD, Hydrogen bond donor
- HD, Hungtington's disease
- HYP, Hydrophobic
- IBS, InterBioScreen
- K, kelvin
- MD, Molecular dynamics
- MPTP, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
- Molecular docking
- Molecular dynamics simulation
- NPT, Number particle, pressure, and temperature
- NVT, Number of particles, volume, and temperature
- P5, A 24-residues mimetic peptide of p35
- PD, Parkinson's disease
- PDB, Protein databank
- PLP, Piecewise linear potential
- PME, Particle mesh ewald
- RMSD, Root mean square deviation
- ROF, Rule of five
- Structure-based pharmacophore modeling
- TAT, Twin-arginine targeting
- TIP3P, Transferable intermolecular potential with 3 points
- Tau-pathogenesis
- ZNPD, Zinc Natural Product Database
Collapse
Affiliation(s)
- Amir Zeb
- Division of Life Science, Division of Applied Life Sciences (BK21 Plus), Research Institute of Natural Sciences (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Gyeongnam, Republic of Korea
| | - Minky Son
- Division of Life Science, Division of Applied Life Sciences (BK21 Plus), Research Institute of Natural Sciences (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Gyeongnam, Republic of Korea
| | - Sanghwa Yoon
- Division of Life Science, Division of Applied Life Sciences (BK21 Plus), Research Institute of Natural Sciences (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Gyeongnam, Republic of Korea
| | - Ju Hyun Kim
- Department of Chemistry (BK21 Plus), Research Institute of Natural Science (RINS), Geyongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Gyeongnam, Republic of Korea
| | - Seok Ju Park
- Department of Internal Medicine, College of Medicine, Busan Paik Hospital, Inje University, Busan 47392, Republic of Korea
| | - Keun Woo Lee
- Division of Life Science, Division of Applied Life Sciences (BK21 Plus), Research Institute of Natural Sciences (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Gyeongnam, Republic of Korea
| |
Collapse
|
10
|
Investigation of novel chemical scaffolds targeting prolyl oligopeptidase for neurological therapeutics. J Mol Graph Model 2018; 88:92-103. [PMID: 30665156 DOI: 10.1016/j.jmgm.2018.12.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 12/10/2018] [Accepted: 12/10/2018] [Indexed: 11/20/2022]
Abstract
Prolyl oligopeptidase (POP) is a potential therapeutic target for treatment of several neurological disorders and α-synucleinopathies including Parkinson's disease. Most of the known POP inhibitors failed in the clinical trials due to poor pharmacokinetic properties and blood-brain impermeability. Therefore, a training set of 30 structurally diverse compounds with a wide range of inhibitory activity against POP was used to generate a quantitative pharmacophore model, Hypo 3, to identify potential POP inhibitors with desirable drug-like properties. Validations through test set, cost analysis, and Fisher's randomization methods proved that Hypo 3 accurately predicted the known inhibitors among inactive compounds. Hypo 3 was employed as 3D query for virtual screening on an in-house drug-like chemical database containing compounds with good brain permeability and ADMET parameters. Database screening with Hypo 3 resulted in 99 compounds that were narrowed down to 21 compounds through molecular docking. Among them, five compounds were identified in our earlier studies, while two compounds showed in vitro POP inhibition. The current study proposed new 16 virtually screened compounds as potential inhibitors against POP that possess Gold docking score in the range of 64.61-75.74 and Chemscore of -32.25 to -38.35. Furthermore, the top scoring four hit compounds were subjected to molecular dynamics simulations to reveal their appropriate binding modes and assessing binding free energies. The hit compounds interacted with POP effectively via hydrogen bonds with important active site residues along with hydrophobic interactions. Moreover, the hit compounds had key inter-molecular interactions and better binding free energies as compared to the reference inhibitor. A potential new hydrogen bond interaction was discovered between Hit 2 with the Arg252 residue of POP. To conclude, we propose four hit compounds with new structural scaffolds against POP for the lead development of POP-based therapeutics for neurological disorders.
Collapse
|
11
|
Han F, Liu Y, E J, Guan S, Han W, Shan Y, Wang S, Zhang H. Effects of Tyr555 and Trp678 on the processivity of cellobiohydrolase A from Ruminiclostridium thermocellum: A simulation study. Biopolymers 2018; 109:e23238. [PMID: 30484856 DOI: 10.1002/bip.23238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/21/2018] [Accepted: 10/01/2018] [Indexed: 12/12/2022]
Abstract
Cellobiohydrolase A from Ruminiclostridium thermocellum (Cbh9A) is a processive exoglucanase from family 9 and is an important cellobiohydrolase that hydrolyzes cello-oligosaccharide into cellobiose. Residues Tyr555 and Trp678 considerably affect catalytic activity, but their mechanisms are still unknown. To investigate how the Tyr555 and Trp678 affect the processivity of Cbh9A, conventional molecular dynamics, steered molecular dynamics, and free energy calculation were performed to simulate the processive process of wild type (WT)-Cbh9A, Y555S mutant, and W678G mutant. Analysis of simulation results suggests that the binding free energies between the substrate and WT-Cbh9A are lower than those of Y555S and W678G mutants. The pull forces and energy barrier in Y555S and W678G mutants also reduced significantly during the steered molecular dynamics (SMD) simulation compared with that of the WT-Cbh9A. And the potential mean force calculations showed that the pulling energy barrier of Y555S and W678G mutants is much lower than that of WT-Cbh9A.
Collapse
Affiliation(s)
- Fei Han
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun, China
| | - Ye Liu
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, National Engineering Laboratory of AIDS Vaccine, College of Life Science, Jilin University, Changchun, China
| | - Jingwen E
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun, China
| | - Shanshan Guan
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, National Engineering Laboratory of AIDS Vaccine, College of Life Science, Jilin University, Changchun, China
| | - Weiwei Han
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, National Engineering Laboratory of AIDS Vaccine, College of Life Science, Jilin University, Changchun, China
| | - Yaming Shan
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, National Engineering Laboratory of AIDS Vaccine, College of Life Science, Jilin University, Changchun, China
| | - Song Wang
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun, China
| | - Hao Zhang
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun, China
| |
Collapse
|
12
|
Izadi S, Harris RC, Fenley MO, Onufriev AV. Accuracy Comparison of Generalized Born Models in the Calculation of Electrostatic Binding Free Energies. J Chem Theory Comput 2018; 14:1656-1670. [PMID: 29378399 DOI: 10.1021/acs.jctc.7b00886] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The need for accurate yet efficient representation of the aqueous environment in biomolecular modeling has led to the development of a variety of generalized Born (GB) implicit solvent models. While many studies have focused on the accuracy of available GB models in predicting solvation free energies, a systematic assessment of the quality of these models in binding free energy calculations, crucial for rational drug design, has not been undertaken. Here, we evaluate the accuracies of eight common GB flavors (GB-HCT, GB-OBC, GB-neck2, GBNSR6, GBSW, GBMV1, GBMV2, and GBMV3), available in major molecular dynamics packages, in predicting the electrostatic binding free energies ( ΔΔ Gel) for a diverse set of 60 biomolecular complexes belonging to four main classes: protein-protein, protein-drug, RNA-peptide, and small complexes. The GB flavors are examined in terms of their ability to reproduce the results from the Poisson-Boltzmann (PB) model, commonly used as accuracy reference in this context. We show that the agreement with the PB of ΔΔ Gel estimates varies widely between different GB models and also across different types of biomolecular complexes, with R2 correlations ranging from 0.3772 to 0.9986. A surface-based "R6" GB model recently implemented in AMBER shows the closest overall agreement with reference PB ( R2 = 0.9949, RMSD = 8.75 kcal/mol). The RNA-peptide and protein-drug complex sets appear to be most challenging for all but one model, as indicated by the large deviations from the PB in ΔΔ Gel. Small neutral complexes present the least challenge for most of the GB models tested. The quantitative demonstration of the strengths and weaknesses of the GB models across the diverse complex types provided here can be used as a guide for practical computations and future development efforts.
Collapse
Affiliation(s)
- Saeed Izadi
- Early Stage Pharmaceutical Development , Genentech Inc. , 1 DNA Way , South San Francisco , California 94080 , United States
| | - Robert C Harris
- Department of Pharmaceutical Sciences , University of Maryland School of Pharmacy , Baltimore , Maryland 21201 , United States
| | - Marcia O Fenley
- Institute of Molecular Biophysics , Florida State University , Tallahassee , Florida 32306-3408 , United States
| | | |
Collapse
|
13
|
Exploration of binding and inhibition mechanism of a small molecule inhibitor of influenza virus H1N1 hemagglutinin by molecular dynamics simulation. Sci Rep 2017. [PMID: 28630402 PMCID: PMC5476670 DOI: 10.1038/s41598-017-03719-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Influenza viruses are a major public health threat worldwide. The influenza hemagglutinin (HA) plays an essential role in the virus life cycle. Due to the high conservation of the HA stem region, it has become an especially attractive target for inhibitors for therapeutics. In this study, molecular simulation was applied to study the mechanism of a small molecule inhibitor (MBX2329) of influenza HA. Behaviors of the small molecule under neutral and acidic conditions were investigated, and an interesting dynamic binding mechanism was found. The results suggested that the binding of the inhibitor with HA under neutral conditions facilitates only its intake, while it interacts with HA under acidic conditions using a different mechanism at a new binding site. After a series of experiments, we believe that binding of the inhibitor can prevent the release of HA1 from HA2, further maintaining the rigidity of the HA2 loop and stabilizing the distance between the long helix and short helices. The investigated residues in the new binding site show high conservation, implying that the new binding pocket has the potential to be an effective drug target. The results of this study will provide a theoretical basis for the mechanism of new influenza virus inhibitors.
Collapse
|
14
|
Li H, Zhao X, Deng X, Wang J, Song M, Niu X, Peng L. Insights into structure and activity of natural compound inhibitors of pneumolysin. Sci Rep 2017; 7:42015. [PMID: 28165051 PMCID: PMC5292752 DOI: 10.1038/srep42015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 01/05/2017] [Indexed: 01/03/2023] Open
Abstract
Pneumolysin is the one of the major virulence factor of the bacterium Streptococcus pneumoniae. In previous report, it is shown that β-sitosterol, a natural compound without antimicrobial activity, is a potent antagonist of pneumolysin. Here, two new pneumolysin natural compound inhibitors, with differential activity, were discovered via haemolysis assay. To explore the key factor of the conformation for the inhibition activity, the interactions between five natural compound inhibitors with differential activity and pneumolysin were reported using molecular modelling, the potential of mean force profiles. Interestingly, it is found that incorporation of the single bond (C22-C23-C24-C25) to replace the double bond (hydrocarbon sidechain) improved the anti-haemolytic activity. In view of the molecular modelling, binding of the five inhibitors to the conserved loop region (Val372, Leu460, and Tyr461) of the cholesterol binding sites led to stable complex systems, which was consistent with the result of β-sitosterol. Owing to the single bond (C22-C23-C24-C25), campesterol and brassicasterol could form strong interactions with Val372 and show higher anti-haemolytic activity, which indicated that the single bond (C22-C23-C24-C25) in inhibitors was required for the anti-haemolytic activity. Overall, the current molecular modelling work provides a starting point for the development of rational design and higher activity pneumolysin inhibitors.
Collapse
Affiliation(s)
- Hongen Li
- Department of Respiratory Medicine, The First Hospital of Jilin University, Key Laboratory of Zoonosis, Ministry of Education, Department of Food Quality and Safety, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xiaoran Zhao
- Department of Respiratory Medicine, The First Hospital of Jilin University, Key Laboratory of Zoonosis, Ministry of Education, Department of Food Quality and Safety, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xuming Deng
- Department of Respiratory Medicine, The First Hospital of Jilin University, Key Laboratory of Zoonosis, Ministry of Education, Department of Food Quality and Safety, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jianfeng Wang
- Department of Respiratory Medicine, The First Hospital of Jilin University, Key Laboratory of Zoonosis, Ministry of Education, Department of Food Quality and Safety, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Meng Song
- Department of Respiratory Medicine, The First Hospital of Jilin University, Key Laboratory of Zoonosis, Ministry of Education, Department of Food Quality and Safety, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xiaodi Niu
- Department of Respiratory Medicine, The First Hospital of Jilin University, Key Laboratory of Zoonosis, Ministry of Education, Department of Food Quality and Safety, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Liping Peng
- Department of Respiratory Medicine, The First Hospital of Jilin University, Key Laboratory of Zoonosis, Ministry of Education, Department of Food Quality and Safety, College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
15
|
Ahlstrom LS, Vorontsov II, Shi J, Miyashita O. Effect of the Crystal Environment on Side-Chain Conformational Dynamics in Cyanovirin-N Investigated through Crystal and Solution Molecular Dynamics Simulations. PLoS One 2017; 12:e0170337. [PMID: 28107510 PMCID: PMC5249168 DOI: 10.1371/journal.pone.0170337] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 01/03/2017] [Indexed: 11/18/2022] Open
Abstract
Side chains in protein crystal structures are essential for understanding biochemical processes such as catalysis and molecular recognition. However, crystal packing could influence side-chain conformation and dynamics, thus complicating functional interpretations of available experimental structures. Here we investigate the effect of crystal packing on side-chain conformational dynamics with crystal and solution molecular dynamics simulations using Cyanovirin-N as a model system. Side-chain ensembles for solvent-exposed residues obtained from simulation largely reflect the conformations observed in the X-ray structure. This agreement is most striking for crystal-contacting residues during crystal simulation. Given the high level of correspondence between our simulations and the X-ray data, we compare side-chain ensembles in solution and crystal simulations. We observe large decreases in conformational entropy in the crystal for several long, polar and contacting residues on the protein surface. Such cases agree well with the average loss in conformational entropy per residue upon protein folding and are accompanied by a change in side-chain conformation. This finding supports the application of surface engineering to facilitate crystallization. Our simulation-based approach demonstrated here with Cyanovirin-N establishes a framework for quantitatively comparing side-chain ensembles in solution and in the crystal across a larger set of proteins to elucidate the effect of the crystal environment on protein conformations.
Collapse
Affiliation(s)
- Logan S. Ahlstrom
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Ivan I. Vorontsov
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona, United States of America
| | - Jun Shi
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona, United States of America
| | - Osamu Miyashita
- RIKEN Advanced Institute for Computational Science, Chuo-ku, Kobe, Hyogo, Japan
- * E-mail:
| |
Collapse
|
16
|
Wang J, Chen Q, Wang M, Zhong C. The opening/closure of the P-loop and hinge of BCR-ABL1 decodes the low/high bioactivities of dasatinib and axitinib. Phys Chem Chem Phys 2017; 19:22444-22453. [DOI: 10.1039/c7cp03443a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The open/closed conformations reveal the low/high bioactivities of the ligands.
Collapse
Affiliation(s)
- Jianyi Wang
- School of Chemistry and Chemical Engineering
- Guangxi University
- Nanning 530004
- China
| | - Qing Chen
- School of Chemistry and Chemical Engineering
- Guangxi University
- Nanning 530004
- China
| | - Mian Wang
- School of Chemistry and Chemical Engineering
- Guangxi University
- Nanning 530004
- China
- College of Life Science and Technology
| | - Cheng Zhong
- School of Computer
- Electronics and Information
- Guangxi University
- Nanning 530004
- China
| |
Collapse
|
17
|
Sun X, Qian MD, Guan SS, Shan YM, Dong Y, Zhang H, Wang S, Han WW. Investigation of an "alternate water supply system" in enzymatic hydrolysis in the processive endocellulase Cel7A from Rasamsonia emersonii by molecular dynamics simulation. Biopolymers 2016; 107:46-60. [PMID: 27696356 DOI: 10.1002/bip.22991] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 09/26/2016] [Accepted: 09/28/2016] [Indexed: 01/10/2023]
Abstract
Cel7A from Rasamsonia emersonii is one of the processive endocellulases classified under family 7 glycoside hydrolase. Molecular dynamics simulations were carried out to obtain the optimized sliding and hydrolyzing conformations, in which the reducing ends of sugar chains are located on different sites. Hydrogen bonds are investigated to clarify the interactions between protein and substrate in either conformation. Nine hydrogen bonding interactions are identified in the sliding conformation, and six similar interactions are also found correspondingly in the hydrolyzing conformation. In addition, four strong hydrophobic interactions are also determined. The domain cross-correlation map analysis shows movement correlation of protein including autocorrelation between residues. The root mean square fluctuations analysis represents the various flexibilities of different fragment in the two conformations. Comparing the two conformations reveals the water-supply mechanism of selective hydrolysis of cellulose in Cel7A. The mechanism can be described as follow. When the reducing end of substrate slides from the unhydrolyzing site (sliding conformation) to the hydrolyzing site (hydrolyzing conformation), His225 is pushed down and rotated, the rotation leads to the movement of Glu209 with the interstrand hydrogen bonding in β-sheet. It further makes Asp211 close to the hydrolysis center and provides a water molecule bounding on its carboxyl in the previous unhydrolyzing site. After the hydrolysis takes place and the product is excluded from the enzyme, the Asp211 comes back to its initial position. In summary, Asp211 acts as an elevator to transport outer water molecules into the hydrolysis site for every other glycosidic bond.
Collapse
Affiliation(s)
- Xun Sun
- Institute of Theoretical Chemistry, Jilin University, Changchun, 130023, People's Republic of China
| | - Meng-Dan Qian
- Institute of Theoretical Chemistry, Jilin University, Changchun, 130023, People's Republic of China
| | - Shan-Shan Guan
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, National Engineering Laboratory for AIDS Vaccine, College of Life Sciences, Jilin University, Changchun, 130012, People's Republic of China
| | - Ya-Ming Shan
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, National Engineering Laboratory for AIDS Vaccine, College of Life Sciences, Jilin University, Changchun, 130012, People's Republic of China
| | - Ying Dong
- Bethune pharmaceutical factory, Jilin University, Changchun, 130012, People's Republic of China
| | - Hao Zhang
- Institute of Theoretical Chemistry, Jilin University, Changchun, 130023, People's Republic of China
| | - Song Wang
- Institute of Theoretical Chemistry, Jilin University, Changchun, 130023, People's Republic of China
| | - Wei-Wei Han
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, National Engineering Laboratory for AIDS Vaccine, College of Life Sciences, Jilin University, Changchun, 130012, People's Republic of China.,Department of Computer Science, C.S. Bond Life Sciences Center, University of Missouri Columbia, Missouri, 65211
| |
Collapse
|
18
|
Qian M, Shan Y, Guan S, Zhang H, Wang S, Han W. Structural Basis of Fullerene Derivatives as Novel Potent Inhibitors of Protein Tyrosine Phosphatase 1B: Insight into the Inhibitory Mechanism through Molecular Modeling Studies. J Chem Inf Model 2016; 56:2024-2034. [PMID: 27649447 DOI: 10.1021/acs.jcim.6b00482] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Protein tyrosine phosphatase 1B (PTP1B) has become an outstanding target for the treatment of diabetes and obesity. Recent research has demonstrated that some fullerene derivatives serve as a new nanoscale-class of potent inhibitors of PTP1B, but the specific mechanism remains unclear. Several molecular modeling methods (molecular docking, molecular dynamics simulations, and molecular mechanics/generalized Born surface area calculations) were integrated to provide insight into the binding mode and inhibitory mechanism of the new class of fullerene inhibitors. The results reveal that PTP1B with an open WPD loop is more susceptible to the combination with the fullerene inhibitor because of their comparable shapes and sizes. When the WPD loop fluctuates to the open conformation, the inhibitor falls into the active pocket and induces conformational rotation of the WPD loop. This rotation is closely related to the reduction of the catalytic activity of PTP1B. In addition, it is suggested that compound 1, like compound 2, is a competitive inhibitor since it blocks the active site to prevent the binding of the substrate. The high binding affinity of fullerene-based compounds and the transition of the WPD loop, caused by the specific structural property of the hydrophobic fullerene core and the appended polar groups, make these fullerene derivatives efficient competitive inhibitors. The theoretical results provide useful clues for further investigation of the noval inhibitors of PTP1B at the nanoscale.
Collapse
Affiliation(s)
- Mengdan Qian
- Institute of Theoretical Chemistry, Jilin University , Changchun 130023, China
| | - Yaming Shan
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University , Changchun 130012, China
| | - Shanshan Guan
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University , Changchun 130012, China
| | - Hao Zhang
- Institute of Theoretical Chemistry, Jilin University , Changchun 130023, China
| | - Song Wang
- Institute of Theoretical Chemistry, Jilin University , Changchun 130023, China
| | - Weiwei Han
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University , Changchun 130012, China.,Department of Computer Science, C. S. Bond Life Sciences Center, University of Missouri , Columbia, Missouri 65211, United States
| |
Collapse
|
19
|
Niu XD, Lv Z, Zhou XR, Wang HS. Insight into the key active sites of afChiA1 based on molecular dynamics simulations and free energy calculations. MOLECULAR SIMULATION 2016. [DOI: 10.1080/08927022.2016.1148265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Xiao D. Niu
- Department of Food Quality and Safety, Jilin University, Changchun, P.R. China
| | - Zhuo Lv
- Department of Food Quality and Safety, Jilin University, Changchun, P.R. China
| | - Xin R. Zhou
- Department of Food Quality and Safety, Jilin University, Changchun, P.R. China
| | - Hong S. Wang
- Department of Food Quality and Safety, Jilin University, Changchun, P.R. China
| |
Collapse
|
20
|
Bavi R, Kumar R, Rampogu S, Son M, Park C, Baek A, Kim HH, Suh JK, Park SJ, Lee KW. Molecular interactions of UvrB protein and DNA from Helicobacter pylori: Insight into a molecular modeling approach. Comput Biol Med 2016; 75:181-9. [PMID: 27315565 DOI: 10.1016/j.compbiomed.2016.06.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 06/02/2016] [Accepted: 06/03/2016] [Indexed: 12/11/2022]
Abstract
Helicobacter pylori (H. pylori) persevere in the human stomach, an environment in which they encounter many DNA-damaging conditions, including gastric acidity. The pathogenicity of H. pylori is enhanced by its well-developed DNA repair mechanism, thought of as 'machinery,' such as nucleotide excision repair (NER). NER involves multi-enzymatic excinuclease proteins (UvrABC endonuclease), which repair damaged DNA in a sequential manner. UvrB is the central component in prokaryotic NER, essential for damage recognition. Therefore, molecular modeling studies of UvrB protein from H. pylori are carried out with homology modeling and molecular dynamics (MD) simulations. The results reveal that the predicted structure is bound to a DNA hairpin with 3-bp stem, an 11-nucleotide loop, and 3-nt 3' overhang. In addition, a mutation of the Y96A variant indicates reduction in the binding affinity for DNA. Free-energy calculations demonstrate the stability of the complex and help identify key residues in various interactions based on residue decomposition analysis. Stability comparative studies between wild type and mutant protein-DNA complexes indicate that the former is relatively more stable than the mutant form. This predicted model could also be useful in designing new inhibitors for UvrB protein, as well as preventing the pathogenesis of H. pylori.
Collapse
Affiliation(s)
- Rohit Bavi
- Division of Applied Life Science (BK21 Plus), Systems and Synthetic Agrobiotech Center (SSAC), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Republic of Korea
| | - Raj Kumar
- Division of Applied Life Science (BK21 Plus), Systems and Synthetic Agrobiotech Center (SSAC), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Republic of Korea
| | - Shailima Rampogu
- Division of Applied Life Science (BK21 Plus), Systems and Synthetic Agrobiotech Center (SSAC), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Republic of Korea
| | - Minky Son
- Division of Applied Life Science (BK21 Plus), Systems and Synthetic Agrobiotech Center (SSAC), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Republic of Korea
| | - Chanin Park
- Division of Applied Life Science (BK21 Plus), Systems and Synthetic Agrobiotech Center (SSAC), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Republic of Korea
| | - Ayoung Baek
- Division of Applied Life Science (BK21 Plus), Systems and Synthetic Agrobiotech Center (SSAC), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Republic of Korea
| | - Hyong-Ha Kim
- Division of Quality of Life, Korea Research Institute of Standards and Science, Daejeon 305-340, Republic of Korea
| | - Jung-Keun Suh
- Bio Computing Major, Korean German Institute of Technology, Seoul 157-033, Republic of Korea
| | - Seok Ju Park
- Department of Internal Medicine, College of Medicine, Busan Paik Hospital, Inje University, Republic of Korea.
| | - Keun Woo Lee
- Division of Applied Life Science (BK21 Plus), Systems and Synthetic Agrobiotech Center (SSAC), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Republic of Korea.
| |
Collapse
|
21
|
Qian M, Guan S, Shan Y, Zhang H, Wang S. Structural and molecular basis of cellulase Cel48F by computational modeling: Insight into catalytic and product release mechanism. J Struct Biol 2016; 194:347-56. [DOI: 10.1016/j.jsb.2016.03.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 03/04/2016] [Accepted: 03/14/2016] [Indexed: 11/26/2022]
|
22
|
Bavi R, Kumar R, Choi L, Woo Lee K. Exploration of Novel Inhibitors for Bruton's Tyrosine Kinase by 3D QSAR Modeling and Molecular Dynamics Simulation. PLoS One 2016; 11:e0147190. [PMID: 26784025 PMCID: PMC4718466 DOI: 10.1371/journal.pone.0147190] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 12/30/2015] [Indexed: 11/30/2022] Open
Abstract
Bruton’s tyrosine kinase (BTK) is a cytoplasmic, non-receptor tyrosine kinase which is expressed in most of the hematopoietic cells and plays an important role in many cellular signaling pathways. B cell malignancies are dependent on BCR signaling, thus making BTK an efficient therapeutic target. Over the last few years, significant efforts have been made in order to develop BTK inhibitors to treat B-cell malignancies, and autoimmunity or allergy/hypersensitivity but limited success has been achieved. Here in this study, 3D QSAR pharmacophore models were generated for Btk based on known IC50 values and experimental energy scores with extensive validations. The five features pharmacophore model, Hypo1, includes one hydrogen bond acceptor lipid, one hydrogen bond donor, and three hydrophobic features, which has the highest correlation coefficient (0.98), cost difference (112.87), and low RMS (1.68). It was further validated by the Fisher’s randomization method and test set. The well validated Hypo1 was used as a 3D query to search novel Btk inhibitors with different chemical scaffold using high throughput virtual screening technique. The screened compounds were further sorted by applying ADMET properties, Lipinski’s rule of five and molecular docking studies to refine the retrieved hits. Furthermore, molecular dynamic simulation was employed to study the stability of docked conformation and to investigate the binding interactions in detail. Several important hydrogen bonds with Btk were revealed, which includes the gatekeeper residues Glu475 and Met 477 at the hinge region. Overall, this study suggests that the proposed hits may be more effective inhibitors for cancer and autoimmune therapy.
Collapse
Affiliation(s)
- Rohit Bavi
- Division of Applied Life Science (BK21 Plus Program), Systems and Synthetic Agrobiotech Center (SSAC), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju, 52828 Republic of Korea
| | - Raj Kumar
- Division of Applied Life Science (BK21 Plus Program), Systems and Synthetic Agrobiotech Center (SSAC), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju, 52828 Republic of Korea
| | - Light Choi
- Division of Applied Life Science (BK21 Plus Program), Systems and Synthetic Agrobiotech Center (SSAC), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju, 52828 Republic of Korea
| | - Keun Woo Lee
- Division of Applied Life Science (BK21 Plus Program), Systems and Synthetic Agrobiotech Center (SSAC), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju, 52828 Republic of Korea
- * E-mail:
| |
Collapse
|
23
|
Zhao X, Li H, Wang J, Guo Y, Liu B, Deng X, Niu X. Verbascoside Alleviates Pneumococcal Pneumonia by Reducing Pneumolysin Oligomers. Mol Pharmacol 2015; 89:376-87. [DOI: 10.1124/mol.115.100610] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 12/18/2015] [Indexed: 02/02/2023] Open
|
24
|
Li Z, Bolia A, Maxwell JD, Bobkov AA, Ghirlanda G, Ozkan SB, Margulis CJ. A Rigid Hinge Region Is Necessary for High-Affinity Binding of Dimannose to Cyanovirin and Associated Constructs. Biochemistry 2015; 54:6951-60. [PMID: 26507789 DOI: 10.1021/acs.biochem.5b00635] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Mutations in the hinge region of cyanovirin-N (CVN) dictate its preferential oligomerization state. Constructs with the Pro51Gly mutation preferentially exist as monomers, whereas wild-type cyanovirin can form domain-swapped dimers under certain conditions. Because the hinge region is an integral part of the high-affinity binding site of CVN, we investigated whether this mutation affects the shape, flexibility, and binding affinity of domain B for dimannose. Our studies indicate that the capability of monomeric wild-type CVN to resist mechanical perturbations is enhanced when compared to that of constructs in which the hinge region is more flexible. Our computational results also show that enhanced flexibility leads to blocking of the binding site by allowing different rotational isomeric states of Asn53. Moreover, at higher temperatures, this observed flexibility leads to an interaction between Asn53 and Asn42, further hindering access to the binding site. On the basis of these results, we predicted that binding affinity for dimannose would be more favorable for cyanovirin constructs containing a wild-type hinge region, whereas affinity would be impaired in the case of mutants containing Pro51Gly. Experimental characterization by isothermal titration calorimetry of a set of cyanovirin mutants confirms this hypothesis. Those possessing the Pro51Gly mutation are consistently inferior binders.
Collapse
Affiliation(s)
- Zhen Li
- Department of Chemistry, University of Iowa , Iowa City, Iowa 52242, United States
| | - Ashini Bolia
- Department of Chemistry and Biochemistry, Arizona State University , Tempe, Arizona 85287-1604, United States
| | - Jason D Maxwell
- Department of Chemistry and Biochemistry, Arizona State University , Tempe, Arizona 85287-1604, United States
| | - Andrey A Bobkov
- Sanford Burnham Medical Research Institute , 10901 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Giovanna Ghirlanda
- Department of Chemistry and Biochemistry, Arizona State University , Tempe, Arizona 85287-1604, United States
| | - S Banu Ozkan
- Center for Biological Physics, Department of Physics, Arizona State University , Tempe, Arizona 85287, United States
| | - Claudio J Margulis
- Department of Chemistry, University of Iowa , Iowa City, Iowa 52242, United States
| |
Collapse
|
25
|
Novel chemical scaffolds of the tumor marker AKR1B10 inhibitors discovered by 3D QSAR pharmacophore modeling. Acta Pharmacol Sin 2015; 36:998-1012. [PMID: 26051108 DOI: 10.1038/aps.2015.17] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 02/27/2015] [Indexed: 01/04/2023] Open
Abstract
AIM Recent evidence suggests that aldo-keto reductase family 1 B10 (AKR1B10) may be a potential diagnostic or prognostic marker of human tumors, and that AKR1B10 inhibitors offer a promising choice for treatment of many types of human cancers. The aim of this study was to identify novel chemical scaffolds of AKR1B10 inhibitors using in silico approaches. METHODS The 3D QSAR pharmacophore models were generated using HypoGen. A validated pharmacophore model was selected for virtual screening of 4 chemical databases. The best mapped compounds were assessed for their drug-like properties. The binding orientations of the resulting compounds were predicted by molecular docking. Density functional theory calculations were carried out using B3LYP. The stability of the protein-ligand complexes and the final binding modes of the hit compounds were analyzed using 10 ns molecular dynamics (MD) simulations. RESULTS The best pharmacophore model (Hypo 1) showed the highest correlation coefficient (0.979), lowest total cost (102.89) and least RMSD value (0.59). Hypo 1 consisted of one hydrogen-bond acceptor, one hydrogen-bond donor, one ring aromatic and one hydrophobic feature. This model was validated by Fischer's randomization and 40 test set compounds. Virtual screening of chemical databases and the docking studies resulted in 30 representative compounds. Frontier orbital analysis confirmed that only 3 compounds had sufficiently low energy band gaps. MD simulations revealed the binding modes of the 3 hit compounds: all of them showed a large number of hydrogen bonds and hydrophobic interactions with the active site and specificity pocket residues of AKR1B10. CONCLUSION Three compounds with new structural scaffolds have been identified, which have stronger binding affinities for AKR1B10 than known inhibitors.
Collapse
|
26
|
Honarparvar B, Pawar SA, Alves CN, Lameira J, Maguire GE, Silva JRA, Govender T, Kruger HG. Pentacycloundecane lactam vs lactone norstatine type protease HIV inhibitors: binding energy calculations and DFT study. J Biomed Sci 2015; 22:15. [PMID: 25889635 PMCID: PMC4387594 DOI: 10.1186/s12929-015-0115-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 01/16/2015] [Indexed: 01/12/2023] Open
Abstract
Background Novel pentacycloundecane (PCU)-lactone-CO-EAIS peptide inhibitors were designed, synthesized, and evaluated against wild-type C-South African (C-SA) HIV-1 protease. Three compounds are reported herein, two of which displayed IC50 values of less than 1.00 μM. A comparative MM-PB(GB)SA binding free energy of solvation values of PCU-lactam and lactone models and their enantiomers as well as the PCU-lactam-NH-EAIS and lactone-CO-EAIS peptide inhibitors and their corresponding diastereomers complexed with South African HIV protease (C-SA) was performed. This will enable us to rationalize the considerable difference between inhibitory concentration (IC50) of PCU-lactam-NH-EAIS and PCU-lactone-CO-EAIS peptides. Results The PCU-lactam model exhibited more negative calculated binding free energies of solvation than the PCU-lactone model. The same trend was observed for the PCU-peptide inhibitors, which correspond to the experimental activities for the PCU-lactam-NH-EAIS peptide (IC50 = 0.076 μM) and the PCU-lactone-CO-EAIS peptide inhibitors (IC50 = 0.850 μM). Furthermore, a density functional theory (DFT) study on the natural atomic charges of the nitrogen and oxygen atoms of the three PCU-lactam, PCU-lactim and PCU-lactone models were performed using natural bond orbital (NBO) analysis. Electrostatic potential maps were also used to visualize the electron density around electron-rich regions. The asymmetry parameter (η) and quadrupole coupling constant (χ) values of the nitrogen and oxygen nuclei of the model compounds were calculated at the same level of theory. Electronic molecular properties including polarizability and electric dipole moments were also calculated and compared. The Gibbs theoretical free solvation energies of solvation (∆Gsolv) were also considered. Conclusions A general trend is observed that the lactam species appears to have a larger negative charge distribution around the heteroatoms, larger quadrupole constant, dipole moment and better solvation energy, in comparison to the PCU-lactone model. It can be argued that these characteristics will ensure better eletronic interaction between the lactam and the receptor, corresponding to the observed HIV protease activities in terms of experimental IC50 data. Electronic supplementary material The online version of this article (doi:10.1186/s12929-015-0115-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bahareh Honarparvar
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, 4041, South Africa.
| | - Sachin A Pawar
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, 4041, South Africa.
| | - Cláudio Nahum Alves
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, CP 11101, 66075-110, Belém, PA, Brazil.
| | - Jerônimo Lameira
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, CP 11101, 66075-110, Belém, PA, Brazil.
| | - Glenn Em Maguire
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, 4041, South Africa.
| | - José Rogério A Silva
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, CP 11101, 66075-110, Belém, PA, Brazil.
| | - Thavendran Govender
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, 4041, South Africa.
| | - Hendrik G Kruger
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, 4041, South Africa.
| |
Collapse
|
27
|
Guan SS, Han WW, Zhang H, Wang S, Shan YM. Insight into the interactive residues between two domains of human somatic Angiotensin-converting enzyme and Angiotensin II by MM-PBSA calculation and steered molecular dynamics simulation. J Biomol Struct Dyn 2015; 34:15-28. [PMID: 25582663 DOI: 10.1080/07391102.2015.1007167] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Angiotensin-converting enzyme (ACE), a membrane-bound zinc metallopeptidase, catalyzes the formation of Angiotensin-II (AngII) and the deactivation of bradykinin in the renin-angiotensin-aldosterone and kallikrein-kinin systems. As a hydrolysis product of ACE, AngII is regarded as an inhibitor and displays stronger competitive inhibition in the C-domain than the N-domain of ACE. However, the AngII binding differences between the two domains and the mechanisms behind AngII dissociation from the C-domain are rarely explored. In this work, molecular docking, Molecular Mechanics/Poisson-Boltzmann Surface Area calculation, and steered molecular dynamics (SMD) are applied to explore the structures and interactions in the binding or unbinding of AngII with the two domains of human somatic ACE. Calculated free energy values suggest that the C-domain-AngII complex is more stable than the N-domain-AngII complex, consistent with available experimental data. SMD simulation results imply that electrostatic interaction is dominant in the dissociation of AngII from the C-domain. Moreover, Gln106, Asp121, Glu123, and Tyr213 may be the key residues in the unbinding pathway of AngII. The simulation results in our work provide insights into the interactions between the two domains of ACE and its natural peptide inhibitor AngII at a molecular level. Moreover, the results provide theoretical clues for the design of new inhibitors.
Collapse
Affiliation(s)
- Shan-shan Guan
- a State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry , Jilin University , Changchun 130023 , People's Republic of China
| | - Wei-wei Han
- b Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education , School of Life Sciences, Jilin University , Changchun 130023 , People's Republic of China
| | - Hao Zhang
- a State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry , Jilin University , Changchun 130023 , People's Republic of China
| | - Song Wang
- a State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry , Jilin University , Changchun 130023 , People's Republic of China
| | - Ya-ming Shan
- c School of Life Sciences , Jilin University , Changchun 130012 , People's Republic of China
| |
Collapse
|
28
|
Sonawane KD, Barage SH. Structural analysis of membrane-bound hECE-1 dimer using molecular modeling techniques: insights into conformational changes and Aβ1–42 peptide binding. Amino Acids 2014; 47:543-59. [DOI: 10.1007/s00726-014-1887-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 11/28/2014] [Indexed: 10/24/2022]
|
29
|
Bolia A, Woodrum BW, Cereda A, Ruben MA, Wang X, Ozkan SB, Ghirlanda G. A flexible docking scheme efficiently captures the energetics of glycan-cyanovirin binding. Biophys J 2014; 106:1142-51. [PMID: 24606938 DOI: 10.1016/j.bpj.2014.01.040] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 01/08/2014] [Accepted: 01/10/2014] [Indexed: 01/10/2023] Open
Abstract
Cyanovirin-N (CVN), a cyanobacterial lectin, exemplifies a class of antiviral agents that inhibit HIV by binding to the highly glycosylated envelope protein gp120. Here, we investigate the energetics of glycan recognition using a computationally inexpensive flexible docking approach, backbone perturbation docking (BP-Dock). We benchmarked our method using two mutants of CVN: P51G-m4-CVN, which binds dimannose with high affinity through domain B, and CVN((mutDB)), in which binding to domain B has been abolished through mutation of five polar residues to small nonpolar side chains. We investigated the energetic contribution of these polar residues along with the additional position 53 by docking dimannose to single-point CVN mutant models. Analysis of the docking simulations indicated that the E41A/G and T57A mutations led to a significant decrease in binding energy scores due to rearrangements of the hydrogen-bond network that reverberated throughout the binding cavity. N42A decreased the binding score to a level comparable to that of CVN((mutDB)) by affecting the integrity of the local protein structure. In contrast, N53S resulted in a high binding energy score, similar to P51G-m4-CVN. Experimental characterization of the five mutants by NMR spectroscopy confirmed the binding affinity pattern predicted by BP-Dock. Despite their mostly conserved fold and stability, E41A, E41G, and T57A displayed dissociation constants in the millimolar range. N53S showed a binding constant in the low micromolar range, similar to that observed for P51G-m4-CVN. No binding was observed for N42A. Our results show that BP-Dock is a useful tool for rapidly screening the relative binding affinity pattern of in silico-designed mutants compared with wild-type, supporting its use to design novel mutants with enhanced binding properties.
Collapse
Affiliation(s)
- Ashini Bolia
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona
| | - Brian W Woodrum
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona
| | - Angelo Cereda
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona
| | - Melissa A Ruben
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona
| | - Xu Wang
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona
| | - S Banu Ozkan
- Center for Biological Physics, Department of Physics, Arizona State University, Tempe, Arizona.
| | - Giovanna Ghirlanda
- Center for Biological Physics, Department of Physics, Arizona State University, Tempe, Arizona.
| |
Collapse
|
30
|
Hansen N, van Gunsteren WF. Practical Aspects of Free-Energy Calculations: A Review. J Chem Theory Comput 2014; 10:2632-47. [PMID: 26586503 DOI: 10.1021/ct500161f] [Citation(s) in RCA: 289] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Free-energy calculations in the framework of classical molecular dynamics simulations are nowadays used in a wide range of research areas including solvation thermodynamics, molecular recognition, and protein folding. The basic components of a free-energy calculation, that is, a suitable model Hamiltonian, a sampling protocol, and an estimator for the free energy, are independent of the specific application. However, the attention that one has to pay to these components depends considerably on the specific application. Here, we review six different areas of application and discuss the relative importance of the three main components to provide the reader with an organigram and to make nonexperts aware of the many pitfalls present in free energy calculations.
Collapse
Affiliation(s)
- Niels Hansen
- Institute of Thermodynamics and Thermal Process Engineering, University of Stuttgart , D-70569 Stuttgart, Germany.,Laboratory of Physical Chemistry, Swiss Federal Institute of Technology, ETH , CH-8093 Zürich, Switzerland
| | - Wilfred F van Gunsteren
- Laboratory of Physical Chemistry, Swiss Federal Institute of Technology, ETH , CH-8093 Zürich, Switzerland
| |
Collapse
|
31
|
The antiviral lectin cyanovirin-N: probing multivalency and glycan recognition through experimental and computational approaches. Biochem Soc Trans 2014; 41:1170-6. [PMID: 24059504 DOI: 10.1042/bst20130154] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
CVN (cyanovirin-N), a small lectin isolated from cyanobacteria, exemplifies a novel class of anti-HIV agents that act by binding to the highly glycosylated envelope protein gp120 (glycoprotein 120), resulting in inhibition of the crucial viral entry step. In the present review, we summarize recent work in our laboratory and others towards determining the crucial role of multivalency in the antiviral activity, and we discuss features that contribute to the high specificity and affinity for the glycan ligand observed in CVN. An integrated approach that encompasses structural determination, mutagenesis analysis and computational work holds particular promise to clarify aspects of the interactions between CVN and glycans.
Collapse
|
32
|
Ramadugu SK, Li Z, Kashyap HK, Margulis CJ. The role of Glu41 in the binding of dimannose to P51G-m4-CVN. Biochemistry 2014; 53:1477-84. [PMID: 24524298 DOI: 10.1021/bi4014159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The carbohydrate binding protein, Cyanovirin-N, obtained from cyanobacteria, consists of high-affinity and low-affinity binding domains. To avoid the formation of a domain swapped structure in solution and also to better focus on the binding of carbohydrates at the high-affinity site, the Ghirlanda group (Biochemistry, 46, 2007, 9199-9207) engineered the P51G-m4-CVN mutant which does not dimerize nor binds at the low-affinity site. This mutant provides an excellent starting point for the experimental and computational study of further transformations to enhance binding at the high-affinity site as well as to retool this site for the possible binding of different sugars. However, before such endeavors are pursued, detailed understanding of apparently key interactions both present in wild-type and P51G-m4-CVN at the high-affinity site must be derived and controversies about the importance of certain residues must be resolved. One such interaction is that of Glu41, a charged residue in intimate contact with 2'OH of dimannose at the nonreducing end. We do so computationally by performing two mutations using the thermodynamic integration formalism in explicit solvent. Mutations of P51G-m4-CVN Glu41 to Ala41 and Gly41 reveal that whereas the loss of Coulomb interactions result in a free energy penalty of about 2.1 kcal/mol, this is significantly compensated by favorable contributions to the Lennard-Jones portion of the transformation, resulting in almost no change in the free energy of binding. At least in terms of free energetics, and in the case of this particular CVN mutant, Glu41 does not appear to be as important as previously thought. This is not because of lack of extensive hydrogen bonding with the ligand but instead because of other compensating factors.
Collapse
Affiliation(s)
- Sai Kumar Ramadugu
- Department of Chemistry, University of Iowa , 118 IATL, Iowa City, Iowa 52241, United States
| | | | | | | |
Collapse
|
33
|
Ahlstrom LS, Miyashita O. Packing interface energetics in different crystal forms of the λ Cro dimer. Proteins 2013; 82:1128-41. [PMID: 24218107 DOI: 10.1002/prot.24478] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 10/27/2013] [Accepted: 11/04/2013] [Indexed: 12/22/2022]
Abstract
Variation among crystal structures of the λ Cro dimer highlights conformational flexibility. The structures range from a wild type closed to a mutant fully open conformation, but it is unclear if each represents a stable solution state or if one may be the result of crystal packing. Here we use molecular dynamics (MD) simulation to investigate the energetics of crystal packing interfaces and the influence of site-directed mutagenesis on them in order to examine the effect of crystal packing on wild type and mutant Cro dimer conformation. Replica exchange MD of mutant Cro in solution shows that the observed conformational differences between the wild type and mutant protein are not the direct consequence of mutation. Instead, simulation of Cro in different crystal environments reveals that mutation affects the stability of crystal forms. Molecular Mechanics Poisson-Boltzmann Surface Area binding energy calculations reveal the detailed energetics of packing interfaces. Packing interfaces can have diverse properties in strength, energetic components, and some are stronger than the biological dimer interface. Further analysis shows that mutation can strengthen packing interfaces by as much as ∼5 kcal/mol in either crystal environment. Thus, in the case of Cro, mutation provides an additional energetic contribution during crystal formation that may stabilize a fully open higher energy state. Moreover, the effect of mutation in the lattice can extend to packing interfaces not involving mutation sites. Our results provide insight into possible models for the effect of crystallization on Cro conformational dynamics and emphasize careful consideration of protein crystal structures.
Collapse
Affiliation(s)
- Logan S Ahlstrom
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona, 85721
| | | |
Collapse
|
34
|
Lv Z, Wang HS, Niu XD. Molecular dynamics simulations reveal insight into key structural elements of aaptamines as sortase inhibitors with free energy calculations. Chem Phys Lett 2013. [DOI: 10.1016/j.cplett.2013.08.097] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
35
|
Niu X, Gao X, Wang H, Wang X, Wang S. Insight into the dynamic interaction between different flavonoids and bovine serum albumin using molecular dynamics simulations and free energy calculations. J Mol Model 2012; 19:1039-47. [PMID: 23114430 DOI: 10.1007/s00894-012-1649-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Accepted: 10/14/2012] [Indexed: 11/24/2022]
Abstract
In this study, the binding of Bovine serum albumin (BSA) with three flavonoids, kaempferol-3-O-a-L-rhamnopyranosyl-(1-3)-a-L-rhamnopyranosyl-(1-6)-b-D-galacto- pyranoside (drug 1),kaempfol-7-O-rhamnosyl-3-O-rutinoside (drug 2)andkaempferide-7-O-(4"-O-acetylrhamnosyl)-3-O-ruti- noside (drug 3) is investigated by molecular docking, molecular dynamics (MD) simulation, and binding free energy calculation. The free energies are consistent with available experimental results and suggest that the binding site of BSA-drug1 is more stable than those of BSA-drug2 and BSA-drug3. The energy decomposition analysis is performed and reveals that the electrostatic interactions play an important role in the stabilization of the binding site of BSA-drug1 while the van der Waals interactions contribute largely to stabilization of the binding site of BSA-drug2 and BSA-drug3. The key residues stabilizing the binding sites of BSA-drug1, BSA-drug2 and BSA-drug3 are identified based on the residue decomposition analysis.
Collapse
Affiliation(s)
- Xiaodi Niu
- Department of Food quality and Safety, Jilin University, Changchun 130062, People's Republic of China.
| | | | | | | | | |
Collapse
|
36
|
Free energy calculations of protein-ligand interactions. Curr Opin Chem Biol 2011; 15:547-52. [PMID: 21684797 DOI: 10.1016/j.cbpa.2011.05.021] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Revised: 05/03/2011] [Accepted: 05/23/2011] [Indexed: 01/25/2023]
Abstract
In the calculation of free energies of binding for protein-ligand complexes, we distinguish endpoint methods, methods involving alchemical modifications and methods that physically displace the ligand from the protein. Most methodological advances seem to come from a clever combination of multiple existing methods to enhance the sampling or to utilize specific advantages of various approaches. The coupling parameters common in thermodynamic integration and in Hamiltonian replica exchange are for instance combined to yield replica exchange thermodynamic integration. As new methods mostly aim to improve efficiency or to attain more complete sampling, there are good prospects to understand and tackle the sampling problem better and to shift the focus towards the scoring problem in the context of more robust and accurate force fields.
Collapse
|