1
|
Wang Z, Han K, Liu W, Wang Z, Shi C, Liu X, Huang M, Sun G, Liu S, Guo Q. Fast Real-Time Brain Tumor Detection Based on Stimulated Raman Histology and Self-Supervised Deep Learning Model. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2024; 37:1160-1176. [PMID: 38326533 PMCID: PMC11169153 DOI: 10.1007/s10278-024-01001-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 02/09/2024]
Abstract
In intraoperative brain cancer procedures, real-time diagnosis is essential for ensuring safe and effective care. The prevailing workflow, which relies on histological staining with hematoxylin and eosin (H&E) for tissue processing, is resource-intensive, time-consuming, and requires considerable labor. Recently, an innovative approach combining stimulated Raman histology (SRH) and deep convolutional neural networks (CNN) has emerged, creating a new avenue for real-time cancer diagnosis during surgery. While this approach exhibits potential, there exists an opportunity for refinement in the domain of feature extraction. In this study, we employ coherent Raman scattering imaging method and a self-supervised deep learning model (VQVAE2) to enhance the speed of SRH image acquisition and feature representation, thereby enhancing the capability of automated real-time bedside diagnosis. Specifically, we propose the VQSRS network, which integrates vector quantization with a proxy task based on patch annotation for analysis of brain tumor subtypes. Training on images collected from the SRS microscopy system, our VQSRS demonstrates a significant speed enhancement over traditional techniques (e.g., 20-30 min). Comparative studies in dimensionality reduction clustering confirm the diagnostic capacity of VQSRS rivals that of CNN. By learning a hierarchical structure of recognizable histological features, VQSRS classifies major tissue pathological categories in brain tumors. Additionally, an external semantic segmentation method is applied for identifying tumor-infiltrated regions in SRH images. Collectively, these findings indicate that this automated real-time prediction technique holds the potential to streamline intraoperative cancer diagnosis, providing assistance to pathologists in simplifying the process.
Collapse
Affiliation(s)
- Zijun Wang
- Academy of Artificial Intelligence, Beijing Institute of Petrochemical Technology, Beijing, 102617, China
| | - Kaitai Han
- Academy of Artificial Intelligence, Beijing Institute of Petrochemical Technology, Beijing, 102617, China
| | - Wu Liu
- Academy of Artificial Intelligence, Beijing Institute of Petrochemical Technology, Beijing, 102617, China
| | - Zhenghui Wang
- Academy of Artificial Intelligence, Beijing Institute of Petrochemical Technology, Beijing, 102617, China
| | - Chaojing Shi
- Academy of Artificial Intelligence, Beijing Institute of Petrochemical Technology, Beijing, 102617, China
| | - Xi Liu
- Academy of Artificial Intelligence, Beijing Institute of Petrochemical Technology, Beijing, 102617, China
| | - Mengyuan Huang
- Academy of Artificial Intelligence, Beijing Institute of Petrochemical Technology, Beijing, 102617, China
| | - Guocheng Sun
- Academy of Artificial Intelligence, Beijing Institute of Petrochemical Technology, Beijing, 102617, China
| | - Shitou Liu
- Academy of Artificial Intelligence, Beijing Institute of Petrochemical Technology, Beijing, 102617, China
| | - Qianjin Guo
- Academy of Artificial Intelligence, Beijing Institute of Petrochemical Technology, Beijing, 102617, China.
| |
Collapse
|
2
|
Wu J, Xue W, Voth GA. K-Means Clustering Coarse-Graining (KMC-CG): A Next Generation Methodology for Determining Optimal Coarse-Grained Mappings of Large Biomolecules. J Chem Theory Comput 2023; 19:8987-8997. [PMID: 37957028 PMCID: PMC10720621 DOI: 10.1021/acs.jctc.3c01053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/21/2023]
Abstract
Coarse-grained (CG) molecular dynamics (MD) has become a method of choice for simulating various large scale biomolecular processes; therefore, the systematic definition of the CG mappings for biomolecules remains an important topic. Appropriate CG mappings can significantly enhance the representability of a CG model and improve its ability to capture critical features of large biomolecules. In this work, we present a systematic and more generalized method called K-means clustering coarse-graining (KMC-CG), which builds on the earlier approach of essential dynamics coarse-graining (ED-CG). KMC-CG removes the sequence-dependent constraints of ED-CG, allowing it to explore a more extensive space and thus enabling the discovery of more physically optimal CG mappings. Furthermore, the implementation of the K-means clustering algorithm can variationally optimize the CG mapping with efficiency and stability. This new method is tested in three cases: ATP-bound G-actin, the HIV-1 CA pentamer, and the Arp2/3 complex. In these examples, the CG models generated by KMC-CG are seen to better capture the structural, dynamic, and functional domains. KMC-CG therefore provides a robust and consistent approach to generating CG models of large biomolecules that can then be more accurately parametrized by either bottom-up or top-down CG force fields.
Collapse
Affiliation(s)
| | | | - Gregory A. Voth
- Department of Chemistry,
Chicago Center for Theoretical Chemistry, The James Franck Institute,
and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
3
|
Zha J, Xia F. Developing Hybrid All-Atom and Ultra-Coarse-Grained Models to Investigate Taxol-Binding and Dynein Interactions on Microtubules. J Chem Theory Comput 2023; 19:5621-5632. [PMID: 37489636 DOI: 10.1021/acs.jctc.3c00275] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Simulating the conformations and functions of biological macromolecules by using all-atom (AA) models is a challenging task due to expensive computational costs. One possible strategy to solve this problem is to develop hybrid all-atom and ultra-coarse-grained (AA/UCG) models of the biological macromolecules. In the AA/UCG scheme, the interest regions are described by AA models, while the other regions are described in the UCG representation. In this study, we develop the hybrid AA/UCG models and apply them to investigate the conformational changes of microtubule-bound tubulins. The simulation results of the hybrid models elucidated the mechanism of why the taxol molecules selectively bound microtubules but not tubulin dimers. In addition, we also explore the interactions of the microtubules and dyneins. Our study shows that the hybrid AA/UCG model has great application potential in studying the function of complex biological systems.
Collapse
Affiliation(s)
- Jinyin Zha
- School of Chemistry and Molecular Engineering, NYU-ECNU Center for Computational Chemistry at NYU Shanghai, East China Normal University, Shanghai 200062, China
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Fei Xia
- School of Chemistry and Molecular Engineering, NYU-ECNU Center for Computational Chemistry at NYU Shanghai, East China Normal University, Shanghai 200062, China
| |
Collapse
|
4
|
Zhang Y, Wang Y, Xia F, Cao Z, Xu X. Accurate and Efficient Estimation of Lennard-Jones Interactions for Coarse-Grained Particles via a Potential Matching Method. J Chem Theory Comput 2022; 18:4879-4890. [PMID: 35838523 DOI: 10.1021/acs.jctc.2c00513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The Lennard-Jones (LJ) energy functions are commonly used to describe the nonbonded interactions in bulk coarse-grained (CG) models, which contribute significantly to the stabilization of a local binding configuration or a self-assembly system. In many cases, systematic development of the LJ interaction parameters in a CG model requires a comprehensive sampling of the objective molecules at the all-atom (AA) level, which is therefore extremely time-consuming for large systems. Inspired by the concept of electrostatic potential (ESP), we define the LJ static potential (LJSP), by which the embedding potential energy surface can be constructed analytically. A semianalytic approach, namely, the LJSP matching method, is developed here to derive the CG parameters by minimizing the LJSP difference between the AA and the CG models, which provides a universal way to derive the CG LJ parameters from the AA models without doing presampling. The LJSP matching method is successful not only in deriving the LJ interaction energy landscape in the CG models for proteins, lipids, and DNA but also in reproducing the critical properties such as intermediate structures and enthalpy contributions as exemplified in simulating the self-assembly process of the dipalmitoylphosphatidylcholine (DPPC) lipids.
Collapse
Affiliation(s)
- Yuwei Zhang
- Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, MOE Key Laboratory of Computational Physical Sciences, Departments of Chemistry, Fudan University, Shanghai 200433, China
| | - Yunchu Wang
- LSEC, Institute of Computational Mathematics and Scientific/Engineering Computing, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China
| | - Fei Xia
- School of Chemistry and Molecular Engineering, NYU-ECNU Center for Computational Chemistry at NYU Shanghai, East China Normal University, Shanghai 200062, China
| | - Zexing Cao
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemistry Engineering, Xiamen University, Xiamen 361005, China
| | - Xin Xu
- Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, MOE Key Laboratory of Computational Physical Sciences, Departments of Chemistry, Fudan University, Shanghai 200433, China
| |
Collapse
|
5
|
Giulini M, Rigoli M, Mattiotti G, Menichetti R, Tarenzi T, Fiorentini R, Potestio R. From System Modeling to System Analysis: The Impact of Resolution Level and Resolution Distribution in the Computer-Aided Investigation of Biomolecules. Front Mol Biosci 2021; 8:676976. [PMID: 34164432 PMCID: PMC8215203 DOI: 10.3389/fmolb.2021.676976] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 05/06/2021] [Indexed: 12/18/2022] Open
Abstract
The ever increasing computer power, together with the improved accuracy of atomistic force fields, enables researchers to investigate biological systems at the molecular level with remarkable detail. However, the relevant length and time scales of many processes of interest are still hardly within reach even for state-of-the-art hardware, thus leaving important questions often unanswered. The computer-aided investigation of many biological physics problems thus largely benefits from the usage of coarse-grained models, that is, simplified representations of a molecule at a level of resolution that is lower than atomistic. A plethora of coarse-grained models have been developed, which differ most notably in their granularity; this latter aspect determines one of the crucial open issues in the field, i.e. the identification of an optimal degree of coarsening, which enables the greatest simplification at the expenses of the smallest information loss. In this review, we present the problem of coarse-grained modeling in biophysics from the viewpoint of system representation and information content. In particular, we discuss two distinct yet complementary aspects of protein modeling: on the one hand, the relationship between the resolution of a model and its capacity of accurately reproducing the properties of interest; on the other hand, the possibility of employing a lower resolution description of a detailed model to extract simple, useful, and intelligible information from the latter.
Collapse
Affiliation(s)
- Marco Giulini
- Physics Department, University of Trento, Trento, Italy.,INFN-TIFPA, Trento Institute for Fundamental Physics and Applications, Trento, Italy
| | - Marta Rigoli
- Physics Department, University of Trento, Trento, Italy.,INFN-TIFPA, Trento Institute for Fundamental Physics and Applications, Trento, Italy
| | - Giovanni Mattiotti
- Physics Department, University of Trento, Trento, Italy.,INFN-TIFPA, Trento Institute for Fundamental Physics and Applications, Trento, Italy
| | - Roberto Menichetti
- Physics Department, University of Trento, Trento, Italy.,INFN-TIFPA, Trento Institute for Fundamental Physics and Applications, Trento, Italy
| | - Thomas Tarenzi
- Physics Department, University of Trento, Trento, Italy.,INFN-TIFPA, Trento Institute for Fundamental Physics and Applications, Trento, Italy
| | - Raffaele Fiorentini
- Physics Department, University of Trento, Trento, Italy.,INFN-TIFPA, Trento Institute for Fundamental Physics and Applications, Trento, Italy
| | - Raffaello Potestio
- Physics Department, University of Trento, Trento, Italy.,INFN-TIFPA, Trento Institute for Fundamental Physics and Applications, Trento, Italy
| |
Collapse
|
6
|
Zha J, Zhang Y, Xia K, Gräter F, Xia F. Coarse-Grained Simulation of Mechanical Properties of Single Microtubules With Micrometer Length. Front Mol Biosci 2021; 7:632122. [PMID: 33659274 PMCID: PMC7917235 DOI: 10.3389/fmolb.2020.632122] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 12/30/2020] [Indexed: 01/03/2023] Open
Abstract
Microtubules are one of the most important components in the cytoskeleton and play a vital role in maintaining the shape and function of cells. Because single microtubules are some micrometers long, it is difficult to simulate such a large system using an all-atom model. In this work, we use the newly developed convolutional and K-means coarse-graining (CK-CG) method to establish an ultra-coarse-grained (UCG) model of a single microtubule, on the basis of the low electron microscopy density data of microtubules. We discuss the rationale of the micro-coarse-grained microtubule models of different resolutions and explore microtubule models up to 12-micron length. We use the devised microtubule model to quantify mechanical properties of microtubules of different lengths. Our model allows mesoscopic simulations of micrometer-level biomaterials and can be further used to study important biological processes related to microtubule function.
Collapse
Affiliation(s)
- Jinyin Zha
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Yuwei Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Kelin Xia
- Division of Mathematical Sciences, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Frauke Gräter
- Interdisciplinary Centre for Scientific Computing (IWR), Heidelberg University, Heidelberg, Germany.,Heidelberg Institute for Theoretical Studies (HITS), Schloβ-Wolfsbrunnenweg 35, Heidelberg, Germany.,Max Planck School Matter to Life, Jahnstraβe 29, Heidelberg, Germany
| | - Fei Xia
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China.,Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai, China
| |
Collapse
|
7
|
Zhang Y, Cao Z, Zhang JZ, Xia F. Double-Well Ultra-Coarse-Grained Model to Describe Protein Conformational Transitions. J Chem Theory Comput 2020; 16:6678-6689. [PMID: 32926616 DOI: 10.1021/acs.jctc.0c00551] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The double-well model is usually used to describe the conformational transition between two states of a protein. Since conformational changes usually occur within a relatively large time scale, coarse-grained models are often used to accelerate the dynamic process due to their inexpensive computational cost. In this work, we develop a double-well ultra-coarse-grained (DW-UCG) model to describe the conformational transitions of the adenylate kinase, glutamine-binding protein, and lactoferrin. The coarse-grained simulation results show that the DW-UCG model of adenylate kinase captures the crucial intermediate states in the LID-closing and NMP-closing pathways, reflecting the key secondary structural changes in the conformational transition. A comparison of the different DW-UCG models of adenylate kinase indicates that an appropriate choice of bead resolution could generate the free energy landscape that is comparable to that from the residue-based model. The coarse-grained simulations for the glutamine-binding protein and lactoferrin also demonstrate that the DW-UCG model is valid in reproducing the correct two-state behavior for their functional study, which indicates the potential application of the DW-UCG model in investigating the mechanism of conformational changes of large proteins.
Collapse
Affiliation(s)
- Yuwei Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemistry Engineering, Xiamen University, Xiamen 361005, China.,School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Zexing Cao
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemistry Engineering, Xiamen University, Xiamen 361005, China
| | - John Zenghui Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.,Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China
| | - Fei Xia
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.,Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China
| |
Collapse
|