1
|
Synergistic Effect of Neighboring Fe and Cu Cation Sites Boosts FenCum-BEA Activity for the Continuous Direct Oxidation of Methane to Methanol. Catalysts 2021. [DOI: 10.3390/catal11121444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Direct oxidation of methane to methanol (DMTM), constituting a major challenge for C1 chemistry, has aroused significant interest. The present work reports the synergistic effect of neighboring [Fe]--[Cu] cations, which can significantly boost the CH3OH productivity (100.9 and 41.9 → 259.1 μmol∙g−1cat∙h−1) and selectivity (0.28 and 17.6% → 71.7%) of the best performing Fe0.6%Cu0.68%-BEA (relative to monomeric Fe1.28%- and Cu1.28%-BEA) during the continuous H2O-mediated N2O DMTM. The combined experimental (in situ FTIR, D2O isotopic tracer technique) and theoretical (DFT, ab initio molecular dynamics (AIMD)) studies reveal deeper mechanistic insights that the synergistic effect of [Fe]--[Cu] can not only significantly favor active O production (ΔG = 0.18 eV), but also efficiently motivate the reaction following a H2O proton-transfer route (ΔG = 0.07 eV), eventually strikingly promoting CH3OH productivity/selectivity. Generally, the proposed strategy by employing the synergistic effect of bimetallic cations to modify DMTM activity would substantially favor other highly efficient catalyst designs.
Collapse
|
2
|
Adeyiga O, Suleiman O, Odoh SO. Copper-Oxo Active Sites for Methane C-H Activation in Zeolites: Molecular Understanding of Impact of Methane Hydroxylation on UV-Vis Spectra. Inorg Chem 2021; 60:8489-8499. [PMID: 34097398 DOI: 10.1021/acs.inorgchem.0c03510] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Here, we analyze changes in the optical spectra of activated copper-exchanged zeolites during methane activation with the Tamm-Dancoff time-dependent density functional theory, TDA-DFT, while using the ωB2PLYP functional. Two active sites, [Cu2O]2+ and [Cu3O3]2+, were studied. For [Cu2O]+, the 22 700 cm-1 peak is associated with μ-oxo 2p → Cu 3d/4s charge transfer. Of the [Cu2O]2+ methane C-H activation intermediates that we examined, only [Cu-O(H)(H)-Cu] and [Cu-O(H)(CH3)-Cu] have spectra that match experimental observations. After methane activation, the μ-oxo 2p orbitals lose two electrons and become hybridized with methanol C 2p orbitals and/or H 1s orbitals. The frontier unoccupied orbitals become more Cu 4s/4p Rydberg-like, reducing overlap with occupied orbitals. These effects cause the disappearance of the 22 700 cm-1 peak. For [Cu3O3]2+, the exact structures of the species formed after methane activation are unknown. Thus, we considered eight possible structures. Several of these provide a significant decrease in intensity near 23 000-38 000 cm-1, as seen experimentally. Notably, these species involve either rebound of the separated methyl to a μ-oxo atom or its remote stabilization at a Brønsted acid site in exchange for the acidic proton. These spectral changes are caused by the same mechanism seen in [Cu2O]2+ and are likely responsible for the observed reduced intensities near 23 000-38 000 cm-1. Thus, TDA-DFT calculations with ωB2PLYP provide a molecular-level understanding of the evolution of copper-oxo active sites during methane-to-methanol conversion.
Collapse
Affiliation(s)
- Olajumoke Adeyiga
- Department of Chemistry, University of Nevada, Reno, 1664 North Virginia Street, Reno, Nevada 89557-0216, United States
| | - Olabisi Suleiman
- Department of Chemistry, University of Nevada, Reno, 1664 North Virginia Street, Reno, Nevada 89557-0216, United States
| | - Samuel O Odoh
- Department of Chemistry, University of Nevada, Reno, 1664 North Virginia Street, Reno, Nevada 89557-0216, United States
| |
Collapse
|
3
|
Adeyiga O, Odoh SO. Methane Over-Oxidation by Extra-Framework Copper-Oxo Active Sites of Copper-Exchanged Zeolites: Crucial Role of Traps for the Separated Methyl Group. Chemphyschem 2021; 22:1101-1109. [PMID: 33786957 DOI: 10.1002/cphc.202100103] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/30/2021] [Indexed: 11/07/2022]
Abstract
Copper-exchanged zeolites are useful for stepwise conversion of methane to methanol at moderate temperatures. This process also generates some over-oxidation products like CO and CO2 . However, mechanistic pathways for methane over-oxidation by copper-oxo active sites in these zeolites have not been previously described. Adequate understanding of methane over-oxidation is useful for developing systems with higher methanol yields and selectivities. Here, we use density functional theory (DFT) to examine methane over-oxidation by [Cu3 O3 ]2+ active sites in zeolite mordenite MOR. The methyl group formed after activation of a methane C-H bond can be stabilized at a μ-oxo atom of the active site. This μ-(O-CH3 ) intermediate can undergo sequential hydrogen atom abstractions till eventual formation of a copper-monocarbonyl species. Adsorbed formaldehyde, water and formates are also formed during this process. The overall mechanistic path is exothermic, and all intermediate steps are facile at 200 °C. Release of CO from the copper-monocarbonyl costs only 3.4 kcal/mol. Thus, for high methanol selectivities, the methyl group from the first hydrogen atom abstraction step must be stabilized away from copper-oxo active sites. Indeed, it must be quickly trapped at an unreactive site (short diffusion lengths) while avoiding copper-oxo species (large paths between active sites). This stabilization of the methyl group away from the active sites is central to the high methanol selectivities obtained with stepwise methane-to-methanol conversion.
Collapse
Affiliation(s)
- Olajumoke Adeyiga
- Department of Chemistry, University of Nevada Reno, 1664 N. Virginia Street, Reno, NV 89557-0216, USA
| | - Samuel O Odoh
- Department of Chemistry, University of Nevada Reno, 1664 N. Virginia Street, Reno, NV 89557-0216, USA
| |
Collapse
|
4
|
Suleiman O, Panthi D, Adeyiga O, Odoh SO. Methane C-H Activation by [Cu 2O] 2+ and [Cu 3O 3] 2+ in Copper-Exchanged Zeolites: Computational Analysis of Redox Chemistry and X-ray Absorption Spectroscopy. Inorg Chem 2021; 60:6218-6227. [PMID: 33876934 DOI: 10.1021/acs.inorgchem.0c03693] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
There is an ongoing debate regarding the role of [Cu3O3]2+ in methane-to-methanol conversion by copper-exchanged zeolites. Here, we perform electronic structure analysis and localized orbital bonding analysis to probe the redox chemistry of its Cu and μ-oxo sites. Also, the X-ray absorption near-edge structure, XANES, of methane activation in [Cu3O3]2+ is compared to that of the more ubiquitous [Cu2O]2+. Methane C-H activation is associated with only the Cu2+/Cu+ redox couple in [Cu2O]2+. For [Cu3O3]2+, there is no basis for the Cu3+/Cu2+ couple's participation at the density functional theory ground state. In [Cu3O3]2+, there are many possible intrazeolite intermediates for methane activation. In the nine possibilities that we examined, methane activation is driven by a combination of the Cu2+/Cu+ and oxyl/O2- redox couples. Based on this, the Cu 1s-edge XANES spectra of [Cu2O]2+ and [Cu3O3]2+ should both have energy signatures of Cu2+ → Cu+ reduction during methane activation. This is indeed what we obtained from the calculated XANES spectra. [Cu2O]2+ and [Cu3O3]2+ intermediates with one Cu+ site are shifted by 0.9-1.7 eV, while those with two Cu+ sites are shifted by 3.0-4.2 eV. These are near a range of 2.5-3.2 eV observed experimentally after contacting methane with activated copper-exchanged zeolites. Thus, activation of methane by [Cu3O3]2+ will lead to formation of Cu+ sites. Importantly, for future quantitative XANES studies, involvement of O- + e- → O2- in [Cu3O3]2+ implies a disconnect between the overall reactivity and the number of electrons used in the Cu2+/Cu+ redox couple.
Collapse
Affiliation(s)
- Olabisi Suleiman
- Department of Chemistry, University of Nevada Reno, 1664 N. Virginia Street, Reno, Nevada 89557-0216, United States
| | - Dipak Panthi
- Department of Chemistry, University of Nevada Reno, 1664 N. Virginia Street, Reno, Nevada 89557-0216, United States
| | - Olajumoke Adeyiga
- Department of Chemistry, University of Nevada Reno, 1664 N. Virginia Street, Reno, Nevada 89557-0216, United States
| | - Samuel O Odoh
- Department of Chemistry, University of Nevada Reno, 1664 N. Virginia Street, Reno, Nevada 89557-0216, United States
| |
Collapse
|
5
|
Wang L, Li Z, Wang Z, Chen X, Song W, Zhao Z, Wei Y, Zhang X. Hetero-Metallic Active Sites in Omega (MAZ) Zeolite-Catalyzed Methane Partial Oxidation: A DFT Study. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.0c05457] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Linzhe Wang
- State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum-Beijing, Beijing 102249, China
| | - Zhi Li
- State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum-Beijing, Beijing 102249, China
| | - Zhixia Wang
- State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum-Beijing, Beijing 102249, China
| | - Xinyu Chen
- State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum-Beijing, Beijing 102249, China
| | - Weiyu Song
- State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum-Beijing, Beijing 102249, China
| | - Zhen Zhao
- State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum-Beijing, Beijing 102249, China
| | - Yuechang Wei
- State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum-Beijing, Beijing 102249, China
| | - Xiao Zhang
- State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum-Beijing, Beijing 102249, China
| |
Collapse
|
6
|
Curtis K, Panthi D, Odoh SO. Time-Dependent Density Functional Theory Study of Copper(II) Oxo Active Sites for Methane-to-Methanol Conversion in Zeolites. Inorg Chem 2021; 60:1149-1159. [PMID: 33399001 DOI: 10.1021/acs.inorgchem.0c03279] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Copper-exchanged zeolites are useful materials for step-wise methane-to-methanol conversion (MMC). However, methanol yields on copper-exchanged zeolites are often modest, spurring interest in the development of active-site species that are activated at moderate temperatures, afford greater yields, and provide excellent methanol selectivities. Ultraviolet-visible (UV-vis) spectroscopy is a major tool for characterizing the active-sites and their evolution during the step-wise MMC process. However, computation of the UV-vis spectra of the copper-oxo active sites using Tamm-Dancoff time-dependent density functional theory (TDA-DFT) can be quite problematic. This has led to utilization of expensive methods based on multireference approaches, Green functions, and the Bethe-Salpeter equation. In this work, we examined the optical spectra of [CuO]+, [Cu2O]2+, [Cu2O2]2+, and [Cu3O3]2+ species implicated in MMC in zeolites. For the larger species, we examined how agreement with experimental data is improved with increasingly larger cluster models. For [CuO]+, we compared TDA-DFT against restricted active space 2nd-order perturbation theory, RASPT2. We found that signature peaks for [CuO]+ have multireference behavior. The excited states have many configuration state functions with a double excitation character. These effects are likely responsible for the poor utility of conventional TDA-DFT methods. Indeed, we obtain good agreement with experimental data and RASPT2 after accounting for 2h/2p excitations within TDA-DFT with a previously described configuration interaction singles and doubles, CIS(D)-style scheme. This was the case for [CuO]+, [Cu2O]2+, as well as a [Cu2O2]2+ species. Using a long-range corrected double-hybrid, ωB2PLYP, we provide for the first time computational evidence for the experimental UV-vis spectrum of the [Cu3O3]2+ active site motif.
Collapse
Affiliation(s)
- Kevin Curtis
- Department of Chemistry, University of Nevada Reno, 1664 N. Virginia Street, Reno, Nevada 89557-0216, United States
| | - Dipak Panthi
- Department of Chemistry, University of Nevada Reno, 1664 N. Virginia Street, Reno, Nevada 89557-0216, United States
| | - Samuel O Odoh
- Department of Chemistry, University of Nevada Reno, 1664 N. Virginia Street, Reno, Nevada 89557-0216, United States
| |
Collapse
|
7
|
Abstract
Methane activation chemistry, despite being widely reported in literature, remains to date a subject of debate. The challenges in this reaction are not limited to methane activation but extend to stabilization of the intermediate species. The low C-H dissociation energy of intermediates vs. reactants leads to CO2 formation. For selective oxidation, nature presents methane monooxygenase as a benchmark. This enzyme selectively consumes methane by breaking it down into methanol. To assemble an active site similar to monooxygenase, the literature reports Cu-ZSM-5, Fe-ZSM-5, and Cu-MOR, using zeolites and systems like CeO2/Cu2O/Cu. However, the trade-off between methane activation and methanol selectivity remains a challenge. Density functional theory (DFT) calculations and spectroscopic studies indicate catalyst reducibility, oxygen mobility, and water as co-feed as primary factors that can assist in enabling higher selectivity. The use of chemical looping can further improve selectivity. However, in all systems, improvements in productivity per cycle are required in order to meet the economical/industrial standards.
Collapse
|
8
|
Goncalves TJ, Plessow PN, Studt F. On the Accuracy of Density Functional Theory in Zeolite Catalysis. ChemCatChem 2019. [DOI: 10.1002/cctc.201900791] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Tiago J. Goncalves
- Institute of Catalysis Research and TechnologyKarlsruhe Institute of Technology Hermann-von-Helmholtz Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Philipp N. Plessow
- Institute of Catalysis Research and TechnologyKarlsruhe Institute of Technology Hermann-von-Helmholtz Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Felix Studt
- Institute of Catalysis Research and TechnologyKarlsruhe Institute of Technology Hermann-von-Helmholtz Platz 1 76344 Eggenstein-Leopoldshafen Germany
- Institute for Chemical Technology and Polymer ChemistryKarlsruhe Institute of Technology Engesserstrasse 18 76131 Karlsruhe Germany
| |
Collapse
|