1
|
Sarker P, Lu T, Liu D, Wu G, Chen H, Jahan Sajib MS, Jiang S, Chen Z, Wei T. Hydration behaviors of nonfouling zwitterionic materials. Chem Sci 2023; 14:7500-7511. [PMID: 37449074 PMCID: PMC10337769 DOI: 10.1039/d3sc01977b] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/02/2023] [Indexed: 07/18/2023] Open
Abstract
Zwitterionic materials have emerged as highly effective ultralow fouling materials for many applications, however the underlying mechanism of fouling resistance remains unclear. Using ab initio molecular dynamics simulations and surface-sensitive sum frequency generation vibrational spectroscopy, we studied the hydration behaviors of zwitterionic materials, including trimethylamine-N-oxide (TMAO) and carboxybetaines of different charge-separation distances, to understand their fouling-resistant mechanism and provide a design principle for improved performance. Our study reveals that the interplay among hydrogen bonding, net charge, and dipole moment is crucial to the fouling-resistant capabilities of zwitterionic materials. Shortening of the zwitterionic spacing strengthens hydrogen bonding with water against biomolecule attachment due to the increased electrostatic and induction interactions, charge transfer, and improved structural stability. Moreover, the shortened charge separation reduces the dipole moment of zwitterionic materials with an intrinsic near-neutral net charge, decreasing their electrostatic and dipole-dipole interactions with biofoulers, and increasing their resistance to fouling. Compared to carboxybetaine compounds, TMAO has the shortest zwitterionic spacing and exhibits the strongest hydrogen bonding, the smallest net charge, and the minimum dipole moment, making it an excellent nonfouling material.
Collapse
Affiliation(s)
- Pranab Sarker
- Department of Chemical Engineering, Howard University Washington D.C. USA
| | - Tieyi Lu
- Department of Chemistry, University of Michigan Ann Arbor Michigan USA
| | - Di Liu
- Meinig School of Biomedical Engineering, Cornell University Ithaca NY 14853 USA
| | - Guangyao Wu
- Department of Chemistry, University of Michigan Ann Arbor Michigan USA
| | - Hanning Chen
- Texas Advanced Computing Center, The University of Texas at Austin Austin Texas USA
| | | | - Shaoyi Jiang
- Meinig School of Biomedical Engineering, Cornell University Ithaca NY 14853 USA
| | - Zhan Chen
- Department of Chemistry, University of Michigan Ann Arbor Michigan USA
| | - Tao Wei
- Department of Chemical Engineering, Howard University Washington D.C. USA
| |
Collapse
|
2
|
Masuda S, Furukawa Y, Kobayashi T, Sekine T, Kakegawa T. Experimental Investigation of the Formation of Formaldehyde by Hadean and Noachian Impacts. ASTROBIOLOGY 2021; 21:413-420. [PMID: 33784199 DOI: 10.1089/ast.2020.2320] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Formaldehyde (FA) is an important precursor in the abiotic synthesis of major biomolecules including amino acids, sugars, and nucleobases. Thus, spontaneous formation of prebiotic FA must have been crucial for the chemical origin of life. The frequent impacts of meteorites and asteroids on Hadean Earth have been considered one of the abiotic synthetic processes of organic compounds. However, the impact-induced formation of FA from CO2 as the major atmospheric constituent has not been confirmed yet. This study investigated the formation of FA in impact-induced reactions among meteoritic minerals, bicarbonate, gaseous nitrogen, and water to simulate the abiotic process experimentally. Products were analyzed with ultra-high-performance liquid chromatography/tandem mass spectrometry and powder X-ray diffraction techniques. The results show the formation of FA and oxidation of metallic iron to siderite in the impact shock experiments. This indicates that this important prebiotic molecule was also synthesized by impacts of iron-bearing meteorites/asteroids on the Hadean oceans. The impact events might have generated spatially and temporally FA-enriched localized environments. Moreover, the impact-induced synthesis of FA may have also occurred on Noachian Mars given the presence of liquid water and a CO2-N2-rich atmosphere on the planet.
Collapse
Affiliation(s)
- Saeka Masuda
- Department of Earth Science, Tohoku University, Sendai, Japan
| | | | | | - Toshimori Sekine
- Center for High Pressure Science & Technology Advanced Research, Shanghai, China
- Graduate School of Engineering, Osaka University, Osaka, Japan
| | | |
Collapse
|
3
|
Takeuchi Y, Furukawa Y, Kobayashi T, Sekine T, Terada N, Kakegawa T. Impact-induced amino acid formation on Hadean Earth and Noachian Mars. Sci Rep 2020; 10:9220. [PMID: 32513990 PMCID: PMC7280214 DOI: 10.1038/s41598-020-66112-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 05/14/2020] [Indexed: 11/28/2022] Open
Abstract
Abiotic synthesis of biomolecules is an essential step for the chemical origin of life. Many attempts have succeeded in synthesizing biomolecules, including amino acids and nucleobases (e.g., via spark discharge, impact shock, and hydrothermal heating), from reduced compounds that may have been limited in their availabilities on Hadean Earth and Noachian Mars. On the other hand, formation of amino-acids and nucleobases from CO2 and N2 (i.e., the most abundant C and N sources on Earth during the Hadean) has been limited via spark discharge. Here, we demonstrate the synthesis of amino acids by laboratory impact-induced reactions among simple inorganic mixtures: Fe, Ni, Mg2SiO4, H2O, CO2, and N2, by coupling the reduction of CO2, N2, and H2O with the oxidation of metallic Fe and Ni. These chemical processes simulated the possible reactions at impacts of Fe-bearing meteorites/asteroids on oceans with a CO2 and N2 atmosphere. The results indicate that hypervelocity impact was a source of amino acids on the Earth during the Hadean and potentially on Mars during the Noachian. Amino acids formed during such events could more readily polymerize in the next step of the chemical evolution, as impact events locally form amino acids at the impact sites.
Collapse
Affiliation(s)
- Yuto Takeuchi
- Department of Earth Science, Tohoku University, 6-3 Aza-aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| | - Yoshihiro Furukawa
- Department of Earth Science, Tohoku University, 6-3 Aza-aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Japan.
| | - Takamichi Kobayashi
- National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan
| | - Toshimori Sekine
- Center for High Pressure Science & Technology Advanced Research, 1690 Cailun road, Shanghai, 201203, China
- Graduate School of Engineering, Osaka University, Osaka, Japan, 2-1 Yamada-Oka, Suita, 565-0871, Japan
| | - Naoki Terada
- Department of Geophysics, Tohoku University, 6-3 Aza-aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| | - Takeshi Kakegawa
- Department of Earth Science, Tohoku University, 6-3 Aza-aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| |
Collapse
|