1
|
Katsyuba SA, Grimme S. Structure and intermolecular interactions in ionic liquid 1-ethyl-3-methylimidazolium bromide and its aqueous solutions investigated by vibrational spectroscopy and quantum chemical computations. J Comput Chem 2024. [PMID: 39139057 DOI: 10.1002/jcc.27472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/10/2024] [Accepted: 07/13/2024] [Indexed: 08/15/2024]
Abstract
The recently developed efficient protocol to explicit quantum mechanical modeling of structure and IR spectra of liquids and solutions (S. A. Katsyuba, S. Spicher, T. P. Gerasimova, S. Grimme, J. Phys. Chem. B 2020, 124, 6664) is applied to ionic liquid (IL) 1-ethyl-3-methylimidazolium bromide (EmimBr), its C2-deuterated analog [Emim-d]Br and its aqueous solutions. It is shown that the solvation strongly modifies frequencies and IR intensities of the CH/CD stretching vibrations (νCH/νCD) of the imidazolium ring. The main vibrational spectroscopic features of the neat IL are reproduced by the simulations for a cluster (EmimBr)9, in which all three imidazolium CH moieties of the solvated cation form short contacts with three Br- anions, and another two Br- anions are located on top and bottom of imidazolium ring. Cluster models of aqueous solutions reproduce the experimental vibrational frequencies of actual solutions, provided that the Br- anion of solvated contact ion pair (CIP) is situated on top of imidazolium ring, and CH/CD moieties of the latter participate in short contacts with surrounding water molecules. Both structural and spectroscopic analysis allow to interpret the short contacts CH/CD⋯Br- and CH/CD⋯OH2 as hydrogen bonds of approximately equal strength. Enthalpies of bonding of these liquid-state H-bonds, estimated with the use of empirical correlations, amount to ca. 1.4 kcal⋅mol-1, while the analogous estimates obtained for the gas-phase charged species [Emim]2Br+ increase to 5.6 kcal⋅mol-1. It is shown that formation of solvent-shared ion pair (SIP) in aqueous solution, where the counterions of IL are separated by two water molecules H-bonded to a Br- anion, produces frequency shifts ΔνCH/CD, strongly different from the case of CIP formation. This difference can be used for IR/Raman spectroscopic differentiation of the type of solvated ion pairs of EmimBr or other related ILs.
Collapse
Affiliation(s)
- Sergey A Katsyuba
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Centre of RAS, Kazan, Russia
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, Clausius Institut für Physikalische und Theoretische Chemie der Universität Bonn, Bonn, Germany
| |
Collapse
|
2
|
Gerasimova TP, Zagidullin AA, Nikolaeva AN, Fayzullin RR, Saitova AM, Miluykov VA, Grimme S, Katsyuba SA. Structural flexibility of favipiravir and its structural analogues in solutions: experimental and computational insight. Org Biomol Chem 2024; 22:3668-3683. [PMID: 38623758 DOI: 10.1039/d4ob00404c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Combined UV-vis and quantum chemical studies of the structural flexibility and tautomerism of 6-R-3-hydroxy-2-pyrazine carboxamides in solutions revealed that their keto-enol transformations are accompanied by the deprotonation of enol tautomers and the formation of the corresponding anionic species. Both the solvent and the 6-R substituent strongly influence the relative abundance of the above forms in solutions. Anions are not formed in 1,2-dichloroethane (DCE), but the probability of deprotonation in neutral water and N,N-dimethylformamide (DMF) increases in the order R = H < F < NO2. Only enol tautomers of all solutes are found in DCE. DMF stabilizes keto forms only moderately and assists much strongly in the deprotonation of all three compounds. Water tends to stabilize both keto tautomers and deprotonated anions: the keto form dominates in the case of R = H (antiviral drug T-1105), the anions are found exclusively for R = NO2, and the aqueous solution of another antiviral drug, favipiravir (R = F), contains both the keto tautomer and the anionic form. The results of quantum chemical free energy calculations are in agreement with the experimental observations.
Collapse
Affiliation(s)
- Tatiana P Gerasimova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Centre of RAS, Arbuzov St. 8, 420088 Kazan, Russia.
| | - Almaz A Zagidullin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Centre of RAS, Arbuzov St. 8, 420088 Kazan, Russia.
| | - Anastasiia N Nikolaeva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Centre of RAS, Arbuzov St. 8, 420088 Kazan, Russia.
| | - Robert R Fayzullin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Centre of RAS, Arbuzov St. 8, 420088 Kazan, Russia.
| | - Aliya M Saitova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Centre of RAS, Arbuzov St. 8, 420088 Kazan, Russia.
| | - Vasili A Miluykov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Centre of RAS, Arbuzov St. 8, 420088 Kazan, Russia.
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie der Universität Bonn, Beringstr. 4, 53115 Bonn, Germany
| | - Sergey A Katsyuba
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Centre of RAS, Arbuzov St. 8, 420088 Kazan, Russia.
| |
Collapse
|
3
|
Katsyuba SA, Burganov TI. Computationally assisted vibrational spectroscopy of nucleic acid bases. 2. Thymine. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 309:123832. [PMID: 38190776 DOI: 10.1016/j.saa.2023.123832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 12/26/2023] [Accepted: 12/31/2023] [Indexed: 01/10/2024]
Abstract
As in the case of cytosine [Phys. Chem. Chem. Phys. 2023, 25, 24121-24128], Raman and infrared (IR) spectra of aqueous thymine and its N-deuterated derivative, thymine-d2 have been computationally reproduced and interpreted with the use of the recently developed efficient protocol to explicit quantum mechanical modeling of structure and IR spectra of liquids and solutions [J. Phys. Chem. B, 2020, 124, 6664-6670]. A cluster model of a solute surrounded by 30 water molecules is shown to be sufficient to reproduce experimental vibrational frequencies and relative Raman intensities with the use of B3LYP-D3/def2-TZVP or B3LYP-D3/aug-cc-pVDZ simulations. Analogous PBE-D3 computations provided a less good, but still reasonably accurate, modeling of Raman spectra. It is shown that strong changes of frequencies and relative intensities of the Raman bands of thymine, caused by its hydration, can be interpreted mainly as a result of hydrogen bonding with 6 nearest water molecules. Non-negligible improvement of the quality of simulations for larger clusters comprising water molecules that do not have direct contacts with the solute, suggests that spectroscopic effects of hydration should be ascribed to the joined action of solute-solvent and solvent-solvent interactions. Nevertheless, the moderate number of water molecules required for successful simulations of the Raman spectra of aqueous thymine, suggests that the vibrational modes and derivatives of the polarizability of the solute are mainly locally influenced, while the effect of bulk water is rather modest.
Collapse
Affiliation(s)
- Sergey A Katsyuba
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Centre of RAS, Arbuzov st. 8, 420088 Kazan, Russia.
| | - Timur I Burganov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Centre of RAS, Arbuzov st. 8, 420088 Kazan, Russia
| |
Collapse
|
4
|
Kuznetsova AA, Chachkov DV, Belogorlova NA, Malysheva SF, Vereshchagina YA. Structure of Tris[2-(4-pyridyl)ethyl]phosphine, Tris[2-(2-pyridyl)ethyl]phosphine, and Their Chalcogenides in Solution: Dipole Moments, IR Spectroscopy, and DFT Study. Molecules 2023; 29:110. [PMID: 38202693 PMCID: PMC10779502 DOI: 10.3390/molecules29010110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
Tris(hetaryl)substituted phosphines and their chalcogenides are promising polydentate ligands for the design of metal complexes. An experimental and theoretical conformational analysis of tris[2-(4-pyridyl)ethyl]phosphine, tris[2-(2-pyridyl)ethyl]phosphine, and their chalcogenides was carried out by the methods of dipole moments, IR spectroscopy and DFT B3PW91/6-311++G(df,p) calculations. In solution, these compounds exist as an equilibrium of mainly non-eclipsed (synclinal or antiperiplanar) forms with a predominance of a symmetrical conformer having a gauche-orientation of the Csp3-Csp3 bonds of pyridylethyl substituents relative to the P=X bond (X = lone pair, O, S, Se) and a gauche-orientation of the pyridyl rings relative to the zigzag ethylene bridges. Regardless of the presence and nature of the chalcogen atom (oxygen, sulfur, or selenium) in the studied molecules with many axes of internal rotation, steric factors-the different position of the nitrogen atoms in the pyridyl rings and the configuration of ethylene bridges-determine the realization and spatial structure of preferred conformers.
Collapse
Affiliation(s)
- Anastasiia A. Kuznetsova
- Department of Physical Chemistry, A.M. Butlerov Institute of Chemistry, Kazan Federal University, Kremlevskaya 18, 420008 Kazan, Russia;
| | - Denis V. Chachkov
- Kazan Department of Joint Supercomputer Center of Russian Academy of Sciences—Branch of Federal Scientific Center “Scientific Research Institute for System Analysis of the RAS”, Lobachevskogo 2/31, 420111 Kazan, Russia;
| | - Natalia A. Belogorlova
- A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Favorskogo 1, 664033 Irkutsk, Russia; (N.A.B.); (S.F.M.)
| | - Svetlana F. Malysheva
- A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Favorskogo 1, 664033 Irkutsk, Russia; (N.A.B.); (S.F.M.)
| | - Yana A. Vereshchagina
- Department of Physical Chemistry, A.M. Butlerov Institute of Chemistry, Kazan Federal University, Kremlevskaya 18, 420008 Kazan, Russia;
| |
Collapse
|
5
|
Sun W, Yao D, Tai Y, Zhou L, Tian W, Yang M, Li C. Efficient electrocatalytic CO 2 reduction to ethanol through the proton coupled electron transfer process of PV nMo (12-n) (n = 1, 2, 3) over indium electrode. J Colloid Interface Sci 2023; 650:121-131. [PMID: 37399748 DOI: 10.1016/j.jcis.2023.06.167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/08/2023] [Accepted: 06/24/2023] [Indexed: 07/05/2023]
Abstract
The multistep proton-coupled electron transfer (PCET) processes are beneficial for products distribution and selectivity of the electrocatalytic CO2 reduction reaction (CO2RR), which are affected by the nature of the catalyst and electrolyte at electrode-electrolyte interface. Polyoxometalates (POMs) are electron regulators of PCET processes, which can catalyze CO2RR effectively. Accordingly, the commercial indium electrodes are combined in this work with a series of Keggin-type POMs (PVnMo(12-n)O40)(n+3)-, n = 1, 2, 3) to process CO2RR with Faradaic efficiency toward ethanol reaching 93.4% at -0.3 V (vs. RHE). The cyclic voltammetry and X-ray photoelectron spectroscopy results reveal the activation of CO2 molecules by the first PCET process of the VⅤ/Ⅳ in POM. Subsequently, the PCET process of MoⅥ/Ⅴ results the oxidation of the electrode, causing the loss of In0 active sites. Electrochemical in-situ infrared spectroscopy confirms the weak adsorption of *CO at the later stage of electrolysis due to the oxidation of the In0 active sites. The indium electrode in PV3Mo9 system retains more In0 active sites owing to the highest V-substitution ratio, thereby ensuring a high adsorption ratio of *CO and CC coupling. In sum, the regulation of the interface microenvironment by POM electrolyte additives can be used to boost the performance of CO2RR.
Collapse
Affiliation(s)
- Wencong Sun
- Energy Chemical Engineering Professional Laboratory, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, PR China
| | - Dong Yao
- Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an 710119, PR China.
| | - Yuehua Tai
- Energy Chemical Engineering Professional Laboratory, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, PR China
| | - Li Zhou
- Energy Chemical Engineering Professional Laboratory, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, PR China
| | - Wenxue Tian
- Energy Chemical Engineering Professional Laboratory, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, PR China
| | - Min Yang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, PR China.
| | - Chunxiang Li
- Energy Chemical Engineering Professional Laboratory, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, PR China.
| |
Collapse
|
6
|
Katsyuba SA, Burganov TI. Computational analysis of the vibrational spectra and structure of aqueous cytosine. Phys Chem Chem Phys 2023; 25:24121-24128. [PMID: 37655545 DOI: 10.1039/d3cp03059h] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
The recently developed efficient protocol for the explicit quantum mechanical modeling of the structure and IR spectra of liquids and solutions [Katsyuba et al., J. Phys. Chem. B, 2020, 124, 6664-6670] is used to describe aqueous solutions of cytosine. The same cluster model of a solute surrounded by the first solvation shell of solvent molecules was shown to be sufficient to reproduce experimental vibrational frequencies and relative IR and Raman intensities. An equally good quality of Raman spectra was provided by B3LYP-D3/def2-TZVP and B3LYP-D3/aug-cc-pVDZ simulations. Computations using the PBE functional were sufficient for modeling of the IR spectra but failed in the simulations of Raman scattering. It is shown that strong changes of frequencies and relative intensities of Raman and IR bands of cytosine, caused by its hydration, cannot be completely assigned to the influence of hydrogen bonds (HBs) with 7 or 8 closest water molecules. They are rather ascribed to the combined effect of solute-solute and solute-solvent HBs with the participation of at least 30 water molecules separating cytosine from the bulk solvent. This suggests that the vibrational modes and derivatives of the polarizability and dipole moment of the solute are mainly locally influenced by its first hydration shell, while the influence of bulk water is rather modest.
Collapse
Affiliation(s)
- Sergey A Katsyuba
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Centre of RAS, Arbuzov st. 8, 420088 Kazan, Russia.
| | - Timur I Burganov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Centre of RAS, Arbuzov st. 8, 420088 Kazan, Russia.
| |
Collapse
|
7
|
Conte R, Nandi A, Qu C, Yu Q, Houston PL, Bowman JM. Semiclassical and VSCF/VCI Calculations of the Vibrational Energies of trans- and gauche-Ethanol Using a CCSD(T) Potential Energy Surface. J Phys Chem A 2022; 126:7709-7718. [PMID: 36240438 DOI: 10.1021/acs.jpca.2c06322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A recent full-dimensional Δ-Machine learning potential energy surface (PES) for ethanol is employed in semiclassical and vibrational self-consistent field (VSCF) and virtual-state configuration interaction (VCI) calculations, using MULTIMODE, to determine the anharmonic vibrational frequencies of vibration for both the trans and gauche conformers of ethanol. Both semiclassical and VSCF/VCI energies agree well with the experimental data. We find significant mixing between the VSCF basis states due to Fermi resonances between bending and stretching modes. The same effects are also accurately described by the full-dimensional semiclassical calculations. These are the first high-level anharmonic calculations using a PES, in particular a "gold-standard" CCSD(T) one.
Collapse
Affiliation(s)
- Riccardo Conte
- Dipartimento di Chimica, Università degli Studi di Milano, via Golgi 19, 20133 Milano, Italy
| | - Apurba Nandi
- Department of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
| | - Chen Qu
- Independent Researcher, Toronto, Ontario M9B0E3, Canada
| | - Qi Yu
- Department of Chemistry Yale University, New Haven, Connecticut 06520, United States
| | - Paul L Houston
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States.,Department of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Joel M Bowman
- Department of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
8
|
Nandi A, Conte R, Qu C, Houston PL, Yu Q, Bowman JM. Quantum Calculations on a New CCSD(T) Machine-Learned Potential Energy Surface Reveal the Leaky Nature of Gas-Phase Trans and Gauche Ethanol Conformers. J Chem Theory Comput 2022; 18:5527-5538. [PMID: 35951990 PMCID: PMC9476654 DOI: 10.1021/acs.jctc.2c00760] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
![]()
Ethanol is a molecule of fundamental interest in combustion,
astrochemistry,
and condensed phase as a solvent. It is characterized by two methyl
rotors and trans (anti) and gauche conformers, which are known to be very close in energy.
Here we show that based on rigorous quantum calculations of the vibrational
zero-point state, using a new ab initio potential
energy surface (PES), the ground state resembles the trans conformer, but substantial delocalization to the gauche conformer is present. This explains experimental issues about identification
and isolation of the two conformers. This “leak” effect
is partially quenched when deuterating the OH group, which further
demonstrates the need for a quantum mechanical approach. Diffusion
Monte Carlo and full-dimensional semiclassical dynamics calculations
are employed. The new PES is obtained by means of a Δ-machine
learning approach starting from a pre-existing low level density functional
theory surface. This surface is brought to the CCSD(T) level of theory
using a relatively small number of ab initio CCSD(T)
energies. Agreement between the corrected PES and direct ab
initio results for standard tests is excellent. One- and
two-dimensional discrete variable representation calculations focusing
on the trans–gauche torsional
motion are also reported, in reasonable agreement with experiment.
Collapse
Affiliation(s)
- Apurba Nandi
- Department of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
| | - Riccardo Conte
- Dipartimento di Chimica, Università Degli Studi di Milano, via Golgi 19, 20133 Milano, Italy
| | - Chen Qu
- Independent Researcher, Toronto 66777, Canada
| | - Paul L Houston
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States.,Department of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Qi Yu
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Joel M Bowman
- Department of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
9
|
|
10
|
Spicher S, Plett C, Pracht P, Hansen A, Grimme S. Automated Molecular Cluster Growing for Explicit Solvation by Efficient Force Field and Tight Binding Methods. J Chem Theory Comput 2022; 18:3174-3189. [PMID: 35482317 DOI: 10.1021/acs.jctc.2c00239] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
An automated and broadly applicable workflow for the description of solvation effects in an explicit manner is introduced. This method, termed quantum cluster growth (QCG), is based on the semiempirical GFN2-xTB/GFN-FF methods, enabling efficient geometry optimizations and MD simulations. Fast structure generation is provided using the intermolecular force field xTB-IFF. Additionally, the approach uses an efficient implicit solvation model for the electrostatic embedding of the growing clusters. The novel QCG procedure presents a robust cluster generation tool for subsequent application of higher-level (e.g., DFT) methods to study solvation effects on molecular geometries explicitly or to average spectroscopic properties over cluster ensembles. Furthermore, the computation of the solvation free energy with a supermolecular approach can be carried out with QCG. The underlying growing process is physically motivated by computing the leading-order solute-solvent interactions first and can account for conformational and chemical changes due to solvation for low-energy barrier processes. The conformational space is explored with the NCI-MTD algorithm as implemented in the CREST program, using a combination of metadynamics and MD simulations. QCG with GFN2-xTB yields realistic solution geometries and reasonable solvation free energies for various systems without introducing many empirical parameters. Computed IR spectra of some solutes with QCG show a better match to the experimental data compared to well-established implicit solvation models.
Collapse
Affiliation(s)
- Sebastian Spicher
- Mulliken Center for Theoretical Chemistry, Institute of Physical and Theoretical Chemistry, University of Bonn, Beringstr. 4, 53115 Bonn, Germany
| | - Christoph Plett
- Mulliken Center for Theoretical Chemistry, Institute of Physical and Theoretical Chemistry, University of Bonn, Beringstr. 4, 53115 Bonn, Germany
| | - Philipp Pracht
- Mulliken Center for Theoretical Chemistry, Institute of Physical and Theoretical Chemistry, University of Bonn, Beringstr. 4, 53115 Bonn, Germany
| | - Andreas Hansen
- Mulliken Center for Theoretical Chemistry, Institute of Physical and Theoretical Chemistry, University of Bonn, Beringstr. 4, 53115 Bonn, Germany
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, Institute of Physical and Theoretical Chemistry, University of Bonn, Beringstr. 4, 53115 Bonn, Germany
| |
Collapse
|
11
|
Katsyuba SA, Zvereva EE. What quantum chemical simulations tell us about the infrared spectra, structure and interionic interactions of a bulk ionic liquid. Phys Chem Chem Phys 2022; 24:7349-7355. [PMID: 35266472 DOI: 10.1039/d1cp05745f] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The recently developed efficient protocol to explicit quantum mechanical modeling of the structure and IR spectra of liquids and solutions [Katsyuba et al., J. Phys. Chem. B, 2020, 124, 6664-6670] is applied to ionic liquid 1-ethyl-3-methyl-imidazolium tetrafluoroborate [Emim][BF4], and its C2-deuterated analog [Emim-d][BF4]. It is shown that the solvation strongly modifies the frequencies and IR intensities of both cationic and anionic components of the ionic liquids. The main features of the bulk spectra are reproduced by the simulations for cluster ([Emim][BF4])8, representing an ion pair solvated by the first solvation shell. The geometry of the cluster closely resembles the solid-state structure of the actual ionic liquid and is characterized by short contacts of all CH moieties of the imidazolium ring with [BF4]- anions. Both structural and spectroscopic analyses allow the contacts to be interpreted as hydrogen bonds of approximately equal strength. The enthalpies of these liquid-state H-bonds, estimated with the use of empirical correlations, amount to 1.2-1.5 kcal mol-1, while the analogous estimates obtained for the gas-phase charged species [Emim][BF4]2- and [Emim]2[BF4]+ increase to 3.6-3.9 kcal mol-1.
Collapse
Affiliation(s)
- Sergey A Katsyuba
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Centre of RAS, Arbuzov st. 8, 420088, Kazan, Russia.
| | - Elena E Zvereva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Centre of RAS, Arbuzov st. 8, 420088, Kazan, Russia. .,IFP Energies Nouvelles, 1 et 4 avenue de Bois-Préau, 92852 Rueil-Malmaison Cedex, France
| |
Collapse
|
12
|
Katsyuba S, Mustakimova L, Gerasimova T, Burganov TI, Sirazieva A, Voronina JK, Shamsutdinova LR, Rizvanov IK, Mamedov VA. Synthesis and Computationally Assisted Spectroscopic Study of Tautomerism in 3-(Phenyl(2-arylhydrazineylidene)methyl)quinoxalin-2(1H)-ones. NEW J CHEM 2022. [DOI: 10.1039/d2nj03499a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The recently developed efficient protocol combining implicit and explicit, accurate quantum mechanical modeling of the condensed state [Katsyuba et al., J. Chem. Phys. 155, 024507 (2021)] is used to describe...
Collapse
|