1
|
Varner S, Balzer C, Wang ZG. A Jacobian-free pseudo-arclength continuation method for phase transitions in inhomogeneous thermodynamic systems. J Chem Phys 2024; 161:064107. [PMID: 39132789 DOI: 10.1063/5.0220849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/26/2024] [Indexed: 08/13/2024] Open
Abstract
Developing phase diagrams for inhomogeneous systems in thermodynamics is difficult, in part, due to the large phase space and the possibility of unstable and metastable solutions arising from first-order phase transitions. Pseudo-arclength continuation (PAC) is a method that allows one to trace out stable and unstable solutions of nonlinear systems. Typically, PAC utilizes the Jacobian in order to implement Newton (or quasi-Newton) steps. In this work, we present a Jacobian-free PAC method that is amenable to the usual workflows in inhomogeneous thermodynamics. We demonstrate our method in systems that have first-order phase transitions, including a novel example of polyelectrolyte complex coacervation in confinement, where multiple surface phase transitions occur and can overlap with one another.
Collapse
Affiliation(s)
- Samuel Varner
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Christopher Balzer
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, USA
| | - Zhen-Gang Wang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
2
|
Williams-Young DB, Yuwono SH, DePrince III AE, Yang C. Approximate Exponential Integrators for Time-Dependent Equation-of-Motion Coupled Cluster Theory. J Chem Theory Comput 2023; 19:9177-9186. [PMID: 38086060 PMCID: PMC10753770 DOI: 10.1021/acs.jctc.3c00911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/09/2023] [Accepted: 10/16/2023] [Indexed: 12/27/2023]
Abstract
With a growing demand for time-domain simulations of correlated many-body systems, the development of efficient and stable integration schemes for the time-dependent Schrödinger equation is of keen interest in modern electronic structure theory. In this work, we present two approaches for the formation of the quantum propagator for time-dependent equation-of-motion coupled cluster theory based on the Chebyshev and Arnoldi expansions of the complex, nonhermitian matrix exponential, respectively. The proposed algorithms are compared with the short-iterative Lanczos method of Cooper et al. [J. Phys. Chem. A 2021 125, 5438-5447], the fourth-order Runge-Kutta method, and exact dynamics for a set of small but challenging test problems. For each of the cases studied, both of the proposed integration schemes demonstrate superior accuracy and efficiency relative to the reference simulations.
Collapse
Affiliation(s)
- David B. Williams-Young
- Applied
Mathematics and Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Stephen H. Yuwono
- Department
of Chemistry and Biochemistry, Florida State
University, Tallahassee, Florida 32306, United States
| | - A. Eugene DePrince III
- Department
of Chemistry and Biochemistry, Florida State
University, Tallahassee, Florida 32306, United States
| | - Chao Yang
- Applied
Mathematics and Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
3
|
Herbert JM, Zhu Y, Alam B, Ojha AK. Time-Dependent Density Functional Theory for X-ray Absorption Spectra: Comparing the Real-Time Approach to Linear Response. J Chem Theory Comput 2023; 19:6745-6760. [PMID: 37708349 DOI: 10.1021/acs.jctc.3c00673] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
We simulate X-ray absorption spectra at elemental K-edges using time-dependent density functional theory (TDDFT) in both its conventional linear-response implementation and its explicitly time-dependent or "real-time" formulation. Real-time TDDFT simulations enable broadband spectra calculations without the need to invoke frozen occupied orbitals ("core/valence separation"), but we find that these spectra are often contaminated by transitions to the continuum that originate from lower-energy core and semicore orbitals. This problem becomes acute in triple-ζ basis sets, although it is sometimes sidestepped in double-ζ basis sets. Transitions to the continuum acquire surprisingly large dipole oscillator strengths, leading to spectra that are difficult to interpret. Meaningful spectra can be recovered by means of a filtering technique that decomposes the spectrum into contributions from individual occupied orbitals, and the same procedure can be used to separate L- and K-edge spectra arising from different elements within a given molecule. In contrast, conventional linear-response TDDFT requires core/valence separation but is free of these artifacts. It is also significantly more efficient than the real-time approach, even when hundreds of individual states are needed to reproduce near-edge absorption features and even when Padé approximants are used to reduce the real-time simulations to just 2-4 fs of time propagation. Despite the cost, the real-time approach may be useful to examine the validity of the core/valence separation approximation.
Collapse
Affiliation(s)
- John M Herbert
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
- Chemical Physics Graduate Program, The Ohio State University, Columbus, Ohio 43210, United States
| | - Ying Zhu
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
- Chemical Physics Graduate Program, The Ohio State University, Columbus, Ohio 43210, United States
| | - Bushra Alam
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Avik Kumar Ojha
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
4
|
Fedik N, Nebgen B, Lubbers N, Barros K, Kulichenko M, Li YW, Zubatyuk R, Messerly R, Isayev O, Tretiak S. Synergy of semiempirical models and machine learning in computational chemistry. J Chem Phys 2023; 159:110901. [PMID: 37712780 DOI: 10.1063/5.0151833] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/11/2023] [Indexed: 09/16/2023] Open
Abstract
Catalyzed by enormous success in the industrial sector, many research programs have been exploring data-driven, machine learning approaches. Performance can be poor when the model is extrapolated to new regions of chemical space, e.g., new bonding types, new many-body interactions. Another important limitation is the spatial locality assumption in model architecture, and this limitation cannot be overcome with larger or more diverse datasets. The outlined challenges are primarily associated with the lack of electronic structure information in surrogate models such as interatomic potentials. Given the fast development of machine learning and computational chemistry methods, we expect some limitations of surrogate models to be addressed in the near future; nevertheless spatial locality assumption will likely remain a limiting factor for their transferability. Here, we suggest focusing on an equally important effort-design of physics-informed models that leverage the domain knowledge and employ machine learning only as a corrective tool. In the context of material science, we will focus on semi-empirical quantum mechanics, using machine learning to predict corrections to the reduced-order Hamiltonian model parameters. The resulting models are broadly applicable, retain the speed of semiempirical chemistry, and frequently achieve accuracy on par with much more expensive ab initio calculations. These early results indicate that future work, in which machine learning and quantum chemistry methods are developed jointly, may provide the best of all worlds for chemistry applications that demand both high accuracy and high numerical efficiency.
Collapse
Affiliation(s)
- Nikita Fedik
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Benjamin Nebgen
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Nicholas Lubbers
- Computer, Computational, and Statistical Sciences Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Kipton Barros
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Maksim Kulichenko
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Ying Wai Li
- Computer, Computational, and Statistical Sciences Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Roman Zubatyuk
- Department of Chemistry, Mellon College of Science, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - Richard Messerly
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Olexandr Isayev
- Department of Chemistry, Mellon College of Science, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - Sergei Tretiak
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
- Center for Integrated Nanotechnologies Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| |
Collapse
|
5
|
Kim Y, Krylov AI. Two Algorithms for Excited-State Quantum Solvers: Theory and Application to EOM-UCCSD. J Phys Chem A 2023; 127:6552-6566. [PMID: 37505075 DOI: 10.1021/acs.jpca.3c02480] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Near-term quantum devices promise to revolutionize quantum chemistry, but simulations using the current noisy intermediate-scale quantum (NISQ) devices are not practical due to their high susceptibility to errors. This motivated the design of NISQ algorithms leveraging classical and quantum resources. While several developments have shown promising results for ground-state simulations, extending the algorithms to excited states remains challenging. This paper presents two cost-efficient excited-state algorithms inspired by the classical Davidson algorithm. We implemented the Davidson method into the quantum self-consistent equation-of-motion unitary coupled-cluster (q-sc-EOM-UCC) excited-state method adapted for quantum hardware. The circuit strategies for generating desired excited states are discussed, implemented, and tested. We demonstrate the performance and accuracy of the proposed algorithms (q-sc-EOM-UCC/Davidson and its variational variant) by simulations of H2, H4, LiH, and H2O molecules. Similar to the classical Davidson scheme, q-sc-EOM-UCC/Davidson algorithms are capable of targeting a small number of excited states of the desired character.
Collapse
Affiliation(s)
- Yongbin Kim
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-0482, United States
| | - Anna I Krylov
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-0482, United States
| |
Collapse
|
6
|
Rappoport D, Bekoe S, Mohanam LN, Le S, George N, Shen Z, Furche F. Libkrylov: A modular open-source software library for extremely large on-the-fly matrix computations. J Comput Chem 2023; 44:1105-1118. [PMID: 36636945 DOI: 10.1002/jcc.27068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 12/27/2022] [Indexed: 01/14/2023]
Abstract
We present the design and implementation of libkrylov, an open-source library for solving matrix-free eigenvalue, linear, and shifted linear equations using Krylov subspace methods. The primary objectives of libkrylov are flexible API design and modular structure, which enables integration with specialized matrix-vector evaluation "engines." Libkrylov features pluggable preconditioning, orthonormalization, and tunable convergence control. Diagonal (conjugate gradient, CG), Davidson, and Jacobi-Davidson preconditioners are available, along with orthonormal and nonorthonormal (nKs) schemes. All functionality of libkrylov is exposed via Fortran and C application programming interfaces (APIs). We illustrate the performance of libkrylov for eigenvalue calculations arising in time-dependent density functional theory (TDDFT) in the Tamm-Dancoff approximation (TDA) and discuss the convergence behavior as a function of preconditioning and orthonormalization methods.
Collapse
Affiliation(s)
- Dmitrij Rappoport
- Department of Chemistry, University of California Irvine, Irvine, California, USA
| | - Samuel Bekoe
- Department of Chemistry, University of California Irvine, Irvine, California, USA
| | - Luke Nambi Mohanam
- Department of Chemistry, University of California Irvine, Irvine, California, USA
- Department of Electrical and Computer Engineering, Boston University, Boston, Massachusetts, USA
| | - Scott Le
- Department of Chemistry, University of California Irvine, Irvine, California, USA
| | - Naje' George
- Department of Chemistry, University of California Irvine, Irvine, California, USA
| | - Ziyue Shen
- Department of Chemistry, University of California Irvine, Irvine, California, USA
- STA Pharmaceutical, San Diego, California, USA
| | - Filipp Furche
- Department of Chemistry, University of California Irvine, Irvine, California, USA
| |
Collapse
|
7
|
Woo J, Kim S, Kim WY. Dynamic Precision Approach for Accelerating Large-Scale Eigenvalue Solvers in Electronic Structure Calculations on Graphics Processing Units. J Chem Theory Comput 2023; 19:1457-1465. [PMID: 36812094 DOI: 10.1021/acs.jctc.2c00983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Single precision (SP) arithmetic can be greatly accelerated as compared to double precision (DP) arithmetic on graphics processing units (GPUs). However, the use of SP in the whole process of electronic structure calculations is inappropriate for the required accuracy. We propose a 3-fold dynamic precision approach for accelerated calculations but still with the accuracy of DP. Here, SP, DP, and mixed precision are dynamically switched during an iterative diagonalization process. We applied this approach to the locally optimal block preconditioned conjugate gradient method to accelerate a large-scale eigenvalue solver for the Kohn-Sham equation. We determined a proper threshold for switching each precision scheme by examining the convergence pattern on the eigenvalue solver only with the kinetic energy operator of the Kohn-Sham Hamiltonian. As a result, we achieved up to 8.53× and 6.60× speedups for band structure and self-consistent field calculations, respectively, for test systems under various boundary conditions on NVIDIA GPUs.
Collapse
Affiliation(s)
- Jeheon Woo
- Department of Chemistry, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Seonghwan Kim
- Department of Chemistry, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Woo Youn Kim
- Department of Chemistry, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
8
|
Shaalan Alag A, Jelenfi DP, Tajti A, Szalay PG. Accurate Prediction of Vertical Ionization Potentials and Electron Affinities from Spin-Component Scaled CC2 and ADC(2) Models. J Chem Theory Comput 2022; 18:6794-6801. [PMID: 36269873 PMCID: PMC9890482 DOI: 10.1021/acs.jctc.2c00624] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The CC2 and ADC(2) wave function models and their spin-component scaled modifications are adopted for predicting vertical ionization potentials (VIPs) and electron affinities (VEAs). The ionic solutions are obtained as electronic excitations in the continuum orbital formalism, making possible the use of existing, widespread quantum chemistry codes with minimal modifications, in full consistency with the treatment of charge transfer excitations. The performance of different variants is evaluated via benchmark calculations on various sets from previous works, containing small- and medium-sized systems, including the nucleobases. It is shown that with the spin-scaled approximate methods, in particular the scaled opposite-spin variant of the ADC(2) method, the accuracy of EOM-CCSD is achievable at a fraction of the computational cost, also outperforming many common electron propagator approaches.
Collapse
Affiliation(s)
- Ahmed Shaalan Alag
- György
Hevesy Doctoral School, Institute of Chemistry,
ELTE Eötvös Loránd University, H-1117Budapest, Hungary
| | - Dávid P. Jelenfi
- György
Hevesy Doctoral School, Institute of Chemistry,
ELTE Eötvös Loránd University, H-1117Budapest, Hungary
| | - Attila Tajti
- Laboratory
of Theoretical Chemistry, Institute of Chemistry,
ELTE Eötvös Loránd University, P.O. Box 32, H-1518Budapest 112, Hungary,E-mail:
| | - Péter G. Szalay
- Laboratory
of Theoretical Chemistry, Institute of Chemistry,
ELTE Eötvös Loránd University, P.O. Box 32, H-1518Budapest 112, Hungary
| |
Collapse
|
9
|
Andersen JH, Nanda KD, Krylov AI, Coriani S. Cherry-Picking Resolvents: Recovering the Valence Contribution in X-ray Two-Photon Absorption within the Core-Valence-Separated Equation-of-Motion Coupled-Cluster Response Theory. J Chem Theory Comput 2022; 18:6189-6202. [PMID: 36084326 DOI: 10.1021/acs.jctc.2c00541] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Calculations of first-order response wave functions in the X-ray regime often diverge within correlated frameworks such as equation-of-motion coupled-cluster singles and doubles (EOM-CCSD), a consequence of the coupling with the valence ionization continuum. Here, we extend our strategy of introducing a hierarchy of approximations to the EOM-EE-CCSD resolvent (or, inversely, the model Hamiltonian) involved in the response equations for the calculation of X-ray two-photon absorption (X2PA) cross sections. We exploit the frozen-core core-valence separation (fc-CVS) scheme to first decouple the core and valence Fock spaces, followed by a separate approximate treatment of the valence resolvent. We demonstrate the robust convergence of X-ray response calculations within this framework and compare X2PA spectra of small benchmark molecules with the previously reported density functional theory results.
Collapse
Affiliation(s)
- Josefine H Andersen
- DTU Chemistry, Technical University of Denmark, Kemitorvet Bldg 207, DK-2800 Kongens Lyngby, Denmark
| | - Kaushik D Nanda
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Anna I Krylov
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Sonia Coriani
- DTU Chemistry, Technical University of Denmark, Kemitorvet Bldg 207, DK-2800 Kongens Lyngby, Denmark
| |
Collapse
|
10
|
Halbert L, Vidal ML, Shee A, Coriani S, Severo Pereira Gomes A. Relativistic EOM-CCSD for Core-Excited and Core-Ionized State Energies Based on the Four-Component Dirac-Coulomb(-Gaunt) Hamiltonian. J Chem Theory Comput 2021; 17:3583-3598. [PMID: 33944570 DOI: 10.1021/acs.jctc.0c01203] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We report an implementation of the core-valence separation approach to the four-component relativistic Hamiltonian-based equation-of-motion coupled-cluster with singles and doubles theory (CVS-EOM-CCSD) for the calculation of relativistic core-ionization potentials and core-excitation energies. With this implementation, which is capable of exploiting double group symmetry, we investigate the effects of the different CVS-EOM-CCSD variants and the use of different Hamiltonians based on the exact two-component (X2C) framework on the energies of different core-ionized and -excited states in halogen- (CH3I, HX, and X-, X = Cl-At) and xenon-containing (Xe, XeF2) species. Our results show that the X2C molecular mean-field approach [Sikkema, J.; J. Chem. Phys. 2009, 131, 124116], based on four-component Dirac-Coulomb mean-field calculations (2DCM), is capable of providing core excitations and ionization energies that are nearly indistinguishable from the reference four-component energies for up to and including fifth-row elements. We observe that two-electron integrals over the small-component basis sets lead to non-negligible contributions to core binding energies for the K and L edges for atoms such as iodine or astatine and that the approach based on Dirac-Coulomb-Gaunt mean-field calculations (2DCGM) are significantly more accurate than X2C calculations for which screened two-electron spin-orbit interactions are included via atomic mean-field integrals.
Collapse
Affiliation(s)
- Loïc Halbert
- CNRS, UMR 8523-PhLAM-Physique des Lasers, Atomes et Molécules, Université de Lille, F-59000 Lille, France
| | - Marta L Vidal
- DTU Chemistry-Department of Chemistry, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Avijit Shee
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Sonia Coriani
- DTU Chemistry-Department of Chemistry, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - André Severo Pereira Gomes
- CNRS, UMR 8523-PhLAM-Physique des Lasers, Atomes et Molécules, Université de Lille, F-59000 Lille, France
| |
Collapse
|
11
|
Ambroise MA, Dreuw A, Jensen F. Probing Basis Set Requirements for Calculating Core Ionization and Core Excitation Spectra Using Correlated Wave Function Methods. J Chem Theory Comput 2021; 17:2832-2842. [PMID: 33900755 DOI: 10.1021/acs.jctc.1c00042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
We investigate the basis set requirements for the accurate calculation of core excitations and core ionizations using correlated wave functions of coupled cluster type and linear response methods for describing the excitation. When a core excitation is described as an energy difference calculated using density functional theory, the basis set can be tailored to provide a balanced description of the reference- and excited-hole states. When the core excitation process is described by coupled cluster linear response methods, however, the basis set requirements are somewhat different. A systematic study of the sensitivity of the result to the basis set parameters suggests that a relatively large set of s- and p-type basis functions in combination with a careful selection of valence and core polarization functions is required. Based on these results, we propose a hierarchical sequence of basis sets, denoted ccX-nZ (n = D, T, Q, 5) for the atoms B-Ne, which are suitable for the calculation of core excitations by the correlated wave function linear response and equation-of-motion methods. The ccX-nZ series provides lower basis set errors for a given cardinal number or number of basis functions than other existing basis sets. For large systems, the ccX-nZ basis sets can be combined with the standard basis sets by placing the ccX-nZ only on the atoms where core excitations are of interest, but the accuracy of such mixed basis sets appears to be system-dependent.
Collapse
Affiliation(s)
- Maximilien A Ambroise
- Interdisciplinary Center for Scientific Computing, University of Heidelberg, 69117 Heidelberg, Germany
| | - Andreas Dreuw
- Interdisciplinary Center for Scientific Computing, University of Heidelberg, 69117 Heidelberg, Germany
| | - Frank Jensen
- Department of Chemistry, Aarhus University, DK-8000 Aarhus, Denmark
| |
Collapse
|
12
|
Nanda KD, Krylov AI. Cherry-picking resolvents: A general strategy for convergent coupled-cluster damped response calculations of core-level spectra. J Chem Phys 2020; 153:141104. [DOI: 10.1063/5.0020843] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Kaushik D. Nanda
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-0482, USA
| | - Anna I. Krylov
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-0482, USA
| |
Collapse
|
13
|
Kjønstad EF, Folkestad SD, Koch H. Accelerated multimodel Newton-type algorithms for faster convergence of ground and excited state coupled cluster equations. J Chem Phys 2020; 153:014104. [PMID: 32640809 DOI: 10.1063/5.0010989] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We introduce a multimodel approach to solve coupled cluster equations, employing a quasi-Newton algorithm for the ground state and an Olsen algorithm for the excited states. In these algorithms, both of which can be viewed as Newton algorithms, the Jacobian matrix of a lower level coupled cluster model is used in Newton equations associated with the target model. Improvements in convergence then imply savings for sufficiently large molecular systems, since the computational cost of macroiterations scales more steeply with system size than the cost of microiterations. The multimodel approach is suitable when there is a lower level Jacobian matrix that is much more accurate than the zeroth order approximation. Applying the approach to the CC3 equations, using the CCSD approximation of the Jacobian, we show that the time spent to determine the ground and valence excited states can be significantly reduced. We also find improved convergence for core excited states, indicating that similar savings will be obtained with an explicit implementation of the core-valence separated CCSD Jacobian transformation.
Collapse
Affiliation(s)
- Eirik F Kjønstad
- Department of Chemistry, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Sarai D Folkestad
- Department of Chemistry, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Henrik Koch
- Department of Chemistry, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| |
Collapse
|
14
|
Sarangi R, Vidal ML, Coriani S, Krylov AI. On the basis set selection for calculations of core-level states: different strategies to balance cost and accuracy. Mol Phys 2020. [DOI: 10.1080/00268976.2020.1769872] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Ronit Sarangi
- Department of Chemistry, University of Southern California, Los Angeles, CA, USA
| | - Marta L. Vidal
- DTU Chemistry – Department of Chemistry, Technical University of Denmark, Lyngby, Denmark
| | - Sonia Coriani
- DTU Chemistry – Department of Chemistry, Technical University of Denmark, Lyngby, Denmark
| | - Anna I. Krylov
- Department of Chemistry, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
15
|
Baiardi A, Reiher M. The density matrix renormalization group in chemistry and molecular physics: Recent developments and new challenges. J Chem Phys 2020; 152:040903. [DOI: 10.1063/1.5129672] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Affiliation(s)
- Alberto Baiardi
- ETH Zürich, Laboratorium für Physikalische Chemie, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Markus Reiher
- ETH Zürich, Laboratorium für Physikalische Chemie, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| |
Collapse
|
16
|
Vidal ML, Krylov AI, Coriani S. Dyson orbitals within the fc-CVS-EOM-CCSD framework: theory and application to X-ray photoelectron spectroscopy of ground and excited states. Phys Chem Chem Phys 2020; 22:2693-2703. [DOI: 10.1039/c9cp03695d] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ionization energies and Dyson orbitals within frozen-core core–valence separated equation-of-motion coupled cluster singles and doubles (fc-CVS-EOM-CCSD) enable efficient and reliable calculations of standard XPS and of UV-pump/XPS probe spectra.
Collapse
Affiliation(s)
- Marta L. Vidal
- DTU Chemistry – Department of Chemistry
- Technical University of Denmark
- Kongens Lyngby
- Denmark
| | - Anna I. Krylov
- Department of Chemistry
- University of Southern California
- Los Angeles
- USA
| | - Sonia Coriani
- DTU Chemistry – Department of Chemistry
- Technical University of Denmark
- Kongens Lyngby
- Denmark
| |
Collapse
|
17
|
Nanda KD, Vidal ML, Faber R, Coriani S, Krylov AI. How to stay out of trouble in RIXS calculations within equation-of-motion coupled-cluster damped response theory? Safe hitchhiking in the excitation manifold by means of core–valence separation. Phys Chem Chem Phys 2020; 22:2629-2641. [DOI: 10.1039/c9cp03688a] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We present a novel approach with robust convergence of the response equations for computing resonant inelastic X-ray scattering (RIXS) cross sections within the equation-of-motion coupled-cluster (EOM-CC) framework.
Collapse
Affiliation(s)
- Kaushik D. Nanda
- Department of Chemistry
- University of Southern California
- Los Angeles
- USA
| | - Marta L. Vidal
- DTU Chemistry – Department of Chemistry
- Technical University of Denmark
- DK-2800
- Denmark
| | - Rasmus Faber
- DTU Chemistry – Department of Chemistry
- Technical University of Denmark
- DK-2800
- Denmark
| | - Sonia Coriani
- DTU Chemistry – Department of Chemistry
- Technical University of Denmark
- DK-2800
- Denmark
| | - Anna I. Krylov
- Department of Chemistry
- University of Southern California
- Los Angeles
- USA
- The Hamburg Centre for Ultrafast Imaging
| |
Collapse
|
18
|
Lee J, Small DW, Head-Gordon M. Excited states via coupled cluster theory without equation-of-motion methods: Seeking higher roots with application to doubly excited states and double core hole states. J Chem Phys 2019; 151:214103. [DOI: 10.1063/1.5128795] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Joonho Lee
- Department of Chemistry, University of California, Berkeley, California 94720, USA and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - David W. Small
- Department of Chemistry, University of California, Berkeley, California 94720, USA and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Martin Head-Gordon
- Department of Chemistry, University of California, Berkeley, California 94720, USA and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|
19
|
Prentice AW, Coe JP, Paterson MJ. A systematic construction of configuration interaction wavefunctions in the complete CI space. J Chem Phys 2019; 151:164112. [DOI: 10.1063/1.5123129] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Andrew W. Prentice
- Institute of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - Jeremy P. Coe
- Institute of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - Martin J. Paterson
- Institute of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| |
Collapse
|
20
|
Williams‐Young DB, Petrone A, Sun S, Stetina TF, Lestrange P, Hoyer CE, Nascimento DR, Koulias L, Wildman A, Kasper J, Goings JJ, Ding F, DePrince AE, Valeev EF, Li X. The Chronus Quantum software package. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2019. [DOI: 10.1002/wcms.1436] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- David B. Williams‐Young
- Computational Research Division Lawrence Berkeley National Laboratory Berkeley California
- Department of Chemistry University of Washington Seattle Washington
| | - Alessio Petrone
- Dipartimento di Scienze Chimiche Università di Napoli “Federico II”, Complesso Universitario di M.S. Angelo Naples Italy
| | - Shichao Sun
- Department of Chemistry University of Washington Seattle Washington
| | - Torin F. Stetina
- Department of Chemistry University of Washington Seattle Washington
| | | | - Chad E. Hoyer
- Department of Chemistry University of Washington Seattle Washington
| | - Daniel R. Nascimento
- Department of Chemistry and Biochemistry Florida State University Tallahassee Florida
| | - Lauren Koulias
- Department of Chemistry University of Washington Seattle Washington
| | - Andrew Wildman
- Department of Chemistry University of Washington Seattle Washington
| | - Joseph Kasper
- Department of Chemistry University of Washington Seattle Washington
| | | | - Feizhi Ding
- Division of Chemistry and Chemical Engineering California Institute of Technology Pasadena California
| | - A. Eugene DePrince
- Department of Chemistry and Biochemistry Florida State University Tallahassee Florida
| | | | - Xiaosong Li
- Department of Chemistry University of Washington Seattle Washington
| |
Collapse
|
21
|
Stetina TF, Kasper JM, Li X. Modeling L2,3-edge X-ray absorption spectroscopy with linear response exact two-component relativistic time-dependent density functional theory. J Chem Phys 2019; 150:234103. [DOI: 10.1063/1.5091807] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Torin F. Stetina
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| | - Joseph M. Kasper
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| | - Xiaosong Li
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
22
|
Peng B, Van Beeumen R, Williams-Young DB, Kowalski K, Yang C. Approximate Green's Function Coupled Cluster Method Employing Effective Dimension Reduction. J Chem Theory Comput 2019; 15:3185-3196. [PMID: 30951302 DOI: 10.1021/acs.jctc.9b00172] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Green's function coupled cluster (GFCC) method, originally proposed in the early 1990s, is a powerful many-body tool for computing and analyzing the electronic structure of molecular and periodic systems, especially when electrons of the system are strongly correlated. However, in order for the GFCC to become a method that may be routinely used in the electronic structure calculations, robust numerical techniques and approximations must be employed to reduce its extremely high computational overhead. In our recent studies, it has been demonstrated that the GFCC equations can be solved directly in the frequency domain using iterative linear solvers, which can be easily distributed in a massively parallel environment. In the present work, we demonstrate a successful application of model-order-reduction (MOR) techniques in the GFCC framework. Briefly speaking, for a frequency regime of interest that requires high-resolution descriptions of spectral function, instead of solving the GFCC linear equation of full dimension for every single frequency point of interest, an efficiently solvable linear system model of a reduced dimension may be built upon projecting the original GFCC linear system onto a subspace. From this reduced order model is obtained a reasonable approximation to the full dimensional GFCC linear equations in both interpolative and extrapolative spectral regions. Here, we show that the subspace can be properly constructed in an iterative manner from the auxiliary vectors of the GFCC linear equations at some selected frequencies within the spectral region of interest. During the iterations, the quality of the subspace, as well as the linear system model, can be systematically improved. The method is tested in this work in terms of the efficiency and accuracy of computing spectral functions for some typical molecular systems such as carbon monoxide, 1,3-butadiene, benzene, and adenine. To reach the same level of accuracy as that of the original GFCC method, the application of MOR in the GFCC method is able to significantly lower the original computational cost for the aforementioned molecules in designated frequency regimes. As a byproduct, the reduced order model obtained by this method is found to provide a high-quality initial guess, which improves the convergence rate for the existing iterative linear solver.
Collapse
Affiliation(s)
- Bo Peng
- William R. Wiley Environmental Molecular Sciences Laboratory, Battelle , Pacific Northwest National Laboratory , K8-91, P.O. Box 999, Richland , Washington 99352 , United States
| | - Roel Van Beeumen
- Computational Research Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - David B Williams-Young
- Computational Research Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Karol Kowalski
- William R. Wiley Environmental Molecular Sciences Laboratory, Battelle , Pacific Northwest National Laboratory , K8-91, P.O. Box 999, Richland , Washington 99352 , United States
| | - Chao Yang
- Computational Research Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| |
Collapse
|
23
|
Vidal ML, Feng X, Epifanovsky E, Krylov AI, Coriani S. New and Efficient Equation-of-Motion Coupled-Cluster Framework for Core-Excited and Core-Ionized States. J Chem Theory Comput 2019; 15:3117-3133. [PMID: 30964297 DOI: 10.1021/acs.jctc.9b00039] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We present a fully analytical implementation of the core-valence separation (CVS) scheme for the equation-of-motion (EOM) coupled-cluster singles and doubles (CCSD) method for calculations of core-level states. Inspired by the CVS idea as originally formulated by Cederbaum, Domcke, and Schirmer, pure valence excitations are excluded from the EOM target space and the frozen-core approximation is imposed on the reference-state amplitudes and multipliers. This yields an efficient, robust, practical, and numerically balanced EOM-CCSD framework for calculations of excitation and ionization energies as well as state and transition properties (e.g., spectral intensities, natural transition, and Dyson orbitals) from both the ground and excited states. The errors in absolute excitation/ionization energies relative to the experimental reference data are on the order of 0.2-3.0 eV, depending on the K-edge considered and on the basis set used, and the shifts are systematic for each edge. Compared to a previously proposed CVS scheme where CVS was applied as a posteriori projection only during the solution of the EOM eigenvalue equations, the new scheme is computationally cheaper. It also achieves better cancellation of errors, yielding similar spectral profiles but with absolute core excitation and ionization energies that are systematically closer to the corresponding experimental data. Among the presented results are calculations of transient-state X-ray absorption spectra, relevant for interpretation of UV-pump/X-ray probe experiments.
Collapse
Affiliation(s)
- Marta L Vidal
- DTU Chemistry, Department of Chemistry , Technical University of Denmark , Kongens Lyngby DK-2800 , Denmark
| | - Xintian Feng
- Department of Chemistry , University of California , Berkeley , California 94720 , United States.,Q-Chem Incorporated , 6601 Owens Drive, Suite 105 , Pleasanton , California 94588 , United States
| | - Evgeny Epifanovsky
- Q-Chem Incorporated , 6601 Owens Drive, Suite 105 , Pleasanton , California 94588 , United States
| | - Anna I Krylov
- Department of Chemistry , University of Southern California , Los Angeles , California 90089-0482 , United States
| | - Sonia Coriani
- DTU Chemistry, Department of Chemistry , Technical University of Denmark , Kongens Lyngby DK-2800 , Denmark
| |
Collapse
|
24
|
Delcey MG, Sørensen LK, Vacher M, Couto RC, Lundberg M. Efficient calculations of a large number of highly excited states for multiconfigurational wavefunctions. J Comput Chem 2019; 40:1789-1799. [DOI: 10.1002/jcc.25832] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 03/11/2019] [Accepted: 03/15/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Mickael G. Delcey
- Department of Chemistry ‐ Ångström LaboratoryUppsala University S‐751 21, Uppsala Sweden
| | - Lasse Kragh Sørensen
- Department of Chemistry ‐ Ångström LaboratoryUppsala University S‐751 21, Uppsala Sweden
| | - Morgane Vacher
- Department of Chemistry ‐ Ångström LaboratoryUppsala University S‐751 21, Uppsala Sweden
| | - Rafael C. Couto
- Department of Chemistry ‐ Ångström LaboratoryUppsala University S‐751 21, Uppsala Sweden
| | - Marcus Lundberg
- Department of Chemistry ‐ Ångström LaboratoryUppsala University S‐751 21, Uppsala Sweden
| |
Collapse
|
25
|
Peng B, Kowalski K. Green's function coupled cluster formulations utilizing extended inner excitations. J Chem Phys 2018; 149:214102. [PMID: 30525725 DOI: 10.1063/1.5046529] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In this paper, we analyze new approximations of the Green's function coupled cluster (GFCC) method where locations of poles are improved by extending the excitation level of inner auxiliary operators. These new GFCC approximations can be categorized as the GFCC-i(n, m) method, where the excitation level of the inner auxiliary operators (m) used to describe the ionization potential and electron affinity effects in the N - 1 and N + 1 particle spaces is higher than the excitation level (n) used to correlate the ground-state coupled cluster wave function for the N-electron system. Furthermore, we reveal the so-called "n + 1" rule in this category [or the GFCC-i(n, n + 1) method], which states that in order to maintain size-extensivity of the Green's function matrix elements, the excitation level of inner auxiliary operators X p (ω) and Y q (ω) cannot exceed n + 1. We also discuss the role of the moments of coupled cluster equations that in a natural way assures these properties. Our implementation in the present study is focused on the first approximation in this GFCC category, i.e., the GFCC-i(2,3) method. As our first practice, we use the GFCC-i(2,3) method to compute the spectral functions for the N2 and CO molecules in the inner and outer valence regimes. In comparison with the Green's function coupled cluster singles, doubles results, the computed spectral functions from the GFCC-i(2,3) method exhibit better agreement with the experimental results and other theoretical results, particularly in terms of providing higher resolution of satellite peaks and more accurate relative positions of these satellite peaks with respect to the main peak positions.
Collapse
Affiliation(s)
- Bo Peng
- William R. Wiley Environmental Molecular Sciences Laboratory, Battelle, Pacific Northwest National Laboratory, K8-91, P.O. Box 999, Richland, Washington 99352, USA
| | - Karol Kowalski
- William R. Wiley Environmental Molecular Sciences Laboratory, Battelle, Pacific Northwest National Laboratory, K8-91, P.O. Box 999, Richland, Washington 99352, USA
| |
Collapse
|
26
|
Shee A, Saue T, Visscher L, Severo Pereira Gomes A. Equation-of-motion coupled-cluster theory based on the 4-component Dirac–Coulomb(–Gaunt) Hamiltonian. Energies for single electron detachment, attachment, and electronically excited states. J Chem Phys 2018; 149:174113. [DOI: 10.1063/1.5053846] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Avijit Shee
- Department of Chemistry, University of Michigan, 930 N. University, Ann Arbor, Michigan 48109-1055, USA
- Université de Lille, CNRS, UMR 8523—PhLAM—Physique des Lasers, Atomes et Molécules, F-59000 Lille, France
| | - Trond Saue
- Laboratoire de Chimie et Physique Quantiques, UMR 5626 CNRS—Université Toulouse III–Paul Sabatier, 118 Route de Narbonne, F-31062 Toulouse, France
| | - Lucas Visscher
- Division of Theoretical Chemistry, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - André Severo Pereira Gomes
- Université de Lille, CNRS, UMR 8523—PhLAM—Physique des Lasers, Atomes et Molécules, F-59000 Lille, France
| |
Collapse
|
27
|
Huang C, Liu W. iVI‐TD‐DFT: An iterative vector interaction method for exterior/interior roots of TD‐DFT. J Comput Chem 2018; 40:1023-1037. [DOI: 10.1002/jcc.25569] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/07/2018] [Accepted: 08/07/2018] [Indexed: 01/28/2023]
Affiliation(s)
- Chao Huang
- Beijing National Center for Molecular SciencesInstitute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, Peking University Beijing, 100871 People's Republic of China
| | - Wenjian Liu
- Beijing National Center for Molecular SciencesInstitute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, Peking University Beijing, 100871 People's Republic of China
| |
Collapse
|
28
|
Peng B, Kowalski K. Green's Function Coupled-Cluster Approach: Simulating Photoelectron Spectra for Realistic Molecular Systems. J Chem Theory Comput 2018; 14:4335-4352. [PMID: 29957945 DOI: 10.1021/acs.jctc.8b00313] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this paper, we present an efficient implementation for the analytical energy-dependent Green's function coupled-cluster with singles and doubles (GFCCSD) approach with our first practice being computing spectral functions of realistic molecular systems. Because of its algebraic structure, the presented method is highly scalable and is capable of computing spectral function for a given molecular system in any energy region. Several typical examples have been given to demonstrate its capability of computing spectral functions not only in the valence band but also in the core-level energy region. Satellite peaks have been observed in the inner valence band and core-level energy region where a many-body effect becomes significant and the single particle picture of ionization often breaks down. The accuracy test has been carried out by extensively comparing the computed spectral functions by our GFCCSD method with experimental photoelectron spectra as well as the theoretical ionization potentials obtained from other methods. It turns out the GFCCSD method is able to provide a qualitative or semiquantitative level of description of ionization processes in both the core and valence regimes. To significantly improve the GFCCSD results for the main ionic states, a larger basis set can usually be employed, whereas the improvement of the GFCCSD results for the satellite states needs higher-order many-body terms to be included in the GFCC implementation.
Collapse
Affiliation(s)
- Bo Peng
- William R. Wiley Environmental Molecular Sciences Laboratory, Battelle, Pacific Northwest National Laboratory , K8-91, P.O. Box 999, Richland , Washington 99352 , United States
| | - Karol Kowalski
- William R. Wiley Environmental Molecular Sciences Laboratory, Battelle, Pacific Northwest National Laboratory , K8-91, P.O. Box 999, Richland , Washington 99352 , United States
| |
Collapse
|
29
|
Kasper JM, Williams-Young DB, Vecharynski E, Yang C, Li X. A Well-Tempered Hybrid Method for Solving Challenging Time-Dependent Density Functional Theory (TDDFT) Systems. J Chem Theory Comput 2018; 14:2034-2041. [DOI: 10.1021/acs.jctc.8b00141] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Joseph M. Kasper
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | | | - Eugene Vecharynski
- Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Chao Yang
- Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Xiaosong Li
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
30
|
Abstract
The foundations, formalisms, technicalities, and practicalities of relativistic time-dependent density functional theories (R-TD-DFT) for spinor excited states of molecular systems containing heavy elements are critically reviewed.
Collapse
Affiliation(s)
- Wenjian Liu
- Beijing National Center for Molecular Sciences
- Institute of Theoretical and Computational Chemistry
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
| | - Yunlong Xiao
- Beijing National Center for Molecular Sciences
- Institute of Theoretical and Computational Chemistry
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
| |
Collapse
|
31
|
Van Beeumen R, Williams-Young DB, Kasper JM, Yang C, Ng EG, Li X. Model Order Reduction Algorithm for Estimating the Absorption Spectrum. J Chem Theory Comput 2017; 13:4950-4961. [PMID: 28862869 DOI: 10.1021/acs.jctc.7b00402] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The ab initio description of the spectral interior of the absorption spectrum poses both a theoretical and computational challenge for modern electronic structure theory. Due to the often spectrally dense character of this domain in the quantum propagator's eigenspectrum for medium-to-large sized systems, traditional approaches based on the partial diagonalization of the propagator often encounter oscillatory and stagnating convergence. Electronic structure methods which solve the molecular response problem through the solution of spectrally shifted linear systems, such as the complex polarization propagator, offer an alternative approach which is agnostic to the underlying spectral density or domain location. This generality comes at a seemingly high computational cost associated with solving a large linear system for each spectral shift in some discretization of the spectral domain of interest. In this work, we present a novel, adaptive solution to this high computational overhead based on model order reduction techniques via interpolation. Model order reduction reduces the computational complexity of mathematical models and is ubiquitous in the simulation of dynamical systems and control theory. The efficiency and effectiveness of the proposed algorithm in the ab initio prediction of X-ray absorption spectra is demonstrated using a test set of challenging water clusters which are spectrally dense in the neighborhood of the oxygen K-edge. On the basis of a single, user defined tolerance we automatically determine the order of the reduced models and approximate the absorption spectrum up to the given tolerance. We also illustrate that, for the systems studied, the automatically determined model order increases logarithmically with the problem dimension, compared to a linear increase of the number of eigenvalues within the energy window. Furthermore, we observed that the computational cost of the proposed algorithm only scales quadratically with respect to the problem dimension.
Collapse
Affiliation(s)
- Roel Van Beeumen
- Computational Research Division, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States
| | - David B Williams-Young
- Department of Chemistry, University of Washington , Seattle, Washington 98195, United States
| | - Joseph M Kasper
- Department of Chemistry, University of Washington , Seattle, Washington 98195, United States
| | - Chao Yang
- Computational Research Division, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States
| | - Esmond G Ng
- Computational Research Division, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States
| | - Xiaosong Li
- Department of Chemistry, University of Washington , Seattle, Washington 98195, United States
| |
Collapse
|
32
|
Sadybekov A, Krylov AI. Coupled-cluster based approach for core-level states in condensed phase: Theory and application to different protonated forms of aqueous glycine. J Chem Phys 2017; 147:014107. [DOI: 10.1063/1.4990564] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Arman Sadybekov
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
| | - Anna I. Krylov
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
| |
Collapse
|
33
|
Jagau TC, Bravaya KB, Krylov AI. Extending Quantum Chemistry of Bound States to Electronic Resonances. Annu Rev Phys Chem 2017; 68:525-553. [DOI: 10.1146/annurev-physchem-052516-050622] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Thomas-C. Jagau
- Department of Chemistry, Ludwig Maximilian University of Munich, 81377 Munich, Germany
| | - Ksenia B. Bravaya
- Department of Chemistry, Boston University, Boston, Massachusetts 02215
| | - Anna I. Krylov
- Department of Chemistry, University of Southern California, Los Angeles, California 90089
| |
Collapse
|
34
|
McClain J, Sun Q, Chan GKL, Berkelbach TC. Gaussian-Based Coupled-Cluster Theory for the Ground-State and Band Structure of Solids. J Chem Theory Comput 2017; 13:1209-1218. [DOI: 10.1021/acs.jctc.7b00049] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- James McClain
- Department
of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Qiming Sun
- Division
of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Garnet Kin-Lic Chan
- Division
of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Timothy C. Berkelbach
- Department
of Chemistry and James Franck Institute, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
35
|
Matthews DA, Stanton JF. A new approach to approximate equation-of-motion coupled cluster with triple excitations. J Chem Phys 2016; 145:124102. [DOI: 10.1063/1.4962910] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Devin A. Matthews
- Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, Texas 78712, USA
| | - John F. Stanton
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
36
|
Matthews DA, Stanton JF. Accelerating the convergence of higher-order coupled cluster methods. J Chem Phys 2015; 143:204103. [DOI: 10.1063/1.4936241] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Devin A. Matthews
- The Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, Texas 78712, USA
| | - John F. Stanton
- Department of Chemistry and Biochemistry, The University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
37
|
Shift-and-invert parallel spectral transformation eigensolver: Massively parallel performance for density-functional based tight-binding. J Comput Chem 2015; 37:448-59. [DOI: 10.1002/jcc.24254] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 10/15/2015] [Accepted: 10/25/2015] [Indexed: 01/12/2023]
|
38
|
Coriani S, Koch H. Communication: X-ray absorption spectra and core-ionization potentials within a core-valence separated coupled cluster framework. J Chem Phys 2015; 143:181103. [DOI: 10.1063/1.4935712] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Sonia Coriani
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Trieste, I-34127 Trieste, Italy
- Aarhus Institute of Advanced Studies, Aarhus University, DK-8000 Århus C, Denmark
| | - Henrik Koch
- Department of Chemistry, Norwegian University of Science and Technology, 7491 Trondheim, Norway
- Department of Chemistry and the PULSE Institute, Stanford University, Stanford, California 94305, USA
| |
Collapse
|