1
|
Guzmán-Ocampo DC, Aguayo-Ortiz R, Velasco-Bolom JL, Gupta PL, Roitberg AE, Dominguez L. Elucidating the Protonation State of the γ-Secretase Catalytic Dyad. ACS Chem Neurosci 2023; 14:261-269. [PMID: 36562727 DOI: 10.1021/acschemneuro.2c00563] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
γ-Secretase (GS) is an intramembrane aspartyl protease that participates in the sequential cleavage of C99 to generate different isoforms of the amyloid-β (Aβ) peptides that are associated with the development of Alzheimer's disease. Due to its importance in the proteolytic processing of C99 by GS, we performed pH replica exchange molecular dynamics (pH-REMD) simulations of GS in its apo and substrate-bound forms to sample the protonation states of the catalytic dyad. We found that the catalytic dyad is deprotonated at physiological pH in our apo form, but the presence of the substrate at the active site displaces its monoprotonated state toward physiological pH. Our results show that Asp257 acts as the general base and Asp385 as the general acid during the cleavage mechanism. We identified different amino acids such as Lys265, Arg269, and the PAL motif interacting with the catalytic dyad and promoting changes in its acid-base behavior. Finally, we also found a significant pKa shift of Glu280 related to the internalization of TM6-CT in the GS-apo form. Our study provides critical mechanistic insight into the GS mechanism and the basis for future research on the genesis of Aβ peptides and the development of Alzheimer's disease.
Collapse
Affiliation(s)
- Dulce C Guzmán-Ocampo
- Facultad de Química, Departamento de Fisicoquímica, Universidad Nacional Autónoma de México, Mexico City04510, Mexico
| | - Rodrigo Aguayo-Ortiz
- Facultad de Química, Departamento de Farmacia, Universidad Nacional Autónoma de México, Mexico City04510, Mexico
| | - José-Luis Velasco-Bolom
- Facultad de Química, Departamento de Fisicoquímica, Universidad Nacional Autónoma de México, Mexico City04510, Mexico
| | - Pancham Lal Gupta
- Department of Chemistry, University of Florida, Gainesville, Florida32611-7200, United States
| | - Adrian E Roitberg
- Department of Chemistry, University of Florida, Gainesville, Florida32611-7200, United States
| | - Laura Dominguez
- Facultad de Química, Departamento de Fisicoquímica, Universidad Nacional Autónoma de México, Mexico City04510, Mexico
| |
Collapse
|
2
|
Henderson JA, Liu R, Harris JA, Huang Y, de Oliveira VM, Shen J. A Guide to the Continuous Constant pH Molecular Dynamics Methods in Amber and CHARMM [Article v1.0]. LIVING JOURNAL OF COMPUTATIONAL MOLECULAR SCIENCE 2022; 4:1563. [PMID: 36776714 PMCID: PMC9910290 DOI: 10.33011/livecoms.4.1.1563] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Like temperature and pressure, solution pH is an important environmental variable in biomolecular simulations. Virtually all proteins depend on pH to maintain their structure and function. In conventional molecular dynamics (MD) simulations of proteins, pH is implicitly accounted for by assigning and fixing protonation states of titratable sidechains. This is a significant limitation, as the assigned protonation states may be wrong and they may change during dynamics. In this tutorial, we guide the reader in learning and using the various continuous constant pH MD methods in Amber and CHARMM packages, which have been applied to predict pK a values and elucidate proton-coupled conformational dynamics of a variety of proteins including enzymes and membrane transporters.
Collapse
Affiliation(s)
| | - Ruibin Liu
- University of Maryland School of Pharmacy, Baltimore, MD
| | | | - Yandong Huang
- University of Maryland School of Pharmacy, Baltimore, MD
| | | | - Jana Shen
- University of Maryland School of Pharmacy, Baltimore, MD
| |
Collapse
|
3
|
Henderson JA, Shen J. Exploring the pH- and Ligand-Dependent Flap Dynamics of Malarial Plasmepsin II. J Chem Inf Model 2021; 62:150-158. [PMID: 34964641 DOI: 10.1021/acs.jcim.1c01180] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Malaria remains a global health threat─over 400,000 deaths occurred in 2019. Plasmepsins are promising targets of antimalarial therapeutics; however, no inhibitors have reached the clinic. To fuel the progress, a detailed understanding of the pH- and ligand-dependent conformational dynamics of plasmepsins is needed. Here we present the continuous constant pH molecular dynamics study of the prototypical plasmepsin II and its complexed form with a substrate analogue. The simulations revealed that the catalytic dyads D34 and D214 are highly coupled in the apo protein and that the pepstatin binding enhances the difference in proton affinity, making D34 the general base and D214 the general acid. The simulations showed that the flap adopts an open state regardless of pH; however, upon pepstatin binding the flap can close or open depending on the protonation state of D214. These and other data are discussed and compared with the off-targets human cathepsin D and renin. This study lays the groundwork for a systematic investigation of pH- and ligand-modulated dynamics of the entire family of plasmepsins to help design more potent and selective inhibitors.
Collapse
Affiliation(s)
- Jack A Henderson
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| | - Jana Shen
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| |
Collapse
|
4
|
Cathepsin D-Managing the Delicate Balance. Pharmaceutics 2021; 13:pharmaceutics13060837. [PMID: 34198733 PMCID: PMC8229105 DOI: 10.3390/pharmaceutics13060837] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 12/11/2022] Open
Abstract
Lysosomal proteases play a crucial role in maintaining cell homeostasis. Human cathepsin D manages protein turnover degrading misfolded and aggregated proteins and favors apoptosis in the case of proteostasis disruption. However, when cathepsin D regulation is affected, it can contribute to numerous disorders. The down-regulation of human cathepsin D is associated with neurodegenerative disorders, such as neuronal ceroid lipofuscinosis. On the other hand, its excessive levels outside lysosomes and the cell membrane lead to tumor growth, migration, invasion and angiogenesis. Therefore, targeting cathepsin D could provide significant diagnostic benefits and new avenues of therapy. Herein, we provide a brief overview of cathepsin D structure, regulation, function, and its role in the progression of many diseases and the therapeutic potentialities of natural and synthetic inhibitors and activators of this protease.
Collapse
|
5
|
McKinzie DL, Winneroski LL, Green SJ, Hembre EJ, Erickson JA, Willis BA, Monk SA, Aluise CD, Baker TK, Lopez JE, Hendle J, Beck JP, Brier RA, Boggs LN, Borders AR, Cocke PJ, Garcia-Losada P, Lowe SL, Mathes BM, May PC, Porter WJ, Stout SL, Timm DE, Watson BM, Yang Z, Mergott DJ. Discovery and Early Clinical Development of LY3202626, a Low-Dose, CNS-Penetrant BACE Inhibitor. J Med Chem 2021; 64:8076-8100. [PMID: 34081466 DOI: 10.1021/acs.jmedchem.1c00489] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The beta-site APP cleaving enzyme 1, known as BACE1, has been a widely pursued Alzheimer's disease drug target owing to its critical role in the production of amyloid-beta. We have previously reported the clinical development of LY2811376 and LY2886721. LY2811376 advanced to Phase I before development was terminated due to nonclinical retinal toxicity. LY2886721 advanced to Phase II, but development was halted due to abnormally elevated liver enzymes. Herein, we report the discovery and clinical development of LY3202626, a highly potent, CNS-penetrant, and low-dose BACE inhibitor, which successfully addressed these key development challenges.
Collapse
Affiliation(s)
- David L McKinzie
- Lilly Research Laboratories, A Division of Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana 46285, United States
| | - Leonard L Winneroski
- Lilly Research Laboratories, A Division of Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana 46285, United States
| | - Steven J Green
- Lilly Research Laboratories, A Division of Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana 46285, United States
| | - Erik J Hembre
- Lilly Research Laboratories, A Division of Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana 46285, United States
| | - Jon A Erickson
- Lilly Research Laboratories, A Division of Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana 46285, United States
| | - Brian A Willis
- Lilly Research Laboratories, A Division of Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana 46285, United States
| | - Scott A Monk
- Lilly Research Laboratories, A Division of Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana 46285, United States
| | - Christopher D Aluise
- Lilly Research Laboratories, A Division of Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana 46285, United States
| | - Thomas K Baker
- Lilly Research Laboratories, A Division of Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana 46285, United States
| | - Jose E Lopez
- Lilly Research Laboratories, A Division of Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana 46285, United States
| | - Jörg Hendle
- Lilly Research Laboratories, A Division of Eli Lilly and Company, Lilly Biotechnology Center, San Diego, California 92121, United States
| | - James P Beck
- Lilly Research Laboratories, A Division of Eli Lilly and Company, Lilly Biotechnology Center, San Diego, California 92121, United States
| | - Richard A Brier
- Lilly Research Laboratories, A Division of Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana 46285, United States
| | | | - Anthony R Borders
- Lilly Research Laboratories, A Division of Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana 46285, United States
| | | | - Pablo Garcia-Losada
- Lilly Research Laboratories, A Division of Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana 46285, United States
| | - Stephen L Lowe
- Lilly Research Laboratories, A Division of Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana 46285, United States
| | - Brian M Mathes
- Lilly Research Laboratories, A Division of Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana 46285, United States
| | | | | | - Stephanie L Stout
- Lilly Research Laboratories, A Division of Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana 46285, United States
| | - David E Timm
- Lilly Research Laboratories, A Division of Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana 46285, United States
| | - Brian M Watson
- Lilly Research Laboratories, A Division of Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana 46285, United States
| | - Zhixiang Yang
- Lilly Research Laboratories, A Division of Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana 46285, United States
| | - Dustin J Mergott
- Lilly Research Laboratories, A Division of Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana 46285, United States
| |
Collapse
|
6
|
Hrabinova M, Pejchal J, Kucera T, Jun D, Schmidt M, Soukup O. Is It the Twilight of BACE1 Inhibitors? Curr Neuropharmacol 2021; 19:61-77. [PMID: 32359337 PMCID: PMC7903497 DOI: 10.2174/1570159x18666200503023323] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/23/2020] [Accepted: 04/30/2020] [Indexed: 12/13/2022] Open
Abstract
β-secretase (BACE1) has been regarded as a prime target for the development of amyloid beta (Aβ) lowering drugs in the therapy of Alzheimer´s disease (AD). Although the enzyme was discovered in 1991 and helped to formulate the Aβ hypothesis as one of the very important features of AD etiopathogenesis, progress in AD treatment utilizing BACE1 inhibitors has remained limited. Moreover, in the last years, major pharmaceutical companies have discontinued clinical trials of five BACE1 inhibitors that had been strongly perceived as prospective. In our review, the Aβ hypothesis, the enzyme, its functions, and selected substrates are described. BACE1 inhibitors are classified into four generations. Those that underwent clinical trials displayed adverse effects, including weight loss, skin rashes, worsening of neuropsychiatric symptoms, etc. Some inhibitors could not establish a statistically significant risk-benefit ratio, or even scored worse than placebo. We still believe that drugs targeting BACE1 may still hide some potential, but a different approach to BACE1 inhibition or a shift of focus to modulation of its trafficking and/or post-translational modification should now be followed.
Collapse
Affiliation(s)
| | - Jaroslav Pejchal
- Address correspondence to this author at the Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence in Brno, Hradec Kralove, Czech Republic;E-mail:
| | | | | | | | | |
Collapse
|
7
|
Ma S, Henderson JA, Shen J. Exploring the pH-Dependent Structure-Dynamics-Function Relationship of Human Renin. J Chem Inf Model 2020; 61:400-407. [PMID: 33356221 DOI: 10.1021/acs.jcim.0c01201] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Renin is a pepsin-like aspartyl protease and an important drug target for the treatment of hypertension; despite three decades' research, its pH-dependent structure-function relationship remains poorly understood. Here, we employed continuous constant pH molecular dynamics (CpHMD) simulations to decipher the acid/base roles of renin's catalytic dyad and the conformational dynamics of the flap, which is a common structural feature among aspartyl proteases. The calculated pKa's suggest that catalytic Asp38 and Asp226 serve as the general base and acid, respectively, in agreement with experiment and supporting the hypothesis that renin's neutral optimum pH is due to the substrate-induced pKa shifts of the aspartic dyad. The CpHMD data confirmed our previous hypothesis that hydrogen bond formation is the major determinant of the dyad pKa order. Additionally, our simulations showed that renin's flap remains open regardless of pH, although a Tyr-inhibited state is occasionally formed above pH 5. These findings are discussed in comparison to the related aspartyl proteases, including β-secretases 1 and 2, cathepsin D, and plasmepsin II. Our work represents a first step toward a systematic understanding of the pH-dependent structure-dynamics-function relationships of pepsin-like aspartyl proteases that play important roles in biology and human disease states.
Collapse
Affiliation(s)
- Shuhua Ma
- Department of Chemistry, Jess and Mildred Fisher College of Science and Mathematics, Towson University, Towson, Maryland 21252, United States
| | - Jack A Henderson
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| | - Jana Shen
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| |
Collapse
|
8
|
Hofer F, Kraml J, Kahler U, Kamenik AS, Liedl KR. Catalytic Site p Ka Values of Aspartic, Cysteine, and Serine Proteases: Constant pH MD Simulations. J Chem Inf Model 2020; 60:3030-3042. [PMID: 32348143 PMCID: PMC7312390 DOI: 10.1021/acs.jcim.0c00190] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
![]()
Enzymatic function and activity of
proteases is closely controlled
by the pH value. The protonation states of titratable residues in
the active site react to changes in the pH value, according to their
pKa, and thereby determine the functionality
of the enzyme. Knowledge of the titration behavior of these residues
is crucial for the development of drugs targeting the active site
residues. However, experimental pKa data
are scarce, since the systems’ size and complexity make determination
of these pKa values inherently difficult.
In this study, we use single pH constant pH MD simulations as a fast
and robust tool to estimate the active site pKa values of a set of aspartic, cysteine, and serine proteases.
We capture characteristic pKa shifts of
the active site residues, which dictate the experimentally determined
activity profiles of the respective protease family. We find clear
differences of active site pKa values
within the respective families, which closely match the experimentally
determined pH preferences of the respective proteases. These shifts
are caused by a distinct network of electrostatic interactions characteristic
for each protease family. While we find convincing agreement with
experimental data for serine and aspartic proteases, we observe clear
deficiencies in the description of the titration behavior of cysteines
within the constant pH MD framework and highlight opportunities for
improvement. Consequently, with this work, we provide a concise set
of active site pKa values of aspartic
and serine proteases, which could serve as reference for future theoretical
as well as experimental studies.
Collapse
Affiliation(s)
- Florian Hofer
- Institute for General, Inorganic and Theoretical Chemistry, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria
| | - Johannes Kraml
- Institute for General, Inorganic and Theoretical Chemistry, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria
| | - Ursula Kahler
- Institute for General, Inorganic and Theoretical Chemistry, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria
| | - Anna S Kamenik
- Institute for General, Inorganic and Theoretical Chemistry, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria
| | - Klaus R Liedl
- Institute for General, Inorganic and Theoretical Chemistry, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria
| |
Collapse
|
9
|
Yang M, Zhou KY, Li FF, Yang HY, Yin M, Zhang LH, Wang FS. Effects of Gentiana delavayi Flower Extract on APP Processing in APP/PS1 CHO Cells. Biol Pharm Bull 2020; 43:767-773. [PMID: 32378555 DOI: 10.1248/bpb.b19-00720] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Gentiana delavayi Franch. (Gentianaceae) as an ethnomedicinal plant contains a variety of effective active ingredients and exhibits diverse pharmacological actions, such as hepatoprotective, anti-inflammatory and central nervous system effects. In this study we investigated the influence of G. delavayi flower extract on amyloid precursor protein (APP) processing at molecular and cellular levels. APP/PS1 Chinese hamster ovary (CHO) cells were treated with chloroform extract of G. delavayi flower in different concentrations for 24 h. Concentrations of amyloid β (Aβ) 40 and Aβ42 in the cell supernatant and activity of β-site amyloid precursor protein cleaving enzyme 1 (BACE1), BACE2, and cathepsin D were determined. The expression of APP and neprilysin (NEP) within the cell were further determined. Compared with the control group, the levels of Aβ40 and Aβ42 declined notably and the activity of BACE1 was inhibited significantly in the APP/PS1 CHO cells after treatment with the chloroform extract of G. delavayi flower. Although the activities of BACE2 and cathepsin D were not changed, the expression of Aβ degrading enzyme NEP increased remarkably. Our experiments have clearly showed that the chloroform extract of G. delavayi flower inhibits the generation of β-amyloid by specifically inhibiting β-secretase and increases the expression of NEP which fastens the degradation of Aβ, exhibiting the effect of decreasing Aβ accumulation in APP/PS1 CHO cells. These results suggest that the active components from the chloroform extract of G. delavayi flower have a further prospect to be developed as potential anti-Aβ drug.
Collapse
Affiliation(s)
- Min Yang
- College of Pharmacy and Chemistry, Dali University
| | - Kai-Yi Zhou
- School of Pharmacy, Shanghai Jiao Tong University
| | - Feng-Feng Li
- College of Pharmacy and Chemistry, Dali University
| | - Hui-Yun Yang
- College of Pharmacy and Chemistry, Dali University
| | - Ming Yin
- School of Pharmacy, Shanghai Jiao Tong University
| | | | | |
Collapse
|
10
|
Harris RC, Shen J. GPU-Accelerated Implementation of Continuous Constant pH Molecular Dynamics in Amber: p Ka Predictions with Single-pH Simulations. J Chem Inf Model 2019; 59:4821-4832. [PMID: 31661616 DOI: 10.1021/acs.jcim.9b00754] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We present a GPU implementation of the continuous constant pH molecular dynamics (CpHMD) based on the most recent generalized Born implicit-solvent model in the pmemd engine of the Amber molecular dynamics package. To test the accuracy of the tool for rapid pKa predictions, a series of 2 ns single-pH simulations were performed for over 120 titratable residues in 10 benchmark proteins that were previously used to test the various continuous CpHMD methods. The calculated pKa's showed a root-mean-square deviation of 0.80 and correlation coefficient of 0.83 with respect to experiment. Also, 90% of the pKa's were converged with estimated errors below 0.1 pH units. Surprisingly, this level of accuracy is similar to our previous replica-exchange simulations with 2 ns per replica and an exchange attempt frequency of 2 ps-1 (Huang, Harris, and Shen J. Chem. Inf. Model. 2018 , 58 , 1372 - 1383 ). Interestingly, for the linked titration sites in two enzymes, although residue-specific protonation state sampling in the single-pH simulations was not converged within 2 ns, the protonation fraction of the linked residues appeared to be largely converged, and the experimental macroscopic pKa values were reproduced to within 1 pH unit. Comparison with replica-exchange simulations with different exchange attempt frequencies showed that the splitting between the two macroscopic pKa's is underestimated with frequent exchange attempts such as 2 ps-1, while single-pH simulations overestimate the splitting. The same trend is seen for the single-pH vs replica-exchange simulations of a hydrogen-bonded aspartyl dyad in a much larger protein. A 2 ns single-pH simulation of a 400-residue protein takes about 1 h on a single NVIDIA GeForce RTX 2080 graphics card, which is over 1000 times faster than a CpHMD run on a single CPU core of a high-performance computing cluster node. Thus, we envision that GPU-accelerated continuous CpHMD may be used in routine pKa predictions for a variety of applications, from assisting MD simulations with protonation state assignment to offering pH-dependent corrections of binding free energies and identifying reactive hot spots for covalent drug design.
Collapse
Affiliation(s)
- Robert C Harris
- Department of Pharmaceutical Sciences , University of Maryland School of Pharmacy , Baltimore , Maryland 21201 , United States
| | - Jana Shen
- Department of Pharmaceutical Sciences , University of Maryland School of Pharmacy , Baltimore , Maryland 21201 , United States
| |
Collapse
|
11
|
Tsai CC, Yue Z, Shen J. How Electrostatic Coupling Enables Conformational Plasticity in a Tyrosine Kinase. J Am Chem Soc 2019; 141:15092-15101. [PMID: 31476863 DOI: 10.1021/jacs.9b06064] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Protein kinases are important cellular signaling molecules involved in cancer and a multitude of other diseases. It is well-known that inactive kinases display a remarkable conformational plasticity; however, the molecular mechanisms remain poorly understood. Conformational heterogeneity presents an opportunity but also a challenge in kinase drug discovery. The ability to predictively model various conformational states could accelerate selective inhibitor design. Here we performed a proton-coupled molecular dynamics study to explore the conformational landscape of a c-Src kinase. Starting from a completely inactive structure, the simulations captured all major types of conformational states without the use of a target structure, mutation, or bias. The simulations allowed us to test the experimental hypotheses regarding the mechanism of DFG flip, its coupling to the αC-helix movement, and the formation of regulatory spine. Perhaps the most significant finding is how key titratable residues, such as DFG-Asp, αC-Glu, and HRD-Asp, change protonation states dependent on the DFG, αC, and activation loop conformations. Our data offer direct evidence to support a long-standing hypothesis that protonation of Asp favors the DFG-out state and explain why DFG flip is also possible in simulations with deprotonated Asp. The simulations also revealed intermediate states, among which a unique DFG-out/α-C state formed as DFG-Asp is moved into a back pocket forming a salt bridge with catalytic Lys, which can be tested in selective inhibitor design. Our finding of how proton coupling enables the remarkable conformational plasticity may shift the paradigm of computational studies of kinases which assume fixed protonation states. Understanding proton-coupled conformational dynamics may hold a key to further innovation in kinase drug discovery.
Collapse
Affiliation(s)
- Cheng-Chieh Tsai
- Department of Pharmaceutical Sciences , University of Maryland School of Pharmacy , Baltimore , Maryland 21201 , United States
| | - Zhi Yue
- Department of Pharmaceutical Sciences , University of Maryland School of Pharmacy , Baltimore , Maryland 21201 , United States
| | - Jana Shen
- Department of Pharmaceutical Sciences , University of Maryland School of Pharmacy , Baltimore , Maryland 21201 , United States
| |
Collapse
|
12
|
New evolutions in the BACE1 inhibitor field from 2014 to 2018. Bioorg Med Chem Lett 2019; 29:761-777. [DOI: 10.1016/j.bmcl.2018.12.049] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 12/18/2018] [Accepted: 12/21/2018] [Indexed: 11/24/2022]
|
13
|
Karch S, Broichhagen J, Schneider J, Böning D, Hartmann S, Schmid B, Tripal P, Palmisano R, Alzheimer C, Johnsson K, Huth T. A New Fluorogenic Small-Molecule Labeling Tool for Surface Diffusion Analysis and Advanced Fluorescence Imaging of β-Site Amyloid Precursor Protein-Cleaving Enzyme 1 Based on Silicone Rhodamine: SiR-BACE1. J Med Chem 2018; 61:6121-6139. [PMID: 29939737 DOI: 10.1021/acs.jmedchem.8b00387] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
β-site APP-cleaving enzyme 1 (BACE1) is a major player in the pathogenesis of Alzheimer's disease. Structural and functional fluorescence microscopy offers a powerful approach to learn about the physiology and pathophysiology of this protease. Up to now, however, common labeling techniques require genetic manipulation, use large antibodies, or are not compatible with live cell imaging. Fluorescent small molecules that specifically bind to the protein of interest can overcome these limitations. Herein, we introduce SiR-BACE1, a conjugate of the BACE1 inhibitor S-39 and SiR647, as a novel fluorogenic, tag-free, and antibody-free label for BACE1. We present its chemical development, characterize its photophysical and pharmacologic properties, and evaluate its behavior in solution, in overexpression systems, and in native brain tissue. We demonstrate its applicability in confocal, stimulated emission depletion and dynamic single-molecule microscopy. The first functional studies with SiR-BACE1 on the surface mobility of BACE1 revealed a markedly confined diffusion pattern.
Collapse
Affiliation(s)
- Sandra Karch
- Institute of Physiology and Pathophysiology , Friedrich-Alexander-Universität Erlangen-Nürnberg , Universitaetsstrasse 17 , 91054 Erlangen , Germany
| | - Johannes Broichhagen
- Department of Chemical Biology , Max Planck Institute for Medical Research , Jahnstrasse 29 , 69120 Heidelberg , Germany.,Laboratory of Protein Engineering, Institut des Sciences et Ingénierie Chimiques, Sciences de Base , École Polytechnique Fédérale Lausanne , 1015 Lausanne , Switzerland
| | - Julia Schneider
- Institute of Physiology and Pathophysiology , Friedrich-Alexander-Universität Erlangen-Nürnberg , Universitaetsstrasse 17 , 91054 Erlangen , Germany
| | - Daniel Böning
- Max Planck Institute for the Science of Light , Staudtstrasse 2 , 91058 Erlangen , Germany
| | - Stephanie Hartmann
- Institute of Physiology and Pathophysiology , Friedrich-Alexander-Universität Erlangen-Nürnberg , Universitaetsstrasse 17 , 91054 Erlangen , Germany
| | - Benjamin Schmid
- Optical Imaging Centre , Friedrich-Alexander-Universität Erlangen-Nürnberg , Hartmannstrasse 14 , 91052 Erlangen , Germany
| | - Philipp Tripal
- Optical Imaging Centre , Friedrich-Alexander-Universität Erlangen-Nürnberg , Hartmannstrasse 14 , 91052 Erlangen , Germany
| | - Ralf Palmisano
- Optical Imaging Centre , Friedrich-Alexander-Universität Erlangen-Nürnberg , Hartmannstrasse 14 , 91052 Erlangen , Germany
| | - Christian Alzheimer
- Institute of Physiology and Pathophysiology , Friedrich-Alexander-Universität Erlangen-Nürnberg , Universitaetsstrasse 17 , 91054 Erlangen , Germany
| | - Kai Johnsson
- Department of Chemical Biology , Max Planck Institute for Medical Research , Jahnstrasse 29 , 69120 Heidelberg , Germany.,Laboratory of Protein Engineering, Institut des Sciences et Ingénierie Chimiques, Sciences de Base , École Polytechnique Fédérale Lausanne , 1015 Lausanne , Switzerland
| | - Tobias Huth
- Institute of Physiology and Pathophysiology , Friedrich-Alexander-Universität Erlangen-Nürnberg , Universitaetsstrasse 17 , 91054 Erlangen , Germany
| |
Collapse
|
14
|
Huang Y, Yue Z, Tsai CC, Henderson JA, Shen J. Predicting Catalytic Proton Donors and Nucleophiles in Enzymes: How Adding Dynamics Helps Elucidate the Structure-Function Relationships. J Phys Chem Lett 2018; 9:1179-1184. [PMID: 29461836 PMCID: PMC6555141 DOI: 10.1021/acs.jpclett.8b00238] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Despite the relevance of understanding structure-function relationships, robust prediction of proton donors and nucleophiles in enzyme active sites remains challenging. Here we tested three types of state-of-the-art computational methods to calculate the p Ka's of the buried and hydrogen bonded catalytic dyads in five enzymes. We asked the question what determines the p Ka order, i.e., what makes a residue proton donor vs a nucleophile. The continuous constant pH molecular dynamics simulations captured the experimental p Ka orders and revealed that the negative nucleophile is stabilized by increased hydrogen bonding and solvent exposure as compared to the proton donor. Surprisingly, this simple trend is not apparent from crystal structures and the static structure-based calculations. While the generality of the findings awaits further testing via a larger set of data, they underscore the role of dynamics in bridging enzyme structures and functions.
Collapse
Affiliation(s)
- Yandong Huang
- Department of Pharmaceutical Sciences , University of Maryland School of Pharmacy , Baltimore , Maryland 21201 , United States
| | - Zhi Yue
- Department of Pharmaceutical Sciences , University of Maryland School of Pharmacy , Baltimore , Maryland 21201 , United States
| | - Cheng-Chieh Tsai
- Department of Pharmaceutical Sciences , University of Maryland School of Pharmacy , Baltimore , Maryland 21201 , United States
| | - Jack A Henderson
- Department of Pharmaceutical Sciences , University of Maryland School of Pharmacy , Baltimore , Maryland 21201 , United States
| | - Jana Shen
- Department of Pharmaceutical Sciences , University of Maryland School of Pharmacy , Baltimore , Maryland 21201 , United States
| |
Collapse
|
15
|
Islam MA, Pillay TS. β-secretase inhibitors for Alzheimer’s disease: identification using pharmacoinformatics. J Biomol Struct Dyn 2018; 37:503-522. [DOI: 10.1080/07391102.2018.1430619] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Md Ataul Islam
- Faculty of Health Sciences, Department of Chemical Pathology, University of Pretoria and National Health Laboratory Service Tshwane Academic Division, Pretoria, South Africa
- School of Health Sciences, University of Kwazulu-Natal, Westville Campus, Durban, South Africa
| | - Tahir S. Pillay
- Faculty of Health Sciences, Department of Chemical Pathology, University of Pretoria and National Health Laboratory Service Tshwane Academic Division, Pretoria, South Africa
- Division of Chemical Pathology, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
16
|
Batebi H, Dragelj J, Imhof P. Role of AP-endonuclease (Ape1) active site residues in stabilization of the reactant enzyme-DNA complex. Proteins 2018; 86:439-453. [PMID: 29344998 DOI: 10.1002/prot.25460] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 01/08/2018] [Accepted: 01/11/2018] [Indexed: 11/11/2022]
Abstract
Apurinic/apyrimidinic endonuclease 1 (Ape1) is an important metal-dependent enzyme in the base excision repair mechanism, responsible for the backbone cleavage of abasic DNA through a phosphate hydrolysis reaction. Molecular dynamics simulations of Ape1 complexed to its substrate DNA performed for models containing 1 or 2 Mg2+ -ions as cofactor located at different positions show a complex with 1 metal ion bound on the leaving group site of the scissile phosphate to be the most likely reaction-competent conformation. Active-site residue His309 is found to be protonated based on pKa calculations and the higher conformational stability of the Ape1-DNA substrate complex compared to scenarios with neutral His309. Simulations of the D210N mutant further support the prevalence of protonated His309 and strongly suggest Asp210 as the general base for proton acceptance by a nucleophilic water molecule.
Collapse
Affiliation(s)
- Hossein Batebi
- Department of Physics, Institute of Theoretical Physics, Freie Universität Berlin, Arnimallee 14, Berlin, 14195, Germany
| | - Jovan Dragelj
- Department of Biology, Chemistry, and Pharmacy, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Fabeckstrasse 36A, Berlin, 14195, Germany
| | - Petra Imhof
- Department of Physics, Institute of Theoretical Physics, Freie Universität Berlin, Arnimallee 14, Berlin, 14195, Germany
| |
Collapse
|
17
|
Harris RC, Tsai CC, Ellis CR, Shen J. Proton-Coupled Conformational Allostery Modulates the Inhibitor Selectivity for β-Secretase. J Phys Chem Lett 2017; 8:4832-4837. [PMID: 28927275 PMCID: PMC5713904 DOI: 10.1021/acs.jpclett.7b02309] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Many important pharmaceutical targets, such as aspartyl proteases and kinases, exhibit pH-dependent dynamics, functions and inhibition. Accurate prediction of their binding free energies is challenging because current computational techniques neglect the effects of pH. Here we combine free energy perturbation calculations with continuous constant pH molecular dynamics to explore the selectivity of a small-molecule inhibitor for β-secretase (BACE1), an important drug target for Alzheimer's disease. The calculations predicted identical affinity for BACE1 and the closely related cathepsin D at high pH; however, at pH 4.6 the inhibitor is selective for BACE1 by 1.3 kcal/mol, in excellent agreement with experiment. Surprisingly, the pH-dependent selectivity can be attributed to the protonation of His45, which allosterically modulates a loop-inhibitor interaction. Allosteric regulation induced by proton binding is likely common in biology; considering such allosteric sites could lead to exciting new opportunities in drug design.
Collapse
Affiliation(s)
- Robert C Harris
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy , Baltimore, Maryland 21201, United States
| | - Cheng-Chieh Tsai
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy , Baltimore, Maryland 21201, United States
| | - Christopher R Ellis
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy , Baltimore, Maryland 21201, United States
| | - Jana Shen
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy , Baltimore, Maryland 21201, United States
| |
Collapse
|
18
|
Gueto-Tettay C, Martinez-Consuegra A, Zuchniarz J, Gueto-Tettay LR, Drosos-Ramírez JC. A PM7 dynamic residue-ligand interactions energy landscape of the BACE1 inhibitory pathway by hydroxyethylamine compounds. Part I: The flap closure process. J Mol Graph Model 2017; 76:274-288. [PMID: 28746905 DOI: 10.1016/j.jmgm.2017.07.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 07/10/2017] [Accepted: 07/11/2017] [Indexed: 01/08/2023]
Abstract
BACE1 is an enzyme of scientific interest because it participates in the progression of Alzheimer's disease. Hydroxyethylamines (HEAs) are a family of compounds which exhibit inhibitory activity toward BACE1 at a nanomolar level, favorable pharmacokinetic properties and oral bioavailability. The first step in the inhibition of BACE1 by HEAs consists of their entrance into the protease active site and the resultant conformational change in the protein, from Apo to closed form. These two conformations differ in the position of an antiparallel loop (called the flap) which covers the entrance to the catalytic site. For BACE1, closure of this flap is vital to its catalytic activity and to inhibition of the enzyme due to the new interactions thereby formed with the ligand. In the present study a dynamic energy landscape of residue-ligand interaction energies (ReLIE) measured for 112 amino acids in the BACE1 active site and its immediate vicinity during the closure of the flap induced by 8 HEAs of different inhibitory power is presented. A total of 6.272 million ReLIE calculations, based on the PM7 semiempirical method, provided a deep and quantitative view of the first step in the inhibition of the aspartyl protease. The information suggests that residues Asp93, Asp289, Thr292, Thr293, Asn294 and Arg296 are anchor points for the ligand, accounting for approximately 45% of the total protein-ligand interaction. Additionally, flap closure improved the BACE1-HEA interaction by around 25%. Furthermore, the inhibitory activity of HEAs could be related to the capacity of these ligands to form said anchor point interactions and maintain them over time: the lack of some of these anchor interactions delayed flap closure or impeded it completely, or even caused the flap to reopen. The methodology employed here could be used as a tool to evaluate future structural modifications which lead to improvements in the favorability and stability of BACE1-HEA ReLIEs, aiding in the design of better inhibitors.
Collapse
Affiliation(s)
- Carlos Gueto-Tettay
- Grupo de Química Bioorgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Cartagena, Cartagena, Colombia.
| | - Alejandro Martinez-Consuegra
- Grupo de Química Bioorgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Cartagena, Cartagena, Colombia
| | - Joshua Zuchniarz
- Grupo de Química Bioorgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Cartagena, Cartagena, Colombia
| | - Luis Roberto Gueto-Tettay
- Grupo de Química Bioorgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Cartagena, Cartagena, Colombia
| | - Juan Carlos Drosos-Ramírez
- Grupo de Química Bioorgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Cartagena, Cartagena, Colombia.
| |
Collapse
|
19
|
Hirst J, Im W, Shea JE. Simulating Biomolecules: Festschrift to commemorate the 60th birthday of Charles L. Brooks III. J Comput Chem 2017; 38:1111-1113. [DOI: 10.1002/jcc.24790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Jonathan Hirst
- School of Chemistry, University of Nottingham; Nottingham NG7 2RD United Kingdom
| | - Wonpil Im
- Department of Biological Sciences and Bioengineering Program; Lehigh University; Pennsylvania
| | - Joan-Emma Shea
- Departments of Chemistry and Biochemistry, and Physics; University of California; Santa Barbara California
| |
Collapse
|