1
|
Broz M, Jukič M, Bren U. Naive Prediction of Protein Backbone Phi and Psi Dihedral Angles Using Deep Learning. Molecules 2023; 28:7046. [PMID: 37894526 PMCID: PMC10609058 DOI: 10.3390/molecules28207046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Protein structure prediction represents a significant challenge in the field of bioinformatics, with the prediction of protein structures using backbone dihedral angles recently achieving significant progress due to the rise of deep neural network research. However, there is a trend in protein structure prediction research to employ increasingly complex neural networks and contributions from multiple models. This study, on the other hand, explores how a single model transparently behaves using sequence data only and what can be expected from the predicted angles. To this end, the current paper presents data acquisition, deep learning model definition, and training toward the final protein backbone angle prediction. The method applies a simple fully connected neural network (FCNN) model that takes only the primary structure of the protein with a sliding window of size 21 as input to predict protein backbone ϕ and ψ dihedral angles. Despite its simplicity, the model shows surprising accuracy for the ϕ angle prediction and somewhat lower accuracy for the ψ angle prediction. Moreover, this study demonstrates that protein secondary structure prediction is also possible with simple neural networks that take in only the protein amino-acid residue sequence, but more complex models are required for higher accuracies.
Collapse
Affiliation(s)
- Matic Broz
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia
| | - Marko Jukič
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška ulica 8, SI-6000 Koper, Slovenia
- Institute of Environmental Protection and Sensors, Beloruska ulica 7, SI-2000 Maribor, Slovenia
| | - Urban Bren
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška ulica 8, SI-6000 Koper, Slovenia
- Institute of Environmental Protection and Sensors, Beloruska ulica 7, SI-2000 Maribor, Slovenia
| |
Collapse
|
2
|
Geethu S, Vimina ER. Improved 3-D Protein Structure Predictions using Deep ResNet Model. Protein J 2021; 40:669-681. [PMID: 34510309 DOI: 10.1007/s10930-021-10016-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2021] [Indexed: 10/20/2022]
Abstract
Protein Structure Prediction (PSP) is considered to be a complicated problem in computational biology. In spite of, the remarkable progress made by the co-evolution-based method in PSP, it is still a challenging and unresolved problem. Recently, along with co-evolutionary relationships, deep learning approaches have been introduced in PSP that lead to significant progress. In this paper a novel methodology using deep ResNet architecture for predicting inter-residue distance and dihedral angles is proposed, that aims to generate 125 homologous sequences in an average from a set of customized sequence database. These sequences are used to generate input features. As an outcome of neural networks, a pool of structures is generated from which the lowest potential structure is chosen as the final predicted 3-D protein structure. The proposed method is trained using 6521 protein sequences extracted from Protein Data Bank (PDB). For testing 48 protein sequences whose residue length is less than 400 residues are chosen from the 13th Critical Assessment of protein Structure Prediction (CASP 13) dataset are used. The model is compared with Alphafold, Zhang, and RaptorX. The template modeling (TM) score is used to evaluate the accuracy of the estimated structure. The proposed method produces better performances for 52% of the target sequences while that of Alphafold, Zhang, RaptorX were 10%, 22.9%, and 6% respectively. Additionally, for 37.5% target sequences, the proposed method was able to achieve accuracy greater than or equal to 0.80. The TM score obtained for the sequences under consideration were 0.69, 0.67, 0.65, and 0.58 respectively for the proposed method, Alphafold, Zhang, and RaptorX.
Collapse
Affiliation(s)
- S Geethu
- Department of Computer Science and IT, Amrita School of Arts and Sciences, Amrita Vishwa Vidyapeetham, Kochi Campus, Ernakulam, India.
| | - E R Vimina
- Department of Computer Science and IT, Amrita School of Arts and Sciences, Amrita Vishwa Vidyapeetham, Kochi Campus, Ernakulam, India
| |
Collapse
|
3
|
Kashani-Amin E, Tabatabaei-Malazy O, Sakhteman A, Larijani B, Ebrahim-Habibi A. A Systematic Review on Popularity, Application and Characteristics of Protein Secondary Structure Prediction Tools. Curr Drug Discov Technol 2020; 16:159-172. [PMID: 29493456 DOI: 10.2174/1570163815666180227162157] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 02/15/2018] [Accepted: 02/22/2018] [Indexed: 01/22/2023]
Abstract
BACKGROUND Prediction of proteins' secondary structure is one of the major steps in the generation of homology models. These models provide structural information which is used to design suitable ligands for potential medicinal targets. However, selecting a proper tool between multiple Secondary Structure Prediction (SSP) options is challenging. The current study is an insight into currently favored methods and tools, within various contexts. OBJECTIVE A systematic review was performed for a comprehensive access to recent (2013-2016) studies which used or recommended protein SSP tools. METHODS Three databases, Web of Science, PubMed and Scopus were systematically searched and 99 out of the 209 studies were finally found eligible to extract data. RESULTS Four categories of applications for 59 retrieved SSP tools were: (I) prediction of structural features of a given sequence, (II) evaluation of a method, (III) providing input for a new SSP method and (IV) integrating an SSP tool as a component for a program. PSIPRED was found to be the most popular tool in all four categories. JPred and tools utilizing PHD (Profile network from HeiDelberg) method occupied second and third places of popularity in categories I and II. JPred was only found in the two first categories, while PHD was present in three fields. CONCLUSION This study provides a comprehensive insight into the recent usage of SSP tools which could be helpful for selecting a proper tool.
Collapse
Affiliation(s)
- Elaheh Kashani-Amin
- Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ozra Tabatabaei-Malazy
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.,Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirhossein Sakhteman
- Department of Medicinal Chemistry, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.,Medicinal Chemistry and Natural Products Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Azadeh Ebrahim-Habibi
- Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Dhingra S, Sowdhamini R, Cadet F, Offmann B. A glance into the evolution of template-free protein structure prediction methodologies. Biochimie 2020; 175:85-92. [DOI: 10.1016/j.biochi.2020.04.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 11/26/2022]
|
5
|
Runthala A, Chowdhury S. Refined template selection and combination algorithm significantly improves template-based modeling accuracy. J Bioinform Comput Biol 2020; 17:1950006. [PMID: 31057073 DOI: 10.1142/s0219720019500069] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In contrast to ab-initio protein modeling methodologies, comparative modeling is considered as the most popular and reliable algorithm to model protein structure. However, the selection of the best set of templates is still a major challenge. An effective template-ranking algorithm is developed to efficiently select only the reliable hits for predicting the protein structures. The algorithm employs the pairwise as well as multiple sequence alignments of template hits to rank and select the best possible set of templates. It captures several key sequences and structural information of template hits and converts into scores to effectively rank them. This selected set of templates is used to model a target. Modeling accuracy of the algorithm is tested and evaluated on TBM-HA domain containing CASP8, CASP9 and CASP10 targets. On an average, this template ranking and selection algorithm improves GDT-TS, GDT-HA and TM_Score by 3.531, 4.814 and 0.022, respectively. Further, it has been shown that the inclusion of structurally similar templates with ample conformational diversity is crucial for the modeling algorithm to maximally as well as reliably span the target sequence and construct its near-native model. The optimal model sampling also holds the key to predict the best possible target structure.
Collapse
Affiliation(s)
- Ashish Runthala
- 1 Department of Biological Sciences, Birla Institute of Technology and Science, Pilani-333031, India
| | - Shibasish Chowdhury
- 1 Department of Biological Sciences, Birla Institute of Technology and Science, Pilani-333031, India
| |
Collapse
|
6
|
Abstract
The limitation of most HMMs is their inherent high dimensionality. Therefore we developed several variations of low complexity models that can be applied even to protein families with a few members. In this chapter we present these variations. All of them include the use of a hidden Markov model (HMM), with a small number of states (called reduced state-space HMM), which is trained with both amino acid sequence and secondary structure of proteins whose 3D structure is known and it is used for protein fold classification. We used data from Protein Data Bank and annotation from SCOP database for training and evaluation of the proposed HMM variations for a number of protein folds that belong to major structural classes. Results indicate that the variations have similar performance, or even better in some cases, on classifying proteins than SAM, which is a widely used HMM-based method for protein classification. The major advantage of the proposed variations is that we employed a small number of states and the algorithms used for training and scoring are of low complexity and thus relatively fast. The main variations examined include a version of the reduced state-space HMM with seven states (7-HMM), a version of the reduced state-space HMM with three states (3-HMM) and an optimized version of the reduced state-space HMM with three states, where an optimization process is applied to its scores (optimized 3-HMM).
Collapse
Affiliation(s)
- Christos Lampros
- Unit of Medical Technology and Intelligent Information Systems, Department of Materials Science and Engineering, University of Ioannina, University Campus of Ioannina, GR45110, Ioannina, Greece
| | - Costas Papaloukas
- Department of Biological Applications and Technology, University of Ioannina, Ioannina, Greece
| | - Themis Exarchos
- Unit of Medical Technology and Intelligent Information Systems, Department of Materials Science and Engineering, University of Ioannina, University Campus of Ioannina, GR45110, Ioannina, Greece
| | - Dimitrios I Fotiadis
- Unit of Medical Technology and Intelligent Information Systems, Department of Materials Science and Engineering, University of Ioannina, University Campus of Ioannina, GR45110, Ioannina, Greece.
| |
Collapse
|
7
|
Márquez-Chamorro AE, Asencio-Cortés G, Santiesteban-Toca CE, Aguilar-Ruiz JS. Soft computing methods for the prediction of protein tertiary structures: A survey. Appl Soft Comput 2015. [DOI: 10.1016/j.asoc.2015.06.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
8
|
Khor BY, Tye GJ, Lim TS, Choong YS. General overview on structure prediction of twilight-zone proteins. Theor Biol Med Model 2015; 12:15. [PMID: 26338054 PMCID: PMC4559291 DOI: 10.1186/s12976-015-0014-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 08/27/2015] [Indexed: 01/02/2023] Open
Abstract
Protein structure prediction from amino acid sequence has been one of the most challenging aspects in computational structural biology despite significant progress in recent years showed by critical assessment of protein structure prediction (CASP) experiments. When experimentally determined structures are unavailable, the predictive structures may serve as starting points to study a protein. If the target protein consists of homologous region, high-resolution (typically <1.5 Å) model can be built via comparative modelling. However, when confronted with low sequence similarity of the target protein (also known as twilight-zone protein, sequence identity with available templates is less than 30%), the protein structure prediction has to be initiated from scratch. Traditionally, twilight-zone proteins can be predicted via threading or ab initio method. Based on the current trend, combination of different methods brings an improved success in the prediction of twilight-zone proteins. In this mini review, the methods, progresses and challenges for the prediction of twilight-zone proteins were discussed.
Collapse
Affiliation(s)
- Bee Yin Khor
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia.
| | - Gee Jun Tye
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia.
| | - Theam Soon Lim
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia.
| | - Yee Siew Choong
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia.
| |
Collapse
|