1
|
Yu W, Weber DJ, MacKerell AD. Detection of Putative Ligand Dissociation Pathways in Proteins Using Site-Identification by Ligand Competitive Saturation. J Chem Inf Model 2024. [PMID: 39729368 DOI: 10.1021/acs.jcim.4c01814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2024]
Abstract
Drug efficacy often correlates better with dissociation kinetics than binding affinity alone. To study binding kinetics computationally, it is necessary to identify all of the possible ligand dissociation pathways. The site identification by ligand competitive saturation (SILCS) method involves the precomputation of a set of maps (FragMaps), which describe the free energy landscapes of typical chemical functionalities in and around a target protein or RNA. In the current work, we present and implement a method to use SILCS to identify ligand dissociation pathways, termed "SILCS-Pathway." The A* pathfinding algorithm is utilized to enumerate ligand dissociation pathways between the ligand binding site and the surrounding bulk solvent environment defined on evenly spaced points around the protein based on a Fibonacci lattice. The cost function for the A* algorithm is calculated using the SILCS exclusion maps and the SILCS grid free energy scores, thereby identifying paths that account for local protein flexibility and potential favorable interactions with the ligand. By traversing all evenly distributed bulk solvent points around the protein, we located all possible dissociation pathways and clustered them to identify general ligand unbinding pathways. The procedure is verified by using proteins studied previously with enhanced sampling molecular dynamics (MD) techniques and is shown to be capable of capturing important ligand dissociation routes in a highly computationally efficient manner. The identified pathways will act as the foundation for determining ligand dissociation kinetics using SILCS free energy profiles, which will be described in a subsequent article.
Collapse
Affiliation(s)
- Wenbo Yu
- Computer-Aided Drug Design Center, Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland Baltimore, Baltimore, Maryland 21201, United States
- Institute for Bioscience and Biotechnology Research (IBBR), Rockville, Maryland 20850, United States
- Department of Biochemistry and Molecular Biology, Center for Biomolecular Therapeutics (CBT), School of Medicine, University of Maryland Baltimore, Baltimore, Maryland 21201, United States
| | - David J Weber
- Institute for Bioscience and Biotechnology Research (IBBR), Rockville, Maryland 20850, United States
- Department of Biochemistry and Molecular Biology, Center for Biomolecular Therapeutics (CBT), School of Medicine, University of Maryland Baltimore, Baltimore, Maryland 21201, United States
| | - Alexander D MacKerell
- Computer-Aided Drug Design Center, Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland Baltimore, Baltimore, Maryland 21201, United States
- Institute for Bioscience and Biotechnology Research (IBBR), Rockville, Maryland 20850, United States
- Department of Biochemistry and Molecular Biology, Center for Biomolecular Therapeutics (CBT), School of Medicine, University of Maryland Baltimore, Baltimore, Maryland 21201, United States
| |
Collapse
|
2
|
Vavra O, Tyzack J, Haddadi F, Stourac J, Damborsky J, Mazurenko S, Thornton JM, Bednar D. Large-scale annotation of biochemically relevant pockets and tunnels in cognate enzyme-ligand complexes. J Cheminform 2024; 16:114. [PMID: 39407342 PMCID: PMC11481355 DOI: 10.1186/s13321-024-00907-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 09/16/2024] [Indexed: 10/19/2024] Open
Abstract
Tunnels in enzymes with buried active sites are key structural features allowing the entry of substrates and the release of products, thus contributing to the catalytic efficiency. Targeting the bottlenecks of protein tunnels is also a powerful protein engineering strategy. However, the identification of functional tunnels in multiple protein structures is a non-trivial task that can only be addressed computationally. We present a pipeline integrating automated structural analysis with an in-house machine-learning predictor for the annotation of protein pockets, followed by the calculation of the energetics of ligand transport via biochemically relevant tunnels. A thorough validation using eight distinct molecular systems revealed that CaverDock analysis of ligand un/binding is on par with time-consuming molecular dynamics simulations, but much faster. The optimized and validated pipeline was applied to annotate more than 17,000 cognate enzyme-ligand complexes. Analysis of ligand un/binding energetics indicates that the top priority tunnel has the most favourable energies in 75% of cases. Moreover, energy profiles of cognate ligands revealed that a simple geometry analysis can correctly identify tunnel bottlenecks only in 50% of cases. Our study provides essential information for the interpretation of results from tunnel calculation and energy profiling in mechanistic enzymology and protein engineering. We formulated several simple rules allowing identification of biochemically relevant tunnels based on the binding pockets, tunnel geometry, and ligand transport energy profiles.Scientific contributionsThe pipeline introduced in this work allows for the detailed analysis of a large set of protein-ligand complexes, focusing on transport pathways. We are introducing a novel predictor for determining the relevance of binding pockets for tunnel calculation. For the first time in the field, we present a high-throughput energetic analysis of ligand binding and unbinding, showing that approximate methods for these simulations can identify additional mutagenesis hotspots in enzymes compared to purely geometrical methods. The predictor is included in the supplementary material and can also be accessed at https://github.com/Faranehhad/Large-Scale-Pocket-Tunnel-Annotation.git . The tunnel data calculated in this study has been made publicly available as part of the ChannelsDB 2.0 database, accessible at https://channelsdb2.biodata.ceitec.cz/ .
Collapse
Affiliation(s)
- O Vavra
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital Brno, Pekařská 53, 656 91, Brno, Czech Republic
| | - J Tyzack
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust GenomeCampus, Cambridge, CB10 1SD, UK
| | - F Haddadi
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital Brno, Pekařská 53, 656 91, Brno, Czech Republic
| | - J Stourac
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital Brno, Pekařská 53, 656 91, Brno, Czech Republic
| | - J Damborsky
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital Brno, Pekařská 53, 656 91, Brno, Czech Republic
| | - S Mazurenko
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00, Brno, Czech Republic.
- International Clinical Research Center, St. Anne's University Hospital Brno, Pekařská 53, 656 91, Brno, Czech Republic.
| | - J M Thornton
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust GenomeCampus, Cambridge, CB10 1SD, UK.
| | - D Bednar
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00, Brno, Czech Republic.
- International Clinical Research Center, St. Anne's University Hospital Brno, Pekařská 53, 656 91, Brno, Czech Republic.
| |
Collapse
|
3
|
Vavra O, Beranek J, Stourac J, Surkovsky M, Filipovic J, Damborsky J, Martinovic J, Bednar D. pyCaverDock: Python implementation of the popular tool for analysis of ligand transport with advanced caching and batch calculation support. Bioinformatics 2023; 39:btad443. [PMID: 37471591 PMCID: PMC10397418 DOI: 10.1093/bioinformatics/btad443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/15/2023] [Accepted: 07/19/2023] [Indexed: 07/22/2023] Open
Abstract
SUMMARY Access pathways in enzymes are crucial for the passage of substrates and products of catalysed reactions. The process can be studied by computational means with variable degrees of precision. Our in-house approximative method CaverDock provides a fast and easy way to set up and run ligand binding and unbinding calculations through protein tunnels and channels. Here we introduce pyCaverDock, a Python3 API designed to improve user experience with the tool and further facilitate the ligand transport analyses. The API enables users to simplify the steps needed to use CaverDock, from automatizing setup processes to designing screening pipelines. AVAILABILITY AND IMPLEMENTATION pyCaverDock API is implemented in Python 3 and is freely available with detailed documentation and practical examples at https://loschmidt.chemi.muni.cz/caverdock/.
Collapse
Affiliation(s)
- Ondrej Vavra
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital Brno, 656 91 Brno, Czech Republic
| | - Jakub Beranek
- IT4Innovations, VSB – Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
| | - Jan Stourac
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital Brno, 656 91 Brno, Czech Republic
| | - Martin Surkovsky
- IT4Innovations, VSB – Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
| | - Jiri Filipovic
- Institute of Computer Science, Masaryk University, 602 00 Brno, Czech Republic
| | - Jiri Damborsky
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital Brno, 656 91 Brno, Czech Republic
| | - Jan Martinovic
- IT4Innovations, VSB – Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
| | - David Bednar
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital Brno, 656 91 Brno, Czech Republic
| |
Collapse
|
4
|
Vavra O, Damborsky J, Bednar D. Fast approximative methods for study of ligand transport and rational design of improved enzymes for biotechnologies. Biotechnol Adv 2022; 60:108009. [PMID: 35738509 DOI: 10.1016/j.biotechadv.2022.108009] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/12/2022] [Accepted: 06/16/2022] [Indexed: 11/27/2022]
Abstract
Acceleration of chemical reactions by the enzymes optimized using protein engineering represents one of the key pillars of the contribution of biotechnology towards sustainability. Tunnels and channels of enzymes with buried active sites enable the exchange of ligands, ions, and water molecules between the outer environment and active site pockets. The efficient exchange of ligands is a fundamental process of biocatalysis. Therefore, enzymes have evolved a wide range of mechanisms for repetitive conformational changes that enable periodic opening and closing. Protein-ligand interactions are traditionally studied by molecular docking, whereas molecular dynamics is the method of choice for studying conformational changes and ligand transport. However, computational demands make molecular dynamics impractical for screening purposes. Thus, several approximative methods have been recently developed to study interactions between a protein and ligand during the ligand transport process. Apart from identifying the best binding modes, these methods also provide information on the energetics of the transport and identify problematic regions limiting the ligand passage. These methods use approximations to simulate binding or unbinding events rapidly (calculation times from minutes to hours) and provide energy profiles that can be used to rank ligands or pathways. Here we provide a critical comparison of available methods, showcase their results on sample systems, discuss their practical applications in molecular biotechnologies and outline possible future developments.
Collapse
Affiliation(s)
- Ondrej Vavra
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital Brno, Pekařská 53, 656 91 Brno, Czech Republic
| | - Jiri Damborsky
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital Brno, Pekařská 53, 656 91 Brno, Czech Republic; Enantis, INBIT, Kamenice 34, 625 00 Brno, Czech Republic.
| | - David Bednar
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital Brno, Pekařská 53, 656 91 Brno, Czech Republic.
| |
Collapse
|
5
|
Vonásek V, Pěnička R, Kozlíková B. Searching Multiple Approximate Solutions in Configuration Space to Guide Sampling-Based Motion Planning. J INTELL ROBOT SYST 2020. [DOI: 10.1007/s10846-020-01247-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Yadav DK, Kumar S, Choi EH, Chaudhary S, Kim MH. Computational Modeling on Aquaporin-3 as Skin Cancer Target: A Virtual Screening Study. Front Chem 2020; 8:250. [PMID: 32351935 PMCID: PMC7175779 DOI: 10.3389/fchem.2020.00250] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/17/2020] [Indexed: 12/25/2022] Open
Abstract
Aquaporin-3 (AQP3) is one of the aquaglyceroporins, which is expressed in the basolateral layer of the skin membrane. Studies have reported that human skin squamous cell carcinoma overexpresses AQP3 and inhibition of its function may alleviate skin tumorigenesis. In the present study, we have applied a virtual screening method that encompasses filters for physicochemical properties and molecular docking to select potential hit compounds that bind to the Aquaporin-3 protein. Based on molecular docking results, the top 20 hit compounds were analyzed for stability in the binding pocket using unconstrained molecular dynamics simulations and further evaluated for binding free energy. Furthermore, examined the ligand-unbinding pathway of the inhibitor from its bound form to explore possible routes for inhibitor approach to the ligand-binding site. With a good docking score, stability in the binding pocket, and free energy of binding, these hit compounds can be developed as Aquaporin-3 inhibitors in the near future.
Collapse
Affiliation(s)
- Dharmendra Kumar Yadav
- Gachon Institute of Pharmaceutical Science & Department of Pharmacy, College of Pharmacy, Gachon University, Incheon, South Korea
| | - Surendra Kumar
- Gachon Institute of Pharmaceutical Science & Department of Pharmacy, College of Pharmacy, Gachon University, Incheon, South Korea
| | - Eun-Ha Choi
- Plasma Bioscience Research Center/PDP Research Center, Kwangwoon University, Nowon-Gu, South Korea
| | - Sandeep Chaudhary
- Laboratory of Organic & Medicinal Chemistry, Department of Chemistry, Malaviya National Institute of Technology, Jaipur, India
| | - Mi-Hyun Kim
- Gachon Institute of Pharmaceutical Science & Department of Pharmacy, College of Pharmacy, Gachon University, Incheon, South Korea
| |
Collapse
|
7
|
ART-RRT: As-Rigid-As-Possible search for protein conformational transition paths. J Comput Aided Mol Des 2019; 33:705-727. [PMID: 31435895 DOI: 10.1007/s10822-019-00216-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 08/06/2019] [Indexed: 10/26/2022]
Abstract
The possible functions of a protein are strongly related to its structural rearrangements in the presence of other molecules or environmental changes. Hence, the evaluation of transition paths of proteins, which encodes conformational changes between stable states, is important since it may reveal the underlying mechanisms of the biochemical processes related to these motions. During the last few decades, different geometry-based methods have been proposed to predict such transition paths. However, in the cases where the solution requires complex motions, these methods, which typically constrain only locally the molecular structures, could produce physically irrelevant solutions involving self-intersection. Recently, we have proposed ART-RRT, an efficient method for finding ligand-unbinding pathways. It relies on the exploration of energy valleys in low-dimensional spaces, taking advantage of some mechanisms inspired from computer graphics to ensure the consistency of molecular structures. This article extends ART-RRT to the problem of finding probable conformational transition between two stable states for proteins. It relies on a bidirectional exploration rooted on the two end states and introduces an original strategy to attempt connections between the explored regions. The resulting method is able to produce at low computational cost biologically realistic paths free from self-intersection. These paths can serve as valuable input to other advanced methods for the study of proteins. A better understanding of conformational changes of proteins is important since it may reveal the underlying mechanisms of the biochemical processes related to such motions. Recently, the ART-RRT method has been introduced for finding ligand-unbinding pathways. This article presents an adaptation of the method for finding probable conformational transition between two stable states of a protein. The method is not only computationally cost-effective but also able to produce biologically realistic paths which are free from self-intersection.
Collapse
|
8
|
Sánchez-Aparicio JE, Sciortino G, Herrmannsdoerfer DV, Chueca PO, Pedregal JRG, Maréchal JD. GPathFinder: Identification of Ligand-Binding Pathways by a Multi-Objective Genetic Algorithm. Int J Mol Sci 2019; 20:E3155. [PMID: 31261636 PMCID: PMC6651367 DOI: 10.3390/ijms20133155] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/19/2019] [Accepted: 06/21/2019] [Indexed: 12/21/2022] Open
Abstract
Protein-ligand docking is a widely used method to generate solutions for the binding of a small molecule with its target in a short amount of time. However, these methods provide identification of physically sound protein-ligand complexes without a complete view of the binding process dynamics, which has been recognized to be a major discriminant in binding affinity and ligand selectivity. In this paper, a novel piece of open-source software to approach this problem is presented, called GPathFinder. It is built as an extension of the modular GaudiMM platform and is able to simulate ligand diffusion pathways at atomistic level. The method has been benchmarked on a set of 20 systems whose ligand-binding routes were studied by other computational tools or suggested from experimental "snapshots". In all of this set, GPathFinder identifies those channels that were already reported in the literature. Interestingly, the low-energy pathways in some cases indicate novel possible binding routes. To show the usefulness of GPathFinder, the analysis of three case systems is reported. We believe that GPathFinder is a software solution with a good balance between accuracy and computational cost, and represents a step forward in extending protein-ligand docking capacities, with implications in several fields such as drug or enzyme design.
Collapse
Affiliation(s)
| | - Giuseppe Sciortino
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | | | - Pablo Orenes Chueca
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | | | - Jean-Didier Maréchal
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain.
| |
Collapse
|
9
|
Kokkonen P, Bednar D, Pinto G, Prokop Z, Damborsky J. Engineering enzyme access tunnels. Biotechnol Adv 2019; 37:107386. [PMID: 31026496 DOI: 10.1016/j.biotechadv.2019.04.008] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 04/16/2019] [Accepted: 04/18/2019] [Indexed: 12/14/2022]
Abstract
Enzymes are efficient and specific catalysts for many essential reactions in biotechnological and pharmaceutical industries. Many times, the natural enzymes do not display the catalytic efficiency, stability or specificity required for these industrial processes. The current enzyme engineering methods offer solutions to this problem, but they mainly target the buried active site where the chemical reaction takes place. Despite being many times ignored, the tunnels and channels connecting the environment with the active site are equally important for the catalytic properties of enzymes. Changes in the enzymatic tunnels and channels affect enzyme activity, specificity, promiscuity, enantioselectivity and stability. This review provides an overview of the emerging field of enzyme access tunnel engineering with case studies describing design of all the aforementioned properties. The software tools for the analysis of geometry and function of the enzymatic tunnels and channels and for the rational design of tunnel modifications will also be discussed. The combination of new software tools and enzyme engineering strategies will provide enzymes with access tunnels and channels specifically tailored for individual industrial processes.
Collapse
Affiliation(s)
- Piia Kokkonen
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - David Bednar
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
| | - Gaspar Pinto
- International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
| | - Zbynek Prokop
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
| | - Jiri Damborsky
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic.
| |
Collapse
|
10
|
Nguyen MK, Jaillet L, Redon S. Generating conformational transition paths with low potential-energy barriers for proteins. J Comput Aided Mol Des 2018; 32:853-867. [PMID: 30069648 DOI: 10.1007/s10822-018-0137-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 07/19/2018] [Indexed: 10/28/2022]
Abstract
The knowledge of conformational transition paths in proteins can be useful for understanding protein mechanisms. Recently, we have introduced the As-Rigid-As-Possible (ARAP) interpolation method, for generating interpolation paths between two protein conformations. The method was shown to preserve well the rigidity of the initial conformation along the path. However, because the method is totally geometry-based, the generated paths may be inconsistent because the atom interactions are ignored. Therefore, in this article, we would like to introduce a new method to generate conformational transition paths with low potential-energy barriers for proteins. The method is composed of three processing stages. First, ARAP interpolation is used for generating an initial path. Then, the path conformations are enhanced by a clash remover. Finally, Nudged Elastic Band, a path-optimization method, is used to produce a low-energy path. Large energy reductions are found in the paths obtained from the method than in those obtained from the ARAP interpolation method alone. The results also show that ARAP interpolation is a good candidate for generating an initial path because it leads to lower potential-energy paths than two other common methods for path interpolation.
Collapse
Affiliation(s)
- Minh Khoa Nguyen
- Univ. Grenoble Alpes, Inria, CNRS, Grenoble INP (Institute of Engineering Univ. Grenoble Alpes), LJK, 38000, Grenoble, France
| | - Léonard Jaillet
- Univ. Grenoble Alpes, Inria, CNRS, Grenoble INP (Institute of Engineering Univ. Grenoble Alpes), LJK, 38000, Grenoble, France.
| | - Stéphane Redon
- Univ. Grenoble Alpes, Inria, CNRS, Grenoble INP (Institute of Engineering Univ. Grenoble Alpes), LJK, 38000, Grenoble, France
| |
Collapse
|