1
|
Bowling PE, Dasgupta S, Herbert JM. Eliminating Imaginary Vibrational Frequencies in Quantum-Chemical Cluster Models of Enzymatic Active Sites. J Chem Inf Model 2024; 64:3912-3922. [PMID: 38648614 DOI: 10.1021/acs.jcim.4c00221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
In constructing finite models of enzyme active sites for quantum-chemical calculations, atoms at the periphery of the model must be constrained to prevent unphysical rearrangements during geometry relaxation. A simple fixed-atom or "coordinate-lock" approach is commonly employed but leads to undesirable artifacts in the form of small imaginary frequencies. These preclude evaluation of finite-temperature free-energy corrections, limiting thermochemical calculations to enthalpies only. Full-dimensional vibrational frequency calculations are possible by replacing the fixed-atom constraints with harmonic confining potentials. Here, we compare that approach to an alternative strategy in which fixed-atom contributions to the Hessian are simply omitted. While the latter strategy does eliminate imaginary frequencies, it tends to underestimate both the zero-point energy and the vibrational entropy while introducing artificial rigidity. Harmonic confining potentials eliminate imaginary frequencies and provide a flexible means to construct active-site models that can be used in unconstrained geometry relaxations, affording better convergence of reaction energies and barrier heights with respect to the model size, as compared to models with fixed-atom constraints.
Collapse
Affiliation(s)
- Paige E Bowling
- Biophysics Graduate Program, The Ohio State University, Columbus, Ohio 43210, United States
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Saswata Dasgupta
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
- Department of Chemistry and Biochemistry, University of California-San Diego, La Jolla, California 92093, United States
| | - John M Herbert
- Biophysics Graduate Program, The Ohio State University, Columbus, Ohio 43210, United States
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
2
|
Mendolicchio M, Barone V. Unbiased Comparison between Theoretical and Experimental Molecular Structures and Properties: Toward an Accurate Reduced-Cost Evaluation of Vibrational Contributions. J Chem Theory Comput 2024; 20:2842-2857. [PMID: 38556752 DOI: 10.1021/acs.jctc.4c00023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
The tremendous development of hardware and software is constantly increasing the role of quantum chemical (QC) computations in the assignment and interpretation of experimental results. However, an unbiased comparison between theory and experiment requires the proper account of vibrational averaging effects. In particular, high-resolution spectra in the gas phase are now available for molecules containing up to about 50 atoms, which are too large for a brute-force approach with the available QC methods of sufficient accuracy. In the present paper, we introduce hybrid approaches, which allow the accurate evaluation of vibrational averaging effects for molecules of this size beyond the harmonic approximation, with special attention being devoted to rotational constants. After the validation of new tools for relatively small molecules, the β-estradiol hormone and a prototypical molecular motor have been considered to witness the feasibility of accurate computations for large molecules.
Collapse
|
3
|
Broderick DR, Herbert JM. Scalable generalized screening for high-order terms in the many-body expansion: Algorithm, open-source implementation, and demonstration. J Chem Phys 2023; 159:174801. [PMID: 37921253 DOI: 10.1063/5.0174293] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/16/2023] [Indexed: 11/04/2023] Open
Abstract
The many-body expansion lies at the heart of numerous fragment-based methods that are intended to sidestep the nonlinear scaling of ab initio quantum chemistry, making electronic structure calculations feasible in large systems. In principle, inclusion of higher-order n-body terms ought to improve the accuracy in a controllable way, but unfavorable combinatorics often defeats this in practice and applications with n ≥ 4 are rare. Here, we outline an algorithm to overcome this combinatorial bottleneck, based on a bottom-up approach to energy-based screening. This is implemented within a new open-source software application ("Fragme∩t"), which is integrated with a lightweight semi-empirical method that is used to cull subsystems, attenuating the combinatorial growth of higher-order terms in the graph that is used to manage the calculations. This facilitates applications of unprecedented size, and we report four-body calculations in (H2O)64 clusters that afford relative energies within 0.1 kcal/mol/monomer of the supersystem result using less than 10% of the unique subsystems. We also report n-body calculations in (H2O)20 clusters up to n = 8, at which point the expansion terminates naturally due to screening. These are the largest n-body calculations reported to date using ab initio electronic structure theory, and they confirm that high-order n-body terms are mostly artifacts of basis-set superposition error.
Collapse
Affiliation(s)
- Dustin R Broderick
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | - John M Herbert
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
4
|
Liang J, Feng X, Liu X, Head-Gordon M. Analytical harmonic vibrational frequencies with VV10-containing density functionals: Theory, efficient implementation, and benchmark assessments. J Chem Phys 2023; 158:204109. [PMID: 37218699 PMCID: PMC10208678 DOI: 10.1063/5.0152838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 04/27/2023] [Indexed: 05/24/2023] Open
Abstract
VV10 is a powerful nonlocal density functional for long-range correlation that is used to include dispersion effects in many modern density functionals, such as the meta-generalized gradient approximation (mGGA), B97M-V, the hybrid GGA, ωB97X-V, and the hybrid mGGA, ωB97M-V. While energies and analytical gradients for VV10 are already widely available, this study reports the first derivation and efficient implementation of the analytical second derivatives of the VV10 energy. The additional compute cost of the VV10 contributions to analytical frequencies is shown to be small in all but the smallest basis sets for recommended grid sizes. This study also reports the assessment of VV10-containing functionals for predicting harmonic frequencies using the analytical second derivative code. The contribution of VV10 to simulating harmonic frequencies is shown to be small for small molecules but important for systems where weak interactions are important, such as water clusters. In the latter cases, B97M-V, ωB97M-V, and ωB97X-V perform very well. The convergence of frequencies with respect to the grid size and atomic orbital basis set size is studied, and recommendations are reported. Finally, scaling factors to allow comparison of scaled harmonic frequencies with experimental fundamental frequencies and to predict zero-point vibrational energy are presented for some recently developed functionals (including r2SCAN, B97M-V, ωB97X-V, M06-SX, and ωB97M-V).
Collapse
Affiliation(s)
- Jiashu Liang
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California at Berkeley, Berkeley, California 94720, USA
| | | | - Xiao Liu
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California at Berkeley, Berkeley, California 94720, USA
| | | |
Collapse
|
5
|
Loukhovitski BI, Pelevkin AV, Sharipov AS. Toward size-dependent thermodynamics of nanoparticles from quantum chemical calculations of small atomic clusters: a case study of (B 2O 3) n. Phys Chem Chem Phys 2022; 24:13130-13148. [PMID: 35587125 DOI: 10.1039/d2cp01672a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present a method for obtaining canonical partition functions and, accordingly, temperature-dependent thermodynamics of arbitrary-sized (nano) particles from electronic structure calculations of the corresponding small size atomic clusters. The guiding idea here is to extrapolate the basic properties underlying the thermochemistry of clusters (electronic energies, rotational constants, and vibrational frequencies) rather than the thermodynamic functions themselves. The thus obtained scaling dependences for these basic properties expressed in a simple analytical form provide an efficient tool for fast evaluation of the size-selected thermochemical data for particles of any nuclearity. To exemplify the performance of the methodology, neutral stoichiometric boron oxide clusters are considered. To this end, the geometry and various physical properties of the energetically lowest-lying (B2O3)n (n = 1,…,8) structures are found using density functional theory and the authors' multistage hierarchical procedure customized for global optimization of quite large cluster structures. With these data and based on the physically consistent scaling regularities for the principal cluster properties, the size-selected thermodynamic functions of boron oxide particles in the gas phase, such as enthalpy, entropy, and specific heat capacity, are derived. The variation of these characteristics with increasing cluster size is discussed in detail as well. To facilitate handling of the temperature and size dependences we have found here in further chemical kinetic and equilibrium modeling, the tabulated thermodynamic functions of interest are fitted for n = 1,…,1000 to the standard seven-parameter Chemkin polynomials.
Collapse
Affiliation(s)
- Boris I Loukhovitski
- Central Institute of Aviation Motors, Aviamotornaya 2, Moscow 111116, Russia. .,Joint Institute for High Temperatures of the Russian Academy of Sciences, Izhorskaya 13 Bldg. 2, Moscow 125412, Russia
| | - Alexey V Pelevkin
- Central Institute of Aviation Motors, Aviamotornaya 2, Moscow 111116, Russia. .,Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilova 38, Moscow 119991, Russia
| | - Alexander S Sharipov
- Central Institute of Aviation Motors, Aviamotornaya 2, Moscow 111116, Russia. .,Joint Institute for High Temperatures of the Russian Academy of Sciences, Izhorskaya 13 Bldg. 2, Moscow 125412, Russia
| |
Collapse
|
6
|
Ermiş B, Ünal A, Soydaş E, Bozkaya U. Anharmonic force field from coupled-cluster methods and accurate computation of infrared spectra. ADVANCES IN QUANTUM CHEMISTRY 2021. [DOI: 10.1016/bs.aiq.2021.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
7
|
Abstract
Since the introduction of the fragment molecular orbital method 20 years ago, fragment-based approaches have occupied a small but growing niche in quantum chemistry. These methods decompose a large molecular system into subsystems small enough to be amenable to electronic structure calculations, following which the subsystem information is reassembled in order to approximate an otherwise intractable supersystem calculation. Fragmentation sidesteps the steep rise (with respect to system size) in the cost of ab initio calculations, replacing it with a distributed cost across numerous computer processors. Such methods are attractive, in part, because they are easily parallelizable and therefore readily amenable to exascale computing. As such, there has been hope that distributed computing might offer the proverbial "free lunch" in quantum chemistry, with the entrée being high-level calculations on very large systems. While fragment-based quantum chemistry can count many success stories, there also exists a seedy underbelly of rarely acknowledged problems. As these methods begin to mature, it is time to have a serious conversation about what they can and cannot be expected to accomplish in the near future. Both successes and challenges are highlighted in this Perspective.
Collapse
Affiliation(s)
- John M Herbert
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
8
|
Liu J, Rana B, Liu KY, Herbert JM. Variational Formulation of the Generalized Many-Body Expansion with Self-Consistent Charge Embedding: Simple and Correct Analytic Energy Gradient for Fragment-Based ab Initio Molecular Dynamics. J Phys Chem Lett 2019; 10:3877-3886. [PMID: 31251619 DOI: 10.1021/acs.jpclett.9b01214] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The many-body expansion (MBE) and its extension to overlapping fragments, the generalized (G)MBE, constitute the theoretical basis for most fragment-based approaches for large-scale quantum chemistry. We reformulate the GMBE for use with embedding charges determined self-consistently from the fragment wave functions, in a manner that preserves the variational nature of the underlying self-consistent field method. As a result, the analytic gradient retains the simple "sum of fragment gradients" form that is often assumed in practice, sometimes incorrectly. This obviates (without approximation) the need to solve coupled-perturbed equations, and we demonstrate stable, fragment-based ab initio molecular dynamics simulations using this technique. Energy conservation fails when charge-response contributions to the Fock matrix are neglected, even while geometry optimizations and vibrational frequency calculations may yet be accurate. Stable simulations can be recovered by means of straightforward modifications introduced here, providing a general paradigm for fragment-based ab initio molecular dynamics.
Collapse
Affiliation(s)
- Jie Liu
- Department of Chemistry and Biochemistry , The Ohio State University , Columbus , Ohio 43210 , United States
| | - Bhaskar Rana
- Department of Chemistry and Biochemistry , The Ohio State University , Columbus , Ohio 43210 , United States
| | - Kuan-Yu Liu
- Department of Chemistry and Biochemistry , The Ohio State University , Columbus , Ohio 43210 , United States
| | - John M Herbert
- Department of Chemistry and Biochemistry , The Ohio State University , Columbus , Ohio 43210 , United States
| |
Collapse
|
9
|
Matz O, Calatayud M. Breaking H 2 with CeO 2: Effect of Surface Termination. ACS OMEGA 2018; 3:16063-16073. [PMID: 31458244 PMCID: PMC6643698 DOI: 10.1021/acsomega.8b02410] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 11/02/2018] [Indexed: 05/31/2023]
Abstract
The ability of ceria to break H2 in the absence of noble metals has prompted a number of studies because of its potential applications in many technological fields. Most of the theoretical works reported in the literature are focused on the most stable (111) termination. However, recently, the possibility of stabilizing ceria particles with selected terminations has opened new avenues to explore. In the present paper, we investigate the role of termination in H2 dissociation on stoichiometric ceria. We model (111)-, (110)-, and (100)-terminated slabs together with the stepped (221) and (331) surfaces. Our results support a dissociation mechanism proceeding via the formation of a hydride/hydroxyl CeH/OH intermediate. Both the stability of such an intermediate and the activation energy depend critically on the termination, the (100)-terminated surfaces being the most reactive: the activation energy is 0.16 eV, and the CeH/OH intermediate is stable by -0.64 eV for the (100) slab, whereas the (111) slab presents 0.75 and 0.74 eV, respectively. We provide structural, energetic, electronic, and spectroscopic data, as well as chemical descriptors correlating structure, energy, and reactivity, to guide in the theoretical and experimental characterization of the Ce-H surface intermediate.
Collapse
Affiliation(s)
| | - Monica Calatayud
- E-mail: . Phone: +33 1 44 27 25 05. Fax: +33 1 44 27
41 17 (M.C.)
| |
Collapse
|
10
|
Delgado-Venegas RI, Calaminici P, Köster AM. Mixed second and third energy derivatives from auxiliary density perturbation theory. Mol Phys 2018. [DOI: 10.1080/00268976.2018.1549339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
| | - Patrizia Calaminici
- Departamento de Química, CINVESTAV. Avenida Instituto Politécnico Nacional 2508, México D.F., México
| | - Andreas M. Köster
- Departamento de Química, CINVESTAV. Avenida Instituto Politécnico Nacional 2508, México D.F., México
| |
Collapse
|
11
|
Vila FD, Hayashi ST, Rehr JJ. Efficient Calculation of the Negative Thermal Expansion in ZrW 2O 8. Front Chem 2018; 6:296. [PMID: 30105223 PMCID: PMC6077204 DOI: 10.3389/fchem.2018.00296] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 06/26/2018] [Indexed: 11/15/2022] Open
Abstract
We present a study of the origin of the negative thermal expansion (NTE) on ZrW2O8 by combining an efficient approach for computing the dynamical matrix with the Lanczos algorithm for generating the phonon density of states in the quasi-harmonic approximation. The simulations show that the NTE arises primarily from the motion of the O-sublattice, and in particular, from the transverse motion of the O atoms in the W–O and W–O–Zr bonds. In the low frequency range these combine to keep the WO4 tetrahedra rigid and induce internal distortions in the ZrO6 octahedra. The force constants associated with these distortions become stronger with expansion, resulting in negative Grüneisen parameters and NTE from the low frequency modes that dominate the positive contributions from the high frequency modes. This leads us to propose an anharmonic, two-frequency Einstein model that quantitatively captures the NTE behavior.
Collapse
Affiliation(s)
- Fernando D Vila
- Department of Physics, University of Washington, Seattle, WA, United States
| | - Scott T Hayashi
- Department of Physics, University of Washington, Seattle, WA, United States
| | - John J Rehr
- Department of Physics, University of Washington, Seattle, WA, United States
| |
Collapse
|
12
|
Yang T, Berry JF. Numerical Nuclear Second Derivatives on a Computing Grid: Enabling and Accelerating Frequency Calculations on Complex Molecular Systems. J Chem Theory Comput 2018; 14:3459-3467. [DOI: 10.1021/acs.jctc.8b00120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tzuhsiung Yang
- Department of Chemistry, University of Wisconsin—Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - John F. Berry
- Department of Chemistry, University of Wisconsin—Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
13
|
Brorsen KR, Yang Y, Hammes-Schiffer S. Multicomponent Density Functional Theory: Impact of Nuclear Quantum Effects on Proton Affinities and Geometries. J Phys Chem Lett 2017; 8:3488-3493. [PMID: 28686449 DOI: 10.1021/acs.jpclett.7b01442] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Nuclear quantum effects such as zero point energy play a critical role in computational chemistry and often are included as energetic corrections following geometry optimizations. The nuclear-electronic orbital (NEO) multicomponent density functional theory (DFT) method treats select nuclei, typically protons, quantum mechanically on the same level as the electrons. Electron-proton correlation is highly significant, and inadequate treatments lead to highly overlocalized nuclear densities. A recently developed electron-proton correlation functional, epc17, has been shown to provide accurate nuclear densities for molecular systems. Herein, the NEO-DFT/epc17 method is used to compute the proton affinities for a set of molecules and to examine the role of nuclear quantum effects on the equilibrium geometry of FHF-. The agreement of the computed results with experimental and benchmark values demonstrates the promise of this approach for including nuclear quantum effects in calculations of proton affinities, pKa's, optimized geometries, and reaction paths.
Collapse
Affiliation(s)
- Kurt R Brorsen
- Department of Chemistry, University of Illinois at Urbana-Champaign , 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Yang Yang
- Department of Chemistry, University of Illinois at Urbana-Champaign , 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Sharon Hammes-Schiffer
- Department of Chemistry, University of Illinois at Urbana-Champaign , 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|