1
|
Anjalikrishna PK, Gadre SR, Suresh CH. Topology of electrostatic potential and electron density reveals a covalent to non-covalent carbon-carbon bond continuum. Phys Chem Chem Phys 2023; 25:25191-25204. [PMID: 37721180 DOI: 10.1039/d3cp03268j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
The covalent and non-covalent nature of carbon-carbon (CC) interactions in a wide range of molecular systems can be characterized using various methods, including the analysis of molecular electrostatic potential (MESP), represented as V(r), and the molecular electron density (MED), represented as ρ(r). These techniques provide valuable insights into the bonding between carbon atoms in different molecular environments. By uncovering a fundamental exponential relationship between the distance of the CC bond and the highest eigenvalue (λv1) of V(r) at the bond critical point (BCP), this study establishes the continuum model for all types of CC interactions, including transition states. The continuum model is further delineated into three distinct regions, namely covalent, borderline cases, and non-covalent, based on the gradient, , with the bond distance of the CC interaction. For covalent interactions, this parameter exhibits a more negative value than -5.0 a.u. Å-1, while for non-covalent interactions, it is less negative than -1.0 a.u. Å-1. Borderline cases, which encompass transition state structures, fall within the range of -1.0 to -5.0 a.u. Å-1. Furthermore, this study expands upon Popelier's analysis of the Laplacian of the MED, denoted as ∇2ρ, to encompass the entire spectrum of covalent, non-covalent, and borderline cases of CC interactions. Therefore, the present study presents compelling evidence supporting the concept of a continuum model for CC bonds in chemistry. Additionally, this continuum model is further explored within the context of C-N, C-O, C-S, N-N, O-O, and S-S interactions, albeit with a limited dataset.
Collapse
Affiliation(s)
- Puthannur K Anjalikrishna
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, Kerala, 695019, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shridhar R Gadre
- Departments of Chemistry and Scientific Computing, Modelling & Simulation, Savitribai Phule Pune University, Pune 411007, India
| | - Cherumuttathu H Suresh
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, Kerala, 695019, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
2
|
Saha T, Sappati S, Das S. An insight into the mixed quantum mechanical-molecular dynamic simulation of a Zn II-Curcumin complex with a chosen DNA sequence that supports experimental DNA binding investigations. Int J Biol Macromol 2023:125305. [PMID: 37315676 DOI: 10.1016/j.ijbiomac.2023.125305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/24/2023] [Accepted: 05/30/2023] [Indexed: 06/16/2023]
Abstract
An important aspect of research pertaining to Curcumin (HCur) is the need to arrest its degradation in aqueous solution and in biological milieu. This may be achieved through complex formation with metal ions. For this reason, a complex of HCur was prepared with ZnII, that is not likely to be active in redox pathways, minimizing further complications. The complex is monomeric, tetrahedral, with one HCur, an acetate and a molecule of water bound to ZnII. It arrests degradation of HCur to a considerable extent that was realized by taking it in phosphate buffer and in biological milieu. The structure was obtained by DFT calculations. Stable adduct formation was identified between optimized structures of HCur and [Zn(Cur)] with DNA (PDB ID: 1BNA) through experiments validated with multiscale modeling approach. Molecular docking studies provide 2D and 3D representations of binding of HCur and [Zn(Cur)] through different non-covalent interactions with the nucleotides of the chosen DNA. Through molecular dynamics simulation, a detailed understanding of binding pattern and key structural characteristics of the generated DNA-complex was obtained following analysis by RMSD, RMSF, radius of gyration, SASA and aspects like formation of hydrogen bonds. Experimental studies provide binding constants for [Zn(Cur)] with calf thymus DNA at 25 °C that effectively helps one to realize its high affinity towards DNA. In the absence of an experimental binding study of HCur with DNA, owing to its tendency to degrade in solution, a theoretical analysis of the binding of HCur to DNA is extremely helpful. Besides, both experimental and simulated binding of [Zn(Cur)] to DNA may be considered as a case of pseudo-binding of HCur to DNA. In a way, such studies on interaction with DNA helps one to identify HCur's affinity for cellular target DNA, not realized through experiments. The entire investigation is an understanding of experimental and theoretical approaches that has been compared continuously, being particularly useful when a molecule's interaction with a biological target cannot realized experimentally.
Collapse
Affiliation(s)
- Tanmoy Saha
- Department of Chemistry (Inorganic Section), Jadavpur University, Kolkata 700 032, India
| | - Subrahmanyam Sappati
- Department of Physical Chemistry, Gdańsk University of Technology, Gdańsk 80-233, Poland; Department of Pharmaceutical Technology and Biochemistry, Gdańsk University of Technology, Gdańsk 80-233, Poland
| | - Saurabh Das
- Department of Chemistry (Inorganic Section), Jadavpur University, Kolkata 700 032, India.
| |
Collapse
|
3
|
Adhav VA, Shelke SS, Balanarayan P, Saikrishnan K. Sulfur-mediated chalcogen versus hydrogen bonds in proteins: a see-saw effect in the conformational space. QRB DISCOVERY 2023; 4:e5. [PMID: 37564297 PMCID: PMC10411326 DOI: 10.1017/qrd.2023.3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 03/24/2023] [Accepted: 03/31/2023] [Indexed: 08/12/2023] Open
Abstract
Divalent sulfur (S) forms a chalcogen bond (Ch-bond) via its σ-holes and a hydrogen bond (H-bond) via its lone pairs. The relevance of these interactions and their interplay for protein structure and function is unclear. Based on the analyses of the crystal structures of small organic/organometallic molecules and proteins and their molecular electrostatic surface potential, we show that the reciprocity of the substituent-dependent strength of the σ-holes and lone pairs correlates with the formation of either Ch-bond or H-bond. In proteins, cystines preferentially form Ch-bonds, metal-chelated cysteines form H-bonds, while methionines form either of them with comparable frequencies. This has implications for the positioning of these residues and their role in protein structure and function. Computational analyses reveal that the S-mediated interactions stabilise protein secondary structures by mechanisms such as helix capping and protecting free β-sheet edges by negative design. The study highlights the importance of S-mediated Ch-bond and H-bond for understanding protein folding and function, the development of improved strategies for protein/peptide structure prediction and design and structure-based drug discovery.
Collapse
Affiliation(s)
| | - Sanket Satish Shelke
- Department of Biology, Indian Institute of Science Education and Research, Pune, India
| | - Pananghat Balanarayan
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Mohali, India
| | - Kayarat Saikrishnan
- Department of Biology, Indian Institute of Science Education and Research, Pune, India
| |
Collapse
|
4
|
Anjalikrishna PK, Gadre SR, Suresh CH. Electrostatic Potential for Exploring Electron Delocalization in Infinitenes, Circulenes, and Nanobelts. J Org Chem 2023; 88:4123-4133. [PMID: 36952587 DOI: 10.1021/acs.joc.2c02507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Abstract
The π-conjugation, aromaticity, and stability of the newly synthesized 12-infinitene and of other infinitenes comprising 8-, 10-, 14-, and 16-arene rings are investigated using density functional theory. The π-electron delocalization and aromatic character rooted in infinitenes are quantified in terms of molecular electrostatic potential (MESP) topology. Structurally, the infinitene bears a close resemblance of its helically twisted structure to the infinity symbol. The MESP topology shows that infinitene possesses an infinity-shaped delocalization of the electron density that streams over the fused benzenoid rings. The parameter ∑i=13Δλi, derived from the eigenvalues (λi) corresponding to the MESP minima, is used for quantifying the aromatic character of arene rings of infinitene. The structure, stability, and MESP topology features of 8-, 10-, 12-, 14-, and 16-infinitenes are also compared with the corresponding isomeric circulenes and carbon nanobelts. Further, the strain in all such systems is evaluated by considering the respective isomeric planar benzenoid hydrocarbons as reference systems. The 12-infinitene turns out to be the most aromatic and the least strained among all the systems examined.
Collapse
Affiliation(s)
- Puthannur K Anjalikrishna
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, Kerala, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shridhar R Gadre
- Department of Scientific Computing, Modelling and Simulation, Savitribai Phule Pune University, Pune 411007, India
| | - Cherumuttathu H Suresh
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, Kerala, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
5
|
Sanfui S, Chakraborty P, Garribba E, Rath SP. Diheme cytochromes: Effect of mixed-axial ligation on the electronic structure and electrochemical properties with cobalt porphyrin dimer. J Inorg Biochem 2023; 240:112109. [PMID: 36592509 DOI: 10.1016/j.jinorgbio.2022.112109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/11/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
A series of six-coordinate diCo(III) porphyrin dimers, as synthetic analogues of diheme cytochromes, have been reported here having bis(imidazole), bis(pyridine) and mixed thiophenolate-pyridine/imidazole axial ligands. In the X-ray structures of bis(imidazole) and bis(pyridine) complexes, the axial ligands are in perpendicular orientation while they are parallelly oriented in their monomeric analog. The porphyrin rings are also highly ruffle-distorted in dimer but planar in monomer which reflect the effect of intramolecular interaction between two Co(porphyrin) units in dimers. In the X-ray structure of diCo(III) thiophenolate-pyridine mixed-ligated complex, the axial Co-S and Co-N(py) distances are 2.256(1) and 2.063(2) Å, respectively. The Co-N(py) distance of 2.063(2) Å is much longer than the distances of 1.961(3) and 1.972(3) Å observed in bis(pyridine) complex and the Co-S distance is larger than Co-N(py) in the mixed ligated complex which results in a displacement of Co by 0.15 Å towards the pyridine ligand from the mean porphyrin plane. Indeed, this is the first X-ray structure of a metalloporphyrin with mixed thiophenolate-pyridine axial ligands. The effect of mixed-axial ligation is demonstrated by a blue-shift of the Soret band in the UV-visible spectroscopy and also a positive shift of the Co(III)/Co(II) redox couple as compared to their bis(pyridine) analogue. The redox potentials are shifted to a large negative value just upon replacing the metal from iron to cobalt. The present investigation emphasizes the role of axial ligation, metal ions, and also the effect of heme-heme interaction in controlling the spectral and electrochemical properties.
Collapse
Affiliation(s)
- Sarnali Sanfui
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Paulami Chakraborty
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Eugenio Garribba
- Dipartimento di Medicina, Chirurgia e Farmacia, Università di Sassari, Viale San Pietro, I-07100 Sassari, Italy
| | - Sankar Prasad Rath
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India.
| |
Collapse
|
6
|
Adhav VA, Pananghat B, Saikrishnan K. Probing the Directionality of S···O/N Chalcogen Bond and Its Interplay with Weak C-H···O/N/S Hydrogen Bond Using Molecular Electrostatic Potential. J Phys Chem B 2022; 126:7818-7832. [PMID: 36179131 DOI: 10.1021/acs.jpcb.2c03745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The directionality of the chalcogen bond (Ch-bond) formed by S and its interplay with other weak interactions have important chemical and biological implications. Here, dimers made of CH3-S-X and O/N containing nucleophiles are studied and found to be stabilized by coexisting S···O/N and C-H···O/N interactions. Based on experimentally accessible electron density and molecular electrostatic potentials (MESPs), we showed that reciprocity between S···O/N and C-H···O/N interactions in the stability of cumulative molecular interaction (ΔE) was dependent on the strength of the σ-hole on S (Vs,max). Direct correlation between ΔE of dimers with Vs,max of S supports the electrostatic nature of the Ch-bond. Such interplay of the Ch-bond is necessary for its directionality in complex nucleophiles (carbonyl groups) with multiple electron-rich centers, which is explained using MESP. A correlation between the MESP minima in the π-region and the strength of the S-π interaction explains the directional selectivity of the Ch-bond.
Collapse
Affiliation(s)
- Vishal Annasaheb Adhav
- Department of Biology, Indian Institute of Science Education and Research, Pune411008, India
| | - Balanarayan Pananghat
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Mohali140306, India
| | - Kayarat Saikrishnan
- Department of Biology, Indian Institute of Science Education and Research, Pune411008, India
| |
Collapse
|
7
|
Otero-de-la-Roza A. Finding critical points and reconstruction of electron densities on grids. J Chem Phys 2022; 156:224116. [PMID: 35705403 DOI: 10.1063/5.0090232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The quantum theory of atoms in molecules (QTAIM), developed by Bader and co-workers, is one of the most popular ways of extracting chemical insight from the results of quantum mechanical calculations. One of the basic tasks in QTAIM is to locate the critical points of the electron density and calculate various quantities (density, Laplacian, etc.) on them since these have been found to correlate with molecular properties of interest. If the electron density is given analytically, this process is relatively straightforward. However, locating the critical points is more challenging if the density is known only on a three-dimensional uniform grid. A density grid is common in periodic solids because it is the natural expression for the electron density in plane-wave calculations. In this article, we explore the reconstruction of the electron density from a grid and its use in critical point localization. The proposed reconstruction method employs polyharmonic spline interpolation combined with a smoothing function based on the promolecular density. The critical point search based on this reconstruction is accurate, trivially parallelizable, works for periodic and non-periodic systems, does not present directional lattice bias when the grid is non-orthogonal, and locates all critical points of the underlying electron density in all tests studied. The proposed method also provides an accurate reconstruction of the electron density over the space spanned by the grid, which may be useful in other contexts besides critical point localization.
Collapse
Affiliation(s)
- Alberto Otero-de-la-Roza
- Departamento de Química Física y Analítica and MALTA Consolider Team, Facultad de Química, Universidad de Oviedo, 33006 Oviedo, Spain
| |
Collapse
|
8
|
Suresh CH, Remya GS, Anjalikrishna PK. Molecular electrostatic potential analysis: A powerful tool to interpret and predict chemical reactivity. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2022. [DOI: 10.1002/wcms.1601] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Cherumuttathu H. Suresh
- Chemical Sciences and Technology Division CSIR‐National Institute for Interdisciplinary Science and Technology Thiruvananthapuram Kerala India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad India
| | - Geetha S. Remya
- Chemical Sciences and Technology Division CSIR‐National Institute for Interdisciplinary Science and Technology Thiruvananthapuram Kerala India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad India
| | - Puthannur K. Anjalikrishna
- Chemical Sciences and Technology Division CSIR‐National Institute for Interdisciplinary Science and Technology Thiruvananthapuram Kerala India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad India
| |
Collapse
|
9
|
|
10
|
Khan FST, Samanta D, Chandel D, Shah SJ, Rath SP. Heme-Heme Interactions in Diheme Cytochromes: Effect of Mixed-Axial Ligation on the Electronic Structure and Electrochemical Properties. Inorg Chem 2021; 60:12870-12882. [PMID: 34370470 DOI: 10.1021/acs.inorgchem.1c01215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Diheme cytochromes, the simplest members in the multiheme family, play substantial biochemical roles in enzymatic catalysis as well as in electron transfer. A series of diiron(III) porphyrin dimers have been synthesized as active site analogues of diheme cytochromes. The complexes contain six-coordinated iron(III) having thiophenol and imidazole at the fifth and sixth coordination sites, respectively. The iron centers in the complexes have been found to be in a low-spin state, as confirmed through solid-state Mössbauer and electron paramagnetic resonance (EPR) spectroscopic investigations. Mössbauer quadrupole splitting of complexes having mixed ligands is substantially larger than that observed when both axial ligands are the same. Rhombic types of EPR spectra with narrow separation between gx, gy, and gz clearly distinguish heme thiolate coordination compared to bis(imidazole)-ligated low-spin heme centers. The redox potential in diheme cytochromes has been found to be tuned by interheme interactions along with the nature of axial ligands. The effect of mixed-axial ligation within the diiron(III) porphyrin dimers is demonstrated by a positive shift in the Fe(III)/Fe(II) redox couple upon thiophenolate coordination compared to their bis(imidazole) analogues. The pKa of the imidazole also decides the extent of the shift for the Fe(III)/Fe(II) couple, while the potential of the mixed-ligated diiron(III) porphyrin dimer is more positive compared to their monomeric analogue. A variation of around 1.1 V for the Fe(III)/Fe(II) redox potential in the diiron(III) porphyrin dimer can be achieved with the combined effect of axial ligation and a metal spin state, while such a large variation in the redox potential, compared to their monomeric analogues, is attributed to the heme-heme interactions observed in dihemes. Moreover, theoretical calculations also support the experimental shifts in the redox potential values.
Collapse
Affiliation(s)
| | - Deepannita Samanta
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Dolly Chandel
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Syed Jehanger Shah
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Sankar Prasad Rath
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| |
Collapse
|
11
|
Anjalikrishna PK, Gadre SR, Suresh CH. Antiaromaticity-Aromaticity Interplay in Fused Benzenoid Systems Using Molecular Electrostatic Potential Topology. J Phys Chem A 2021; 125:5999-6012. [PMID: 34210140 DOI: 10.1021/acs.jpca.1c04286] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The phenomenon of antiaromaticity-aromaticity interplay in aromatic-antiaromatic (A-aA)-fused systems is studied using molecular electrostatic potential (MESP) analysis, which clearly brings out the electron-rich π-regions of molecular systems. Benzene, naphthalene, phenanthrene, and pyrene are the aromatic units and cyclobutadiene and pentalene are the antiaromatic units considered to construct the A-aA-fused systems. The fused system is seen to reduce the antiaromaticity by adopting a configuration containing the least number of localized bonds over antiaromatic moieties. This is clearly observed in 25 isomers of a fused system composed of three naphthalene and two cyclobutadiene units. Denoting the number of π-bonds in the cyclobutadiene rings by the notation (n, n'), the systems belonging to the class (0, 0) and (2, 2) turn out to be the most and least stable configurations, respectively. The stability of the fused system depends on the empty π-character of the antiaromatic ring, hence naphthalene and benzene prefer to fuse with cyclobutadiene in a linear and angular fashion, respectively. Generally, a configuration with the maximum number of 'empty' rings (0, 0, 0, ...) is considered to be the most stable for the given A-aA system. The stability and aromatic/antiaromatic character of A-aA-fused systems with pentalene is also interpreted in a similar way. MESP topology, clearly bringing out the distribution of double bonds in the fused systems, leads to a simple interpretation of the aromatic/antiaromatic character of them. Also, it leads to powerful predictions on stable macrocyclic A-aA systems.
Collapse
Affiliation(s)
- Puthannur K Anjalikrishna
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, Kerala 695019, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shridhar R Gadre
- Department of Scientific Computing, Modelling and Simulation, SavitribaiPhule Pune University, Pune 411007, India
| | - Cherumuttathu H Suresh
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, Kerala 695019, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
12
|
Electrostatic Potential Topology for Probing Molecular Structure, Bonding and Reactivity. Molecules 2021; 26:molecules26113289. [PMID: 34072507 PMCID: PMC8198923 DOI: 10.3390/molecules26113289] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/16/2021] [Accepted: 05/25/2021] [Indexed: 11/18/2022] Open
Abstract
Following the pioneering investigations of Bader on the topology of molecular electron density, the topology analysis of its sister field viz. molecular electrostatic potential (MESP) was taken up by the authors’ groups. Through these studies, MESP topology emerged as a powerful tool for exploring molecular bonding and reactivity patterns. The MESP topology features are mapped in terms of its critical points (CPs), such as bond critical points (BCPs), while the minima identify electron-rich locations, such as lone pairs and π-bonds. The gradient paths of MESP vividly bring out the atoms-in-molecule picture of neutral molecules and anions. The MESP-based characterization of a molecule in terms of electron-rich and -deficient regions provides a robust prediction about its interaction with other molecules. This leads to a clear picture of molecular aggregation, hydrogen bonding, lone pair–π interactions, π-conjugation, aromaticity and reaction mechanisms. This review summarizes the contributions of the authors’ groups over the last three decades and those of the other active groups towards understanding chemical bonding, molecular recognition, and reactivity through topology analysis of MESP.
Collapse
|
13
|
Pandey AK, Usman M, Rath SP. Hg···Hg···Hg Interaction Stabilizes Unusual Trinuclear Double Sandwich Structure of Mercury(II) Porphyrins. Inorg Chem 2020; 59:12988-12993. [DOI: 10.1021/acs.inorgchem.0c01627] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Anjani Kumar Pandey
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Mohammad Usman
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Sankar Prasad Rath
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| |
Collapse
|
14
|
Alkorta I, Elguero J, Oliva-Enrich JM. Complexes between bicyclic boron derivatives and dihydrogen: the importance of strain. Struct Chem 2020. [DOI: 10.1007/s11224-020-01556-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Oliva-Enrich JM, Alkorta I, Elguero J. Complexes Between Adamantane Analogues B 4X 6 -X = {CH 2, NH, O ; SiH 2, PH, S} - and Dihydrogen, B 4X 6: nH 2 ( n = 1-4). MOLECULES (BASEL, SWITZERLAND) 2020; 25:molecules25051042. [PMID: 32110922 PMCID: PMC7179137 DOI: 10.3390/molecules25051042] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/16/2020] [Accepted: 02/19/2020] [Indexed: 11/16/2022]
Abstract
In this work, we study the interactions between adamantane-like structures B4X6 with X = {CH2, NH, O ; SiH2, PH, S} and dihydrogen molecules above the Boron atom, with ab initio methods based on perturbation theory (MP2/aug-cc-pVDZ). Molecular electrostatic potentials (MESP) for optimized B4X6 systems, optimized geometries, and binding energies are reported for all B4X6:nH2 (n = 1–4) complexes. All B4X6:nH2 (n = 1–4) complexes show attractive patterns, with B4O6:nH2 systems showing remarkable behavior with larger binding energies and smaller B···H2 distances as compared to the other structures with different X.
Collapse
Affiliation(s)
- Josep M. Oliva-Enrich
- Instituto de Química-Física “Rocasolano”, CSIC, Serrano, 119, E-28006 Madrid, Spain
- Correspondence: ; Tel.: +34-91-745-95-55; Fax: +34-91-564-24-31
| | - Ibon Alkorta
- Instituto de Química Médica, CSIC, Juan de la Cierva, 3, E-28006 Madrid, Spain; (I.A.); (J.E.)
| | - José Elguero
- Instituto de Química Médica, CSIC, Juan de la Cierva, 3, E-28006 Madrid, Spain; (I.A.); (J.E.)
| |
Collapse
|
16
|
Anjalikrishna PK, Suresh CH, Gadre SR. Electrostatic Topographical Viewpoint of π-Conjugation and Aromaticity of Hydrocarbons. J Phys Chem A 2019; 123:10139-10151. [PMID: 31647654 DOI: 10.1021/acs.jpca.9b09056] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A molecular electrostatic potential (MESP) topographical study has been conducted for a variety of conjugated hydrocarbons at B3LYP/6-311+G(d,p) level of theory to understand their π-conjugation features and aromaticity. The value of MESP minimum (Vm) is related to the localized and delocalized distribution of π-electron density. The Vm values are located interior to the rings in polycyclic benzenoid hydrocarbons (PBHs), whereas they lie outside the boundary of the rings in antiaromatic and in fused systems consisting of aromatic and antiaromatic moieties. The Vm points lie on top and bottom of the π-regions in linear polyenes and annulenes, while a degenerate distribution of CPs around the midpoint region of triple bonds is observed in alkynes. The eigenvalues λ1, λ2, and λ3 of the Hessian matrix at Vm(MESP minima) are used to define the aromatic character of the cyclic structures. The eigenvalues follow the trend λ1 ≫ λ2 > λ3 ≅ 0 in PBHs, λ1 > λ2 > λ3 ≅ 0 in linear polyenes, and λ1 > λ2 > λ3 ≠ 0 in antiaromatic systems. The difference in the aromatic character of PBHs from that of benzene is related to the deviations Δλ1, Δλ2, and Δλ3. The total deviation ∑i=13Δλi is found to be ≤ 0.011 au for all aromatic systems and lies between 0.011 and 0.035 au for all nonaromatic systems. For antiaromatic systems, its value is found to be above 0.035 au. Further, ∑i=13Δλi gives a direct interpretation of Clar's aromatic sextet structures for PBHs. In summary, MESP topography mapping is a powerful technique to quantify the localized and delocalized π-electron distribution in a variety of unsaturated hydrocarbon systems.
Collapse
Affiliation(s)
- Puthannur K Anjalikrishna
- Chemical Sciences and Technology Division , CSIR-National Institute for Interdisciplinary Science and Technology , Thiruvananthapuram , Kerala 695019 , India.,Academy of Scientific and Innovative Research (AcSIR) , Ghaziabad 201002 , India
| | - Cherumuttathu H Suresh
- Chemical Sciences and Technology Division , CSIR-National Institute for Interdisciplinary Science and Technology , Thiruvananthapuram , Kerala 695019 , India.,Academy of Scientific and Innovative Research (AcSIR) , Ghaziabad 201002 , India
| | - Shridhar R Gadre
- Interdisciplinary School of Scientific Computing , Savitribai Phule Pune University , Pune 411007 , India
| |
Collapse
|
17
|
Ahuja P, Molayem M, Gadre SR. Electrostatics-Assisted Building-Up Procedure for Capturing Energy Minima of Metal Clusters: Test Case of Ag n Clusters. J Phys Chem A 2019; 123:7872-7880. [PMID: 31433180 DOI: 10.1021/acs.jpca.9b05601] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Global geometry optimization of metal clusters is an important problem in nanophysics. The starting geometries of the clusters generated with empirical or other model potentials are generally optimized further by density functional theory (DFT)-based energy minimization. For this purpose, several algorithms such as simulated annealing, genetic algorithms, basin hopping, etc. are used. Our building-up procedure generates putative lower-energy structures of metal (M) clusters, Mn+1, Mn+2, etc., by anchoring one or more metal atoms in the vicinity of the minima of the molecular electrostatic potential (MESP) of Mn. Here, we report an application of this method to Agn clusters, for 5 ≤ n ≤ 20, followed up by DFT-based geometry optimization, generating several lower-energy structures than those reported in the literature. New low-energy isomers are obtained by applying the same procedure to the test case of mixed-metal clusters, NinAgm, for n + m = 4 and 5. In conclusion, our MESP-based building-up procedure offers a new general methodology for generating lower-energy geometries of metal clusters.
Collapse
Affiliation(s)
- Prateek Ahuja
- Department of Chemical Sciences , IISER Mohali , Sector-81, Mohali 140306 , India
| | - Mohammad Molayem
- Physical and Theoretical Chemistry , Saarland University , Saarbrücken 66123 , Germany
| | - Shridhar R Gadre
- Interdisciplinary School of Scientific Computing and Department of Chemistry , Savitribai Phule Pune University , Pune 411007 , India
| |
Collapse
|
18
|
Urquiza-Carvalho GA, Rocha GB, López R. Efficient algorithm for expanding theoretical electron densities in canterakis-zernike functions. J Comput Chem 2018; 39:2022-2032. [PMID: 30315586 DOI: 10.1002/jcc.25376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 05/11/2018] [Accepted: 05/15/2018] [Indexed: 12/18/2022]
Abstract
An algorithm for the efficient computation of Canterakis-Zernike moments of theoretically computed molecular electron densities and rotationally invariant Fingerprint indices derived from them is reported. The algorithm is suitable for any density expressed in terms of Gaussian- or Slater-type functions within the Linear Combination of Atomic Orbitals framework at any level of computation. Electron density is expressed as a one-center expansion of real regular spherical harmonics times radial factors by means of translation techniques, which facilitates the efficient computation of the moments in terms of a single one-dimension numerical integration. The performance of the algorithm is analyzed showing that the computation of radial factors in the quadrature points is responsible for almost all computational time. The procedure is applicable to any density obtained with standard packages for molecular structure calculations. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - Gerd B Rocha
- Departamento de Química, Universidade Federal da Paraíba, João Pessoa, Brazil
| | - Rafael López
- Departamento de Química Física Aplicada, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
19
|
Suresh CH, Bijina PV. Hidden Dicarbene Nature of Acetylenes and Captodative Bonding on Carbon. Chemphyschem 2018; 19:3266-3272. [PMID: 30192059 DOI: 10.1002/cphc.201800726] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/03/2018] [Accepted: 09/06/2018] [Indexed: 11/09/2022]
Abstract
DFT derived molecular electrostatic potential (MESP), ¹³C NMR chemical shift (δ), bond order and coordination reactions show that alkynes (RCCR) attain 1,2-dicarbene nature during CCR angle bending. Alkyne carbon atoms of bent structures exhibit MESP features unique to lone-pair bearing atoms, δ around 200 ppm typical for carbene centers and large reduction in CC triple bond character. Lone pair bearing atoms of R substituents enhance the carbene character. The bent alkynes can be trapped with Lewis acids (BH₃, BF₃, AlF₃ and AlCl₃) as the lone pairs developed on carbon centers provide strong donor type dative bonding. The dative bond gives a formal valence electron count six on carbon and suggests the for-mation of acceptor type dative bonding to carbon from Lewis base (NH₃). Reaction of alkynes with (Lewis acid-Lewis base) systems yield (Lewis acid)₂-Alkyne-Lewis base)₂ complexes which are exothermic and exergonic for many cases. These complexes are examples of captodative carbon(II) compounds.
Collapse
Affiliation(s)
- Cherumuttathu H Suresh
- National Institute for Interdisciplinary Science and Technology, Chemical Sciences and Technology Division, Pappanamcode, 695019, Trivandrum, INDIA
| | - Padinjare Veetil Bijina
- National Institute for Interdisciplinary Science and Technology CSIR, 695019, Trivandrum, INDIA
| |
Collapse
|
20
|
Deconvolution of conformational equilibria in methimazolium-based ionic liquid ion pair: Infrared spectroscopic and computational study. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.06.050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Khan FST, Banerjee S, Kumar D, Rath SP. Diheme Cytochrome c: Structure–Function Correlation and Effect of Heme−Heme Interactions. Inorg Chem 2018; 57:11498-11510. [DOI: 10.1021/acs.inorgchem.8b01368] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Sayantani Banerjee
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, India
| | - Devesh Kumar
- Department of Physics, School for Physical and Decision Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow-226025, India
| | - Sankar Prasad Rath
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, India
| |
Collapse
|
22
|
Del Bene JE, Alkorta I, Elguero J. Pnicogen bonds in complexes with CO and CS: differentiating properties. Mol Phys 2018. [DOI: 10.1080/00268976.2018.1512726] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Janet E. Del Bene
- Department of Chemistry, Youngstown State University, Youngstown, Ohio, USA
| | - Ibon Alkorta
- Instituto de Química Médica (IQM-CSIC), Madrid, Spain
| | - José Elguero
- Instituto de Química Médica (IQM-CSIC), Madrid, Spain
| |
Collapse
|
23
|
Alkorta I, Elguero J, Del Bene JE. Complexes of O=C=S with Nitrogen Bases: Chalcogen Bonds, Tetrel Bonds, and Other Secondary Interactions. Chemphyschem 2018; 19:1886-1894. [PMID: 29663617 DOI: 10.1002/cphc.201800217] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Indexed: 01/27/2023]
Abstract
Ab initio MP2/aug'-cc-pVTZ calculations have been carried out to investigate chalcogen-bond formation through the σ-hole at S and tetrel-bond formation through the π-hole at C in complexes of OCS with a series of nitrogen bases. The binding energies of chalcogen- and tetrel-bonded complexes with the sp-hybridized bases correlate exponentially with the N-S and N-C distances, respectively. The presence of secondary interactions between an N-H or C-H group of an sp2 -hybridized base and OCS in chalcogen-bonded complexes decreases the correlation between binding energies and the N-S distance. These secondary interactions are stronger in the tetrel-bonded complexes with the sp2 bases, particularly in the isomers of OCS:imidazole and OCS : N2 H2 , where they may be described as distorted N-H⋅⋅⋅O or N-H⋅⋅⋅S hydrogen bonds. Charge-transfer interactions are consistent with the nature of the primary and secondary interactions in these complexes. The in-plane OCS bending frequencies are blue-shift in the chalcogen-bonded complexes, and red-shifted in the tetrel-bonded complexes. EOM-CCSD spin-spin coupling constants 1c J(N4-S) across chalcogen bonds have absolute values less than 9.0 Hz, while the two-bond coupling constants 2c J(N4-C) do not exceed 4.0 Hz. These are greater in absolute value that the one-bond coupling constants 1t J(N4-C) across tetrel bonds that are less than 0.5 Hz at much shorter N-C distances.
Collapse
Affiliation(s)
- Ibon Alkorta
- Instituto de Química Médica (IQM-CSIC), Juan de la Cierva, 3, E-, 28006, Madrid, Spain
| | - José Elguero
- Instituto de Química Médica (IQM-CSIC), Juan de la Cierva, 3, E-, 28006, Madrid, Spain
| | - Janet E Del Bene
- Department of Chemistry, Youngstown State University, Youngstown, Ohio, 44555, USA
| |
Collapse
|
24
|
Alkorta I, Martín-Fernández C, Montero-Campillo MM, Elguero J. Hydrogen-Bonding Acceptor Character of Be 3, the Beryllium Three-Membered Ring. J Phys Chem A 2018; 122:1472-1478. [PMID: 29320188 DOI: 10.1021/acs.jpca.7b11952] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The ability of Be3 as a hydrogen bond acceptor has been explored by studying the potential complexes between this molecule and a set of hydrogen bond donors (HF, HCl, HNC, HCN, H2O, and HCCH). The electronic structure calculations for these complexes were carried out at the MP2 and CCSD(T) computational levels together with an extensive NBO, ELF, AIM, and electrostatic potential characterization of the isolated Be3 system. In all the complexes, the Be-Be σ bond acts as electron donor, with binding energies between 19 and 6 kJ mol-1. A comparison with the analogous cyclopropane:HX complexes shows similar binding energies and contributions of the DFT-SAPT energetic terms. A blue-shift of the harmonic frequencies of Be3 is observed upon complexation.
Collapse
Affiliation(s)
- Ibon Alkorta
- Instituto de Química Médica, CSIC , Juan de la Cierva, 3, 28006 Madrid, Spain
| | | | | | - José Elguero
- Instituto de Química Médica, CSIC , Juan de la Cierva, 3, 28006 Madrid, Spain
| |
Collapse
|
25
|
Della TD, Suresh CH. Sumanene: an efficient π-bowl for dihydrogen storage. Phys Chem Chem Phys 2018; 20:6227-6235. [DOI: 10.1039/c7cp07000d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The outstanding ability of sumanene, its anionic and dianionic forms and sumanene–M+ion-pair complexes (M = Li, Na, K) to bind dihydrogen has been revealed using density functional theory calculations pointing out that these systems could be employed for developing new H2storage systems.
Collapse
Affiliation(s)
- Therese Davis Della
- Chemical Sciences and Technology Division, CSIR – National Institute for Interdisciplinary Science and Technology
- Thiruvananthapuram
- India
- Academy of Scientific & Innovative Research (AcSIR)
- India
| | - Cherumuttathu H. Suresh
- Chemical Sciences and Technology Division, CSIR – National Institute for Interdisciplinary Science and Technology
- Thiruvananthapuram
- India
- Academy of Scientific & Innovative Research (AcSIR)
- India
| |
Collapse
|
26
|
Remya GS, Suresh CH. Assessment of the electron donor properties of substituted phenanthroline ligands in molybdenum carbonyl complexes using molecular electrostatic potentials. NEW J CHEM 2018. [DOI: 10.1039/c7nj04592a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Molecular electrostatic potential analysis of substituent effects in phenanthroline ligands clearly suggests that the coordination strength of the ligand to a metal complex is highly predictable solely from the quantification of substituent effects.
Collapse
Affiliation(s)
- Geetha S. Remya
- Chemical Sciences and Technology Division, CSIR – National Institute for Interdisciplinary Science and Technology
- Thiruvananthapuram
- India
- Academy of Scientific & Innovative Research (AcSIR)
- India
| | - Cherumuttathu H. Suresh
- Chemical Sciences and Technology Division, CSIR – National Institute for Interdisciplinary Science and Technology
- Thiruvananthapuram
- India
- Academy of Scientific & Innovative Research (AcSIR)
- India
| |
Collapse
|
27
|
Hübschle CB, van Smaalen S. The electrostatic potential of dynamic charge densities. J Appl Crystallogr 2017; 50:1627-1636. [PMID: 29217990 PMCID: PMC5713142 DOI: 10.1107/s1600576717013802] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 09/25/2017] [Indexed: 11/10/2022] Open
Abstract
A procedure to derive the electrostatic potential (ESP) for dynamic charge densities obtained from structure models or maximum-entropy densities is introduced. The ESP essentially is obtained by inverse Fourier transform of the dynamic structure factors of the total charge density corresponding to the independent atom model, the multipole model or maximum-entropy densities, employing dedicated software that will be part of the BayMEM software package. Our approach is also discussed with respect to the Ewald summation method. It is argued that a meaningful ESP can only be obtained if identical thermal smearing is applied to the nuclear (positive) and electronic (negative) parts of the dynamic charge densities. The method is applied to structure models of dl-serine at three different temperatures of 20, 100 and 298 K. The ESP at locations near the atomic nuclei exhibits a drastic reduction with increasing temperature, the largest difference between the ESP from the static charge density and the ESP of the dynamic charge density being at T = 20 K. These features demonstrate that zero-point vibrations are sufficient for changing the spiky nature of the ESP at the nuclei into finite values. On 0.5 e Å-3 isosurfaces of the electron densities (taken as the molecular surface relevant to intermolecular interactions), the dynamic ESP is surprisingly similar at all temperatures, while the static ESP of a single molecule has a slightly larger range and is shifted towards positive potential values.
Collapse
Affiliation(s)
| | - Sander van Smaalen
- Laboratory of Crystallography, University of Bayreuth, 95440 Bayreuth, Germany
| |
Collapse
|
28
|
Del Bene JE, Alkorta I, Elguero J. Halogen Bonding Involving CO and CS with Carbon as the Electron Donor. Molecules 2017; 22:E1955. [PMID: 29137153 PMCID: PMC6150174 DOI: 10.3390/molecules22111955] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 11/07/2017] [Accepted: 11/09/2017] [Indexed: 11/16/2022] Open
Abstract
MP2/aug'-cc-pVTZ calculations have been carried out to investigate the halogen-bonded complexes formed when CO and CS act as electron-pair donors through C to ClF, ClNC, ClCl, ClOH, ClCN, ClCCH, and ClNH₂. CO forms only complexes stabilized by traditional halogen bonds, and all ClY molecules form traditional halogen-bonded complexes with SC, except ClF which forms only an ion-pair complex. Ion-pair complexes are also found on the SC:ClNC and SC:ClCl surfaces. SC:ClY complexes stabilized by traditional halogen bonds have greater binding energies than the corresponding OC:ClY complexes. The largest binding energies are found for the ion-pair SC-Cl⁺:-Y complexes. The transition structures which connect the complex and the ion pair on SC:ClNC and SC:ClCl potential surfaces provide the barriers for inter-converting these structures. Charge-transfer from the lone pair on C to the σ-hole on Cl is the primary charge-transfer interaction stabilizing OC:ClY and SC:ClY complexes with traditional halogen bonds. A secondary charge-transfer occurs from the lone pairs on Cl to the in-plane and out-of-plane π antibonding orbitals of ClY. This secondary interaction assumes increased importance in the SC:ClNH₂ complex, and is a factor leading to its unusual structure. C-O and C-S stretching frequencies and 13C chemical shieldings increase upon complex formation with ClY molecules. These two spectroscopic properties clearly differentiate between SC:ClY complexes and SC-Cl⁺:-Y ion pairs. Spin-spin coupling constants 1xJ(C-Cl) for OC:ClY complexes increase with decreasing distance. As a function of the C-Cl distance, 1xJ(C-Cl) and ¹J(C-Cl) provide a fingerprint of the evolution of the halogen bond from a traditional halogen bond in the complexes, to a chlorine-shared halogen bond in the transition structures, to a covalent bond in the ion pairs.
Collapse
Affiliation(s)
- Janet E Del Bene
- Department of Chemistry, Youngstown State University, Youngstown, OH 44555, USA.
| | - Ibon Alkorta
- Instituto de Química Médica (IQM-CSIC), Juan de la Cierva, 3, E-28006 Madrid, Spain.
| | - José Elguero
- Instituto de Química Médica (IQM-CSIC), Juan de la Cierva, 3, E-28006 Madrid, Spain.
| |
Collapse
|
29
|
Bijina PV, Suresh CH, Gadre SR. Electrostatics for probing lone pairs and their interactions. J Comput Chem 2017; 39:488-499. [PMID: 29094379 DOI: 10.1002/jcc.25082] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/22/2017] [Accepted: 09/24/2017] [Indexed: 01/21/2023]
Abstract
The value of the molecular electrostatic potential minimum (Vmin ) and its topographical features (position, as well as the eigenvalues and eigenvectors of the corresponding Hessian matrix) are recently proposed as the criteria for characterizing a lone pair (Kumar A. et al., J. Phys. Chem. 2014, A118, 526). This electrostatic characterization of lone pairs is examined for a large number of small molecules employing MP4/6-311++G(d,p)//MP2/6-311++G(d,p) theory. The eigenvector of the Hessian matrix corresponding to its largest eigenvalue (λmax ), is found to be directed toward the lone pair-bearing-atom, with λmax showing a strong linear correlation with Vmin . Large magnitudes of Vmin and λmax indicate a charge-dense lone pair. The topographical features of Vmin are seen to provide insights into the interactive behavior of the molecules with model electrophiles, viz. HF, CO2 , and Li+ . In all the complexes of HF and majority of the other complexes, the interaction energy (Eint ) correlates well with the respective Vmin, value, but for some deviations occurring due to other competing secondary interactions. The electrostatic interactions are found to be highly directional in nature as the orientation of interacting atom correlates strongly to the position of lone pair. In summary, the present study on a large number of test molecules shows that electrostatics is able to probe lone pairs in molecules and offers a simple interpretation of chemical reactivity. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Padinjare Veetil Bijina
- Chemical Sciences and Technology Division and Academy of Scientific & Innovative Research (AcSIR), CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum, 695019, India
| | - Cherumuttathu H Suresh
- Chemical Sciences and Technology Division and Academy of Scientific & Innovative Research (AcSIR), CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum, 695019, India
| | - Shridhar R Gadre
- Interdisciplinary School of Scientific Computing, Savitribai Phule Pune University, Pune, 411007, India
| |
Collapse
|
30
|
Alkorta I, Legon AC. Nucleophilicities of Lewis Bases B and Electrophilicities of Lewis Acids A Determined from the Dissociation Energies of Complexes B⋯A Involving Hydrogen Bonds, Tetrel Bonds, Pnictogen Bonds, Chalcogen Bonds and Halogen Bonds. Molecules 2017; 22:E1786. [PMID: 29065546 PMCID: PMC6151704 DOI: 10.3390/molecules22101786] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 10/17/2017] [Accepted: 10/19/2017] [Indexed: 11/16/2022] Open
Abstract
It is shown that the dissociation energy D e for the process B⋯A = B + A for 250 complexes B⋯A composed of 11 Lewis bases B (N₂, CO, HC≡CH, CH₂=CH₂, C₃H₆, PH₃, H₂S, HCN, H₂O, H₂CO and NH₃) and 23 Lewis acids (HF, HCl, HBr, HC≡CH, HCN, H₂O, F₂, Cl₂, Br₂, ClF, BrCl, H₃SiF, H₃GeF, F₂CO, CO₂, N₂O, NO₂F, PH₂F, AsH₂F, SO₂, SeO₂, SF₂, and SeF₂) can be represented to good approximation by means of the equation D e = c ' N B E A , in which N B is a numerical nucleophilicity assigned to B, E A is a numerical electrophilicity assigned to A, and c ' is a constant, conveniently chosen to have the value 1.00 kJ mol-1 here. The 250 complexes were chosen to cover a wide range of non-covalent interaction types, namely: (1) the hydrogen bond; (2) the halogen bond; (3) the tetrel bond; (4) the pnictogen bond; and (5) the chalcogen bond. Since there is no evidence that one group of non-covalent interaction was fitted any better than the others, it appears the equation is equally valid for all the interactions considered and that the values of N B and E A so determined define properties of the individual molecules. The values of N B and E A can be used to predict the dissociation energies of a wide range of binary complexes B⋯A with reasonable accuracy.
Collapse
Affiliation(s)
- Ibon Alkorta
- Instituto de Química Médica (IQM-CSIC), Juan de la Cierva, 3, E-28006 Madrid, Spain.
| | - Anthony C Legon
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK.
| |
Collapse
|
31
|
Del Bene JE, Alkorta I, Elguero J. Carbon–Carbon Bonding between Nitrogen Heterocyclic Carbenes and CO2. J Phys Chem A 2017; 121:8136-8146. [DOI: 10.1021/acs.jpca.7b08393] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Janet E. Del Bene
- Department
of Chemistry, Youngstown State University, Youngstown, Ohio 44555, United States
| | - Ibon Alkorta
- Instituto
de Química Médica, CSIC, Juan de la Cierva, 3, E-28006 Madrid, Spain
| | - José Elguero
- Instituto
de Química Médica, CSIC, Juan de la Cierva, 3, E-28006 Madrid, Spain
| |
Collapse
|
32
|
Alkorta I, Elguero J, Del Bene JE. Azines as Electron-Pair Donors to CO2 for N···C Tetrel Bonds. J Phys Chem A 2017; 121:8017-8025. [DOI: 10.1021/acs.jpca.7b08505] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ibon Alkorta
- Instituto
de Química Médica, Consejo Superior de Investigaciones Cientificas, Juan de la Cierva, 3, E-28006 Madrid, Spain
| | - José Elguero
- Instituto
de Química Médica, Consejo Superior de Investigaciones Cientificas, Juan de la Cierva, 3, E-28006 Madrid, Spain
| | - Janet E. Del Bene
- Department
of Chemistry, Youngstown State University, Youngstown, Ohio 44555, United States
| |
Collapse
|
33
|
Singh AK, Khan FST, Rath SP. Silver(III)⋅⋅⋅Silver(III) Interactions that Stabilize the syn
Form in a Porphyrin Dimer Upon Oxidation. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201705108] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Akhil Kumar Singh
- Department of Chemistry; Indian Institute of Technology Kanpur; Kanpur- 208016 India
| | | | - Sankar Prasad Rath
- Department of Chemistry; Indian Institute of Technology Kanpur; Kanpur- 208016 India
| |
Collapse
|
34
|
Singh AK, Khan FST, Rath SP. Silver(III)⋅⋅⋅Silver(III) Interactions that Stabilize the syn
Form in a Porphyrin Dimer Upon Oxidation. Angew Chem Int Ed Engl 2017; 56:8849-8854. [DOI: 10.1002/anie.201705108] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Akhil Kumar Singh
- Department of Chemistry; Indian Institute of Technology Kanpur; Kanpur- 208016 India
| | | | - Sankar Prasad Rath
- Department of Chemistry; Indian Institute of Technology Kanpur; Kanpur- 208016 India
| |
Collapse
|
35
|
|
36
|
|
37
|
Kumar A, Gadre SR. Exploring the Gradient Paths and Zero Flux Surfaces of Molecular Electrostatic Potential. J Chem Theory Comput 2016; 12:1705-13. [PMID: 26881455 DOI: 10.1021/acs.jctc.6b00073] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The gradient vector field of molecular electrostatic potential, ∇V(r), has remained relatively unexplored in molecular quantum mechanics. The present article explores the conceptual as well as practical aspects of this vector field. A three-dimensional atomic partition of molecular space has been achieved on the basis of zero flux surfaces (ZFSs) of ∇V(r). Such ZFSs may completely enclose some of the atoms in the molecule, unlike what is observed in density-based atomic partitioning. The demonstration of this phenomenon is elucidated through typical examples, e.g., N2, CO, H2O, H2CO, OF(•), :CH2, and NH3BF3, where the electronegative atoms or group of atoms (group electronegativity) exhibits a closed ZFS of ∇V(r) around them. The present article determines an explicit reason for this phenomenon and also provides a necessary and sufficient condition for such a closed ZFS of ∇V(r) to exist. It also describes how the potential-based picture of atoms in molecules differs from its electron density-based analogue. This work further illustrates the manifestation of anisotropy in the gradient paths of MESP of some molecular systems, with respect to CO, (•)OH, H2O, and H2CO, and points to its potential in understanding the reactivity patterns of the interacting molecules.
Collapse
Affiliation(s)
- Anmol Kumar
- Department of Chemistry, Indian Institute of Technology Kanpur , Kanpur 208016, India
| | - Shridhar R Gadre
- Department of Chemistry, Indian Institute of Technology Kanpur , Kanpur 208016, India
| |
Collapse
|
38
|
Kumar A, Gadre SR. Molecular Electrostatic Potential-Based Atoms in Molecules: Shielding Effects and Reactivity Patterns. Aust J Chem 2016. [DOI: 10.1071/ch16226] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The Atoms in Molecules (AIM) concept based on the zero-flux surface (ZFS) of the gradient of molecular electrostatic potential (MESP) has been recently proposed by the present authors. The nature of MESP-based atomic basins brings out the asymmetric electronic distribution in a molecule. An electron-rich atom among the two bonded atoms is seen to possess a completely closed MESP-based atomic basin. The present article illustrates the nature of atomic basins for a variety of molecules such as BF, BH3, AlCl3, B2H6, and Al2Cl6, and a Lewis acid–base pair, viz. NH3BH3 wherein the electronic distribution is not merely guided by difference in the electronegativity of the atoms. The study also explores some transition metal complexes, viz. Ni(CO)4, Fe(CO)5, Cr(CO)6, Mn2(CO)10, Co2(CO)8, Fe(η5-C5H5)2, Co(η3-C3H5), and Co(η3-C3H5)(CO)3, which show a similar phenomenon of intricate charge transfer among the ligands and the metal centre. The present article employs MESP-based AIM for a qualitative explanation of the shielding or deshielding effects revealed by NMR data as well as susceptibility of an atomic region towards an electrophilic or nucleophilic attack. Because the topographical features of MESP and thus the nature of atomic basins are not very sensitive to the level of theory and basis set, the present article demonstrates the capability of MESP as a consistent and simple tool for the portrayal of asymmetry in molecular charge distribution.
Collapse
|
39
|
Della TD, Suresh CH. The remarkable ability of anions to bind dihydrogen. Phys Chem Chem Phys 2016; 18:14588-602. [DOI: 10.1039/c6cp00412a] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Anions show a noteworthy ability to bind with a large number of hydrogen molecules which can be utilized for the development of novel salt systems for hydrogen storage.
Collapse
Affiliation(s)
- Therese Davis Della
- Chemical Sciences and Technology Division
- Academy of Scientific & Innovative Research
- CSIR – National Institute for Interdisciplinary Science and Technology
- Thiruvananthapuram
- India
| | - Cherumuttathu H. Suresh
- Chemical Sciences and Technology Division
- Academy of Scientific & Innovative Research
- CSIR – National Institute for Interdisciplinary Science and Technology
- Thiruvananthapuram
- India
| |
Collapse
|