1
|
Chan B, Karton A. The Bond Energy of the Carbon Skeleton in Polyaromatic Halohydrocarbon Molecules. Chemphyschem 2024; 25:e202400234. [PMID: 39361551 DOI: 10.1002/cphc.202400234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/13/2024] [Indexed: 10/05/2024]
Abstract
We have investigated the thermochemical stability of the carbon skeleton in polycyclic aromatic (halo) hydrocarbons using a systematic collection of molecules (the PAHH343 set). With high-level quantum chemistry methods such as W1X-2, we have obtained chemically accurate (i. e.,±~5 kJ mol-1) "normalized carbon skeleton" bond energies. They are calculated by removing the C-H and C-X (X=F, Cl) bond energies from the total atomization energy, and then normalizing on a per-carbon basis. For species with isomeric halogen-substitution pattern, the energetic variation is generally small, though larger difference can also be seen due to structural distortion from steric repulsion. The skeleton energy becomes smaller with an increasing number of halogen atoms due to the withdrawal of electron density from the bonding orbitals, mainly through the σ-bonds. We have further assessed the performance of some low-cost quantum chemistry methods for the PAHH343 set. The deviations from reference values are largely systematic, and can thus be compensated for, yielding errors that are on average below 10 kJ mol-1. This provides the prospect for the study of an even wider range of PAHH and related systems.
Collapse
Affiliation(s)
- Bun Chan
- Graduate School of Engineering, Nagasaki University, Bunkyo 1-14, Nagasaki-shi, Nagasaki, 852-8521, Japan
| | - Amir Karton
- School of Science and Technology, University of New England, Armidale, NSW 2351, Australia
| |
Collapse
|
2
|
Crescenzi O, Graziano G. The interaction of thiocyanate with peptides-A computational study. J Comput Chem 2024; 45:2214-2231. [PMID: 38795315 DOI: 10.1002/jcc.27440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/07/2024] [Accepted: 05/14/2024] [Indexed: 05/27/2024]
Abstract
According to the Hofmeister series, thiocyanate is the strongest "salting in" anion. In fact, it has a strong denaturant activity against the native state of globular proteins. A molecular level rationalization of the Hofmeister series is still missing, and therefore the denaturant activity of thiocyanate also awaits a robust explanation. In the last years, different types of experimental studies have shown that thiocyanate is capable to directly interact with both polar and nonpolar groups of polypeptide chains. This finding has been scrutinized via a careful computational procedure based on density functional theory approaches. The results indicate that thiocyanate is able to make H-bonds via both the nitrogen and sulfur atom, and to make strong van der Waals interactions with almost all the groups of polypeptide chains, regardless of their polarity.
Collapse
Affiliation(s)
- Orlando Crescenzi
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Naples, Italy
| | - Giuseppe Graziano
- Dipartimento di Scienze e Tecnologie, Università del Sannio, Benevento, Italy
| |
Collapse
|
3
|
Chan B. Limiting factors in the accuracy of DFT calculation for redox potentials. J Comput Chem 2024; 45:1177-1186. [PMID: 38311976 DOI: 10.1002/jcc.27320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 02/06/2024]
Abstract
In the present study, we have investigated factors affecting the accuracy of computational chemistry calculation of redox potentials, namely the gas-phase ionization energy (IE) and electron affinity (EA), and the continuum solvation effect. In general, double-hybrid density functional theory methods yield IEs and EAs that are on average within ~0.1 eV of our high-level W3X-L benchmark, with the best performing method being DSD-BLYP/ma-def2-QZVPP. For lower-cost methods, the average errors are ~0.2-0.3 eV, with ωB97X-3c being the most accurate (~0.15 eV). For the solvation component, essentially all methods have an average error of ~0.3 eV, which shows the limitation of the continuum solvation model. Curiously, the directly calculated redox potentials show errors of ~0.3 eV for all methods. These errors are notably smaller than what can be expected from error propagation with the two components (IE and EA, and solvation effect). Such a discrepancy can be attributed to the cancellation of errors, with the lowest-cost GFN2-xTB method benefiting the most, and the most accurate ωB97X-3c method benefiting the least. For organometallic species, the redox potentials show large deviations exceeding ~0.5 eV even for DSD-BLYP. The large errors are attributed to those for the gas-phase IEs and EAs, which represents a major barrier to the accurate calculation of redox potentials for such systems.
Collapse
Affiliation(s)
- Bun Chan
- Graduate School of Engineering, Nagasaki University, Nagasaki, Japan
- RIKEN Center for Computational Science, Kobe, Japan
| |
Collapse
|
4
|
Gómez S, Flórez E, Acelas N, Cappelli C, Hadad C, Restrepo A. Encapsulation of charged halogens by the 5 12 water cage. Phys Chem Chem Phys 2024; 26:15426-15436. [PMID: 38747303 DOI: 10.1039/d4cp01340a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
This study focuses on the encapsulation of the entire series of halides by the 512 cage of twenty water molecules and on the characterization of water to water and water to anion interactions. State-of-the-art computations are used to determine equilibrium geometries, energy related quantities, and thermal stability towards dissociation and to dissect the nature and strength of intermolecular interactions holding the clusters as stable units. Two types of structures are revealed: heavily deformed cages for F- indicating a preference for microsolvation, and slightly deformed cages for the remaining anions indicating a preference for encapsulation. The primary variable dictating the properties of the clusters is the charge density of the central halide, with the most severe effects observed for the F- case. For the remaining halides, the anion may be safely viewed as a sort of "big electron" with little local disruptive power, enough to affect the network of non-covalent hydrogen bonds in the cage, but not enough to break it. Gibbs energies for dissociation either into cavity and halide or into water molecules and halide suggest that, in a similar way as to methane clathrate, a more weakly bonded complex that has been detected in the gas phase, all halide containing clathrate-like structures should be amenable to experimental detection in the gas phase at moderate temperature and pressure conditions.
Collapse
Affiliation(s)
- Sara Gómez
- Scuola Normale Superiore, Classe di Scienze, Piazza dei Cavalieri 7, 56126 Pisa, Italy.
| | - Elizabeth Flórez
- Grupo de Materiales con Impacto, Mat&mpac. Facultad de Ciencias Básicas, Universidad de Medellín, Carrera 87 No. 30-65, 050026 Medellín, Colombia
| | - Nancy Acelas
- Grupo de Materiales con Impacto, Mat&mpac. Facultad de Ciencias Básicas, Universidad de Medellín, Carrera 87 No. 30-65, 050026 Medellín, Colombia
| | - Chiara Cappelli
- Scuola Normale Superiore, Classe di Scienze, Piazza dei Cavalieri 7, 56126 Pisa, Italy.
| | - Cacier Hadad
- Instituto de Química, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia.
| | - Albeiro Restrepo
- Instituto de Química, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia.
| |
Collapse
|
5
|
Chan B, Dawson W, Nakajima T. Sorting drug conformers in enzyme active sites: the XTB way. Phys Chem Chem Phys 2024; 26:12610-12618. [PMID: 38597505 DOI: 10.1039/d4cp00930d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
In the present study, we have used the MEI196 set of interaction energies to investigate low-cost computational chemistry approaches for the calculation of binding between a molecule and its environment. Density functional theory (DFT) methods, when used with the vDZP basis set, yield good agreement with the reference energies. On the other hand, semi-empirical methods are less accurate as expected. By examining different groups of systems within MEI196 that contain species of a similar nature, we find that chemical similarity leads to cancellation of errors in the calculation of relative binding energies. Importantly, the semi-empirical method GFN1-xTB (XTB1) yields reasonable results for this purpose. We have thus further assessed the performance of XTB1 for calculating relative energies of docking poses of substrates in enzyme active sites represented by cluster models or within the ONIOM protocol. The results support the observations on error cancellation. This paves the way for the use of XTB1 in parts of large-scale virtual screening workflows to accelerate the drug discovery process.
Collapse
Affiliation(s)
- Bun Chan
- Graduate School of Engineering, Nagasaki University, Bunkyo 1-14, Nagasaki 852-8521, Japan.
- RIKEN Center for Computational Science, 7-1-26, Minatojima-minami-machi, Chuo-ku, Kobe, 650-0047, Japan
| | - William Dawson
- RIKEN Center for Computational Science, 7-1-26, Minatojima-minami-machi, Chuo-ku, Kobe, 650-0047, Japan
| | - Takahito Nakajima
- RIKEN Center for Computational Science, 7-1-26, Minatojima-minami-machi, Chuo-ku, Kobe, 650-0047, Japan
| |
Collapse
|
6
|
Prasad VK, Cheng F, Fekl U, Jacobsen HA. Applications of noisy quantum computing and quantum error mitigation to "adamantaneland": a benchmarking study for quantum chemistry. Phys Chem Chem Phys 2024; 26:4071-4082. [PMID: 38225897 DOI: 10.1039/d3cp03523a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
The field of quantum computing has the potential to transform quantum chemistry. The variational quantum eigensolver (VQE) algorithm has allowed quantum computing to be applied to chemical problems in the noisy intermediate-scale quantum (NISQ) era. Applications of VQE have generally focused on predicting absolute energies instead of chemical properties that are relative energy differences and that are most interesting to chemists studying a chemical problem. We address this shortcoming by constructing a molecular benchmark data set in this work containing isomers of C10H16 and carbocationic rearrangements of C10H15+, calculated at a high-level of theory. Using the data set, we compared noiseless VQE simulations to conventionally performed density functional and wavefunction theory-based methods to understand the quality of results. We also investigated the effectiveness of a quantum state tomography-based error mitigation technique in applications of VQE under noise (simulated and real). Our findings reveal that the use of quantum error mitigation is crucial in the NISQ era and advantageous to yield almost noiseless quality results.
Collapse
Affiliation(s)
- Viki Kumar Prasad
- The Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, 10 Kings College Road, Toronto, Ontario, Canada, M5S 3G4. arno,
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario, Canada, L5L 1C6.
| | - Freeman Cheng
- Department of Computer Science, University of Toronto, 40 St. George Street, Toronto, Ontario, Canada, M5S 2E4
| | - Ulrich Fekl
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario, Canada, L5L 1C6.
| | - Hans-Arno Jacobsen
- The Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, 10 Kings College Road, Toronto, Ontario, Canada, M5S 3G4. arno,
- Department of Computer Science, University of Toronto, 40 St. George Street, Toronto, Ontario, Canada, M5S 2E4
| |
Collapse
|
7
|
Akhmetshina ES, Khursan SL. Theoretical determination of the standard enthalpies of formation of alkyl radicals using the concept of a complete set of homodesmotic reactions. J Mol Graph Model 2023; 125:108615. [PMID: 37647723 DOI: 10.1016/j.jmgm.2023.108615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 08/23/2023] [Accepted: 08/23/2023] [Indexed: 09/01/2023]
Abstract
The complete sets of homodesmotic reactions (HDR) for 107 acyclic alkyl free radicals С4-С9 of normal and branched structure were constructed using the graph-theoretic representation and analysis of a tested compound. The absolute enthalpies of the studied compounds and HDR reference structures were calculated using the M062X/cc-pVTZ level of theory. Based on these data, the thermal effects of HDRs were calculated and then applied to determine the standard enthalpies of formation of the studied radicals using the known enthalpies of formation of reference structures. The dissociation energies of BDE C-H and C-CH3 bonds were also calculated. The effect of radical structure on the BDE value is discussed, and a new effect of stabilization of the radical center in the skewed conformation of free radical is established; this effect has not been previously described in the scientific literature.
Collapse
Affiliation(s)
- Ekaterina S Akhmetshina
- Institution of Russian Academy of Sciences Institute of Organic Chemistry, Ufa Scientific Centre of the RAS, 71 Prospect Oktyabrya, 450054, Ufa, Russian Federation
| | - Sergey L Khursan
- Institution of Russian Academy of Sciences Institute of Organic Chemistry, Ufa Scientific Centre of the RAS, 71 Prospect Oktyabrya, 450054, Ufa, Russian Federation.
| |
Collapse
|
8
|
Wang Y, Guo Y, Neese F, Valeev EF, Li W, Li S. Cluster-in-Molecule Approach with Explicitly Correlated Methods for Large Molecules. J Chem Theory Comput 2023; 19:8076-8089. [PMID: 37920973 DOI: 10.1021/acs.jctc.3c00627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
In this article, we present a series of explicitly correlated local correlation methods developed under the cluster-in-molecule (CIM) framework, including explicitly correlated second-order Møller-Plesset perturbation (MP2), coupled-cluster singles and doubles (CCSD), domain-based local pair natural orbital CCSD (DLPNO-CCSD), and DLPNO-CCSD with perturbative triples (DLPNO-CCSD(T)). In these methods, F12 correction is decomposed into contributions from each occupied local molecular orbital and then evaluated independently in a given cluster, which consists of a subset of localized orbitals. These newly developed methods allow F12 calculations of large molecules (up to 145 atoms for quasi-one-dimensional systems) on a single node. We use these methods to investigate the relative stability between extended and folded alkane C30H62, the relative stability of four secondary structures of a polyglycine Ace(Gly)10NH2, and the binding energies of two host-guest complexes. The results demonstrate that the combination of CIM with F12 methods is a promising way to investigate large molecules with small basis set errors.
Collapse
Affiliation(s)
- Yuqi Wang
- School of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic Chemistry of MOE, New Cornerstone Science Laboratory, Institute of Theoretical and Computational Chemistry, Nanjing University, Nanjing 210023, P. R. China
| | - Yang Guo
- Qingdao Institute for Theoretical and Computational Sciences, Shandong University, Qingdao, Shandong 266237, P. R. China
| | - Frank Neese
- Max Planck Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Edward F Valeev
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Wei Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic Chemistry of MOE, New Cornerstone Science Laboratory, Institute of Theoretical and Computational Chemistry, Nanjing University, Nanjing 210023, P. R. China
| | - Shuhua Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic Chemistry of MOE, New Cornerstone Science Laboratory, Institute of Theoretical and Computational Chemistry, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
9
|
Werner HJ, Hansen A. Accurate Calculation of Isomerization and Conformational Energies of Larger Molecules Using Explicitly Correlated Local Coupled Cluster Methods in Molpro and ORCA. J Chem Theory Comput 2023; 19:7007-7030. [PMID: 37486154 DOI: 10.1021/acs.jctc.3c00270] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
An overview of the approximations in the explicitly correlated local coupled cluster methods PNO-LCCSD(T)-F12 in Molpro and DLPNO-CCSD(T)F12 in ORCA is given. Options to select the domains of projected atomic orbitals (PAOs), pair natural orbitals (PNOs), and triples natural orbitals (TNOs) in both programs are described and compared in detail. The two programs are applied to compute isomerization and conformational energies of the ISOL24 and ACONFL test sets, where the former is part of the GMTKN55 benchmark suite. Thorough studies of basis set effects are presented for selected systems. These revealed large intramolecular basis set superposition effects that make it practically impossible to reliably determine the complete basis set (CBS) limits without including explicitly correlated terms. The latter strongly reduce the basis set dependence and at the same time also errors caused by the local domain approximations. On the basis of these studies, the PNO-LCCSD(T)-F12 method is applied to determine new reference energies for the above-mentioned benchmark sets. We are confident that our results should agree within a few tenths of a kcal mol-1 with the (unknown) CCSD(T)/CBS values, which therefore allowed us to define computational settings for accurate explicitly correlated local coupled cluster methods with moderate computational effort. With these protocols, especially PNO-LCCSD(T)-F12b/AVTZ', reliable reference values for comprehensive benchmark sets can be generated efficiently. This can significantly advance the development and evaluation of the performance of approximate electronic structure methods, especially improved density functional approximations or machine learning approaches.
Collapse
Affiliation(s)
- Hans-Joachim Werner
- Institut für Theoretische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
| | - Andreas Hansen
- Mulliken Center for Theoretical Chemistry, Universität Bonn, Beringstrasse 4, D-53115 Bonn, Germany
| |
Collapse
|
10
|
Semidalas E, Martin JML. Correlation Consistent Basis Sets for Explicitly Correlated Theory: The Transition Metals. J Chem Theory Comput 2023; 19:5806-5820. [PMID: 37540641 PMCID: PMC10500978 DOI: 10.1021/acs.jctc.3c00506] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Indexed: 08/06/2023]
Abstract
We present correlation consistent basis sets for explicitly correlated (F12) calculations, denoted VnZ(-PP)-F12-wis (n = D,T), for the d-block elements. The cc-pVDZ-F12-wis basis set is contracted to [8s7p5d2f] for the 3d-block, while its ECP counterpart for the 4d and 5d-blocks, cc-pVDZ-PP-F12-wis, is contracted to [6s6p5d2f]. The corresponding contracted sizes for cc-pVTZ(-PP)-F12-wis are [9s8p6d3f2g] for the 3d-block elements and [7s7p6d3f2g] for the 4d and 5d-block elements. Our VnZ(-PP)-F12-wis basis sets are evaluated on challenging test sets for metal-organic barrier heights (MOBH35) and group-11 metal clusters (CUAGAU-2). In F12 calculations, they are found to be about as close to the complete basis set limit as the combination of standard cc-pVnZ-F12 on main-group elements with the standard aug-cc-pV(n+1)Z(-PP) basis sets on the transition metal(s). While our basis sets are somewhat more compact than aug-cc-pV(n+1)Z(-PP), the CPU time benefit is negligible for catalytic complexes that contain only one or two transition metals among dozens of main-group elements; however, it is somewhat more significant for metal clusters.
Collapse
Affiliation(s)
- Emmanouil Semidalas
- Department of Molecular Chemistry
and Materials Science, Weizmann Institute
of Science, 7610001 Reḥovot, Israel
| | - Jan M. L. Martin
- Department of Molecular Chemistry
and Materials Science, Weizmann Institute
of Science, 7610001 Reḥovot, Israel
| |
Collapse
|
11
|
Karton A, Chan B. Performance of local G4(MP2) composite ab initio procedures for fullerene isomerization energies. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2022.113874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|