1
|
Yan J, Chen L, Warshel A, Bai C. Exploring the Activation Process of the Glycine Receptor. J Am Chem Soc 2024; 146:26297-26312. [PMID: 39279763 DOI: 10.1021/jacs.4c08489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
Glycine receptors (GlyR) conduct inhibitory glycinergic neurotransmission in the spinal cord and the brainstem. They play an important role in muscle tone, motor coordination, respiration, and pain perception. However, the mechanism underlying GlyR activation remains unclear. There are five potential glycine binding sites in α1 GlyR, and different binding patterns may cause distinct activation or desensitization behaviors. In this study, we investigated the coupling of protein conformational changes and glycine binding events to elucidate the influence of binding patterns on the activation and desensitization processes of α1 GlyRs. Subsequently, we explored the energetic distinctions between the apical and lateral pathways during α1 GlyR conduction to identify the pivotal factors in the ion conduction pathway preference. Moreover, we predicted the mutational effects of the key residues and verified our predictions using electrophysiological experiments. For the mutants that can be activated by glycine, the predictions of the mutational directions were all correct. The strength of the mutational effects was assessed using Pearson's correlation coefficient, yielding a value of -0.77 between the calculated highest energy barriers and experimental maximum current amplitudes. These findings contribute to our understanding of GlyR activation, identify the key residues of GlyRs, and provide guidance for mechanistic studies on other pLGICs.
Collapse
Affiliation(s)
- Junfang Yan
- School of Medicine, Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Luonan Chen
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Arieh Warshel
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-1062, United States
| | - Chen Bai
- School of Medicine, Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen 518172, China
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Chenzhu (MoMeD) Biotechnology Co., Ltd., Hangzhou 310005, China
| |
Collapse
|
2
|
Adam S, Kass I, Krepel-Zussman D, Masarati G, Shemesh D, Sharir-Ivry A. Effect of Protein-Polarized Ligand Charges on Relative Protein Ligand Binding Affinities. J Chem Theory Comput 2024. [PMID: 39259497 DOI: 10.1021/acs.jctc.3c01337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
A major challenge in computer-aided drug design is predicting relative binding energies of different molecules to a target protein using fast and accurate free-energy calculation methods. Free-energy calculations are primarily computed by utilizing classical molecular dynamics simulations based on all-atom force fields (FF) to model the interactions in the system. The present standard classical all-atom FFs contain fixed partial charges on the atoms, and hence electrostatic interactions are modeled between them. The parametrization process to determine these partial charges usually relies on quantum mechanics or semiempirical calculations of the molecule in the gas phase or homogeneous water surrounding. These present standard parametrization schemes of the partial charges neglect, therefore, polarization effects from the protein surrounding. The absence of protein polarization effects can lead to significant errors in free-energy calculations in proteins. We present a parametrization scheme for the partial charges of ligands, named protein-induced polarization (PIP) charges, which account for the electrostatic polarization due to the protein surrounding. The scheme involves single-point quantum mechanics/molecular mechanics calculations of the ligand charges in the protein/water surrounding. Using PIP ligand partial charges, we have calculated the relative binding free energies (RBFEs) of well-studied protein-ligand systems. We show here that RBFEs computed with PIP charges are either significantly improved or at least comparable to those computed with nonpolarized standard GAFF charges. Overall, we present a simple-to-use parametrization scheme to include protein polarization in any type of binding free-energy calculations. The parametrization scheme increases the accuracy in RBFE calculations, while it does not add significant computation time to standard parametrization procedures.
Collapse
Affiliation(s)
- Suliman Adam
- InterX LTD (a Subsidiary of NeoTX Therapeutics Ltd), 2 Pekeris Street, Rehovot 7670202, Israel
| | - Itamar Kass
- InterX LTD (a Subsidiary of NeoTX Therapeutics Ltd), 2 Pekeris Street, Rehovot 7670202, Israel
| | - Dana Krepel-Zussman
- InterX LTD (a Subsidiary of NeoTX Therapeutics Ltd), 2 Pekeris Street, Rehovot 7670202, Israel
| | - Gal Masarati
- InterX LTD (a Subsidiary of NeoTX Therapeutics Ltd), 2 Pekeris Street, Rehovot 7670202, Israel
| | - Dorit Shemesh
- InterX LTD (a Subsidiary of NeoTX Therapeutics Ltd), 2 Pekeris Street, Rehovot 7670202, Israel
| | - Avital Sharir-Ivry
- InterX LTD (a Subsidiary of NeoTX Therapeutics Ltd), 2 Pekeris Street, Rehovot 7670202, Israel
| |
Collapse
|
3
|
Barreto CAV, Vitorino JNM, Reis PBPS, Machuqueiro M, Moreira IS. p Ka Calculations of GPCRs: Understanding Protonation States in Receptor Activation. J Chem Inf Model 2024; 64:6850-6856. [PMID: 39150719 PMCID: PMC11388449 DOI: 10.1021/acs.jcim.4c01125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
The increase in the available G protein-coupled receptor (GPCR) structures has been pivotal in helping to understand their activation process. However, the role of protonation-conformation coupling in GPCR activation still needs to be clarified. We studied the protonation behavior of the highly conserved Asp2.50 residue in five different class A GPCRs (active and inactive conformations) using a linear response approximation (LRA) pKa calculation protocol. We observed consistent differences (1.3 pK units) for the macroscopic pKa values between the inactive and active states of the A2AR and B2AR receptors, indicating the protonation of Asp2.50 during GPCR activation. This process seems to be specific and not conserved, as no differences were observed in the pKa values of the remaining receptors (CB1R, NT1R, and GHSR).
Collapse
Affiliation(s)
- Carlos A V Barreto
- PhD Programme in Experimental Biology and Biomedicine, Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Casa Costa Alemão, 3030-789 Coimbra, Portugal
- CNC─Center for Neuroscience and Cell Biology, Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - João N M Vitorino
- BioSI─Instituto de Biossistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Pedro B P S Reis
- BioSI─Instituto de Biossistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Miguel Machuqueiro
- BioSI─Instituto de Biossistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Irina S Moreira
- CNC─Center for Neuroscience and Cell Biology, Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| |
Collapse
|
4
|
Xia YL, Du WW, Li YP, Tao Y, Zhang ZB, Liu SM, Fu YX, Zhang KQ, Liu SQ. Computational Insights into SARS-CoV-2 Main Protease Mutations and Nirmatrelvir Efficacy: The Effects of P132H and P132H-A173V. J Chem Inf Model 2024; 64:5207-5218. [PMID: 38913174 PMCID: PMC11235099 DOI: 10.1021/acs.jcim.4c00334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/15/2024] [Accepted: 06/17/2024] [Indexed: 06/25/2024]
Abstract
Nirmatrelvir, a pivotal component of the oral antiviral Paxlovid for COVID-19, targets the SARS-CoV-2 main protease (Mpro) as a covalent inhibitor. Here, we employed combined computational methods to explore how the prevalent Omicron variant mutation P132H, alone and in combination with A173V (P132H-A173V), affects nirmatrelvir's efficacy. Our findings suggest that P132H enhances the noncovalent binding affinity of Mpro for nirmatrelvir, whereas P132H-A173V diminishes it. Although both mutants catalyze the rate-limiting step more efficiently than the wild-type (WT) Mpro, P132H slows the overall rate of covalent bond formation, whereas P132H-A173V accelerates it. Comprehensive analysis of noncovalent and covalent contributions to the overall binding free energy of the covalent complex suggests that P132H likely enhances Mpro sensitivity to nirmatrelvir, while P132H-A173V may confer resistance. Per-residue decompositions of the binding and activation free energies pinpoint key residues that significantly affect the binding affinity and reaction rates, revealing how the mutations modulate these effects. The mutation-induced conformational perturbations alter drug-protein local contact intensities and the electrostatic preorganization of the protein, affecting noncovalent binding affinity and the stability of key reaction states, respectively. Our findings inform the mechanisms of nirmatrelvir resistance and sensitivity, facilitating improved drug design and the detection of resistant strains.
Collapse
Affiliation(s)
- Yuan-Ling Xia
- State
Key Laboratory for Conservation and Utilization of Bio-Resources in
Yunnan & School of Life Sciences, Yunnan
University, Kunming, Yunnan 650091, China
- Editorial
Office of Journal of Yunnan University (Natural Sciences Edition), Yunnan University, Kunming, Yunnan 650091, China
| | - Wen-Wen Du
- State
Key Laboratory for Conservation and Utilization of Bio-Resources in
Yunnan & School of Life Sciences, Yunnan
University, Kunming, Yunnan 650091, China
| | - Yong-Ping Li
- School
of Agriculture, Yunnan University, Kunming, Yunnan 650091, China
| | - Yan Tao
- State
Key Laboratory for Conservation and Utilization of Bio-Resources in
Yunnan & School of Life Sciences, Yunnan
University, Kunming, Yunnan 650091, China
- Yunnan
University Library, Yunnan University, Kunming, Yunnan 650091, China
| | - Zhi-Bi Zhang
- Yunnan
Key Laboratory of Stem Cell and Regenerative Medicine & Biomedical
Engineering Research Center, Kunming Medical
University, Kunming, Yunnan 650500, China
| | - Song-Ming Liu
- State
Key Laboratory for Conservation and Utilization of Bio-Resources in
Yunnan & School of Life Sciences, Yunnan
University, Kunming, Yunnan 650091, China
| | - Yun-Xin Fu
- State
Key Laboratory for Conservation and Utilization of Bio-Resources in
Yunnan & School of Life Sciences, Yunnan
University, Kunming, Yunnan 650091, China
- Human Genetics
Center and Department of Biostatistics and Data Science, School of
Public Health, The University of Texas Health
Science Center, Houston, Texas 77030, United States
| | - Ke-Qin Zhang
- State
Key Laboratory for Conservation and Utilization of Bio-Resources in
Yunnan & School of Life Sciences, Yunnan
University, Kunming, Yunnan 650091, China
| | - Shu-Qun Liu
- State
Key Laboratory for Conservation and Utilization of Bio-Resources in
Yunnan & School of Life Sciences, Yunnan
University, Kunming, Yunnan 650091, China
| |
Collapse
|
5
|
Hu L, An K, Zhang Y, Bai C. Exploring the Activation Mechanism of the GPR183 Receptor. J Phys Chem B 2024; 128:6071-6081. [PMID: 38877985 DOI: 10.1021/acs.jpcb.4c02812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
The G protein-coupled receptors (GPCRs) play a pivotal role in numerous biological processes as crucial cell membrane receptors. However, the dynamic mechanisms underlying the activation of GPR183, a specific GPCR, remain largely elusive. To address this, we employed computational simulation techniques to elucidate the activation process and key events associated with GPR183, including conformational changes from inactive to active state, binding interactions with the Gi protein complex, and GDP release. Our findings demonstrate that the association between GPR183 and the Gi protein involves the formation of receptor-specific conformations, the gradual proximity of the Gi protein to the binding pocket, and fine adjustments of the protein conformation, ultimately leading to a stable GPR183-Gi complex characterized by a high energy barrier. The presence of Gi protein partially promotes GPR183 activation, which is consistent with the observation of GPCR constitutive activity test experiments, thus illustrating the reliability of our calculations. Moreover, our study suggests the existence of a stable partially activated state preceding complete activation, providing novel avenues for future investigations. In addition, the relevance of GPR183 for various diseases, such as colitis, the response of eosinophils to Mycobacterium tuberculosis infection, antiviral properties, and pulmonary inflammation, has been emphasized, underscoring its therapeutic potential. Consequently, understanding the activation process of GPR183 through molecular dynamic simulations offers valuable kinetic insights that can aid in the development of targeted therapies.
Collapse
Affiliation(s)
- Linfeng Hu
- School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, PR China
- Warshel Institute for Computational Biology, Shenzhen, Guangdong 518172, PR China
| | - Ke An
- Chenzhu (MoMeD) Biotechnology Co., Ltd, Hangzhou, Zhejiang 310005, PR China
| | - Yue Zhang
- School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, PR China
- Warshel Institute for Computational Biology, Shenzhen, Guangdong 518172, PR China
| | - Chen Bai
- School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, PR China
- Warshel Institute for Computational Biology, Shenzhen, Guangdong 518172, PR China
- Chenzhu (MoMeD) Biotechnology Co., Ltd, Hangzhou, Zhejiang 310005, PR China
| |
Collapse
|
6
|
An K, Yang X, Luo M, Yan J, Xu P, Zhang H, Li Y, Wu S, Warshel A, Bai C. Mechanistic study of the transmission pattern of the SARS-CoV-2 omicron variant. Proteins 2024; 92:705-719. [PMID: 38183172 PMCID: PMC11059747 DOI: 10.1002/prot.26663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/25/2023] [Accepted: 12/27/2023] [Indexed: 01/07/2024]
Abstract
The omicron variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) characterized by 30 mutations in its spike protein, has rapidly spread worldwide since November 2021, significantly exacerbating the ongoing COVID-19 pandemic. In order to investigate the relationship between these mutations and the variant's high transmissibility, we conducted a systematic analysis of the mutational effect on spike-angiotensin-converting enzyme-2 (ACE2) interactions and explored the structural/energy correlation of key mutations, utilizing a reliable coarse-grained model. Our study extended beyond the receptor-binding domain (RBD) of spike trimer through comprehensive modeling of the full-length spike trimer rather than just the RBD. Our free-energy calculation revealed that the enhanced binding affinity between the spike protein and the ACE2 receptor is correlated with the increased structural stability of the isolated spike protein, thus explaining the omicron variant's heightened transmissibility. The conclusion was supported by our experimental analyses involving the expression and purification of the full-length spike trimer. Furthermore, the energy decomposition analysis established those electrostatic interactions make major contributions to this effect. We categorized the mutations into four groups and established an analytical framework that can be employed in studying future mutations. Additionally, our calculations rationalized the reduced affinity of the omicron variant towards most available therapeutic neutralizing antibodies, when compared with the wild type. By providing concrete experimental data and offering a solid explanation, this study contributes to a better understanding of the relationship between theories and observations and lays the foundation for future investigations.
Collapse
Affiliation(s)
- Ke An
- School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P. R. China
- Warshel Institute for Computational Biology
- Chenzhu (MoMeD) Biotechnology Co., Ltd, Hangzhou, Zhejiang, 310005, P.R. China
| | - Xianzhi Yang
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen 518000, China
| | - Mengqi Luo
- College of Management, Shenzhen University, Shenzhen, 518060, China
| | - Junfang Yan
- School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P. R. China
- Warshel Institute for Computational Biology
| | - Peiyi Xu
- School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P. R. China
- Warshel Institute for Computational Biology
| | - Honghui Zhang
- School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P. R. China
- Warshel Institute for Computational Biology
| | - Yuqing Li
- Department of Urology, South China Hospital of Shenzhen University, Shenzhen 518116, China
| | - Song Wu
- Department of Urology, South China Hospital of Shenzhen University, Shenzhen 518116, China
| | - Arieh Warshel
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-1062, United States
| | - Chen Bai
- School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P. R. China
- Warshel Institute for Computational Biology
- Chenzhu (MoMeD) Biotechnology Co., Ltd, Hangzhou, Zhejiang, 310005, P.R. China
| |
Collapse
|
7
|
Nandi A, Zhang A, Chu ZT, Xie WJ, Xu Z, Dong S, Warshel A. Exploring the Light-Emitting Agents in Renilla Luciferases by an Effective QM/MM Approach. J Am Chem Soc 2024; 146:13875-13885. [PMID: 38718165 PMCID: PMC11293844 DOI: 10.1021/jacs.4c00963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Bioluminescence is a fascinating natural phenomenon, wherein organisms produce light through specific biochemical reactions. Among these organisms, Renilla luciferase (RLuc) derived from the sea pansy Renilla reniformis is notable for its blue light emission and has potential applications in bioluminescent tagging. Our study focuses on RLuc8, a variant of RLuc with eight amino acid substitutions. Recent studies have shown that the luminescent emitter coelenteramide can adopt multiple protonation states, which may be influenced by nearby residues at the enzyme's active site, demonstrating a complex interplay between protein structure and bioluminescence. Herein, using the quantum mechanical consistent force field method and the semimacroscopic protein dipole-Langevin dipole method with linear response approximation, we show that the phenolate state of coelenteramide in RLuc8 is the primary light-emitting species in agreement with experimental results. Our calculations also suggest that the proton transfer (PT) from neutral coelenteramide to Asp162 plays a crucial role in the bioluminescence process. Additionally, we reproduced the observed emission maximum for the amide anion in RLuc8-D120A and the pyrazine anion in the presence of a Na+ counterion in RLuc8-D162A, suggesting that these are the primary emitters. Furthermore, our calculations on the neutral emitter in the engineered AncFT-D160A enzyme, structurally akin to RLuc8-D162A but with a considerably blue-shifted emission peak, aligned with the observed data, possibly explaining the variance in emission peaks. Overall, this study demonstrates an effective approach to investigate chromophores' bimolecular states while incorporating the PT process in emission spectra calculations, contributing valuable insights for future studies of PT in photoproteins.
Collapse
Affiliation(s)
- Ashim Nandi
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-1062, United States
| | - Aoxuan Zhang
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-1062, United States
| | - Zhen Tao Chu
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-1062, United States
| | - Wen Jun Xie
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), Genetics Institute, University of Florida, Gainesville, Florida 32610, United States
| | - Zhongxin Xu
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, and School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Suwei Dong
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, and School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Arieh Warshel
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-1062, United States
| |
Collapse
|
8
|
Zhu X, Luo M, An K, Shi D, Hou T, Warshel A, Bai C. Exploring the activation mechanism of metabotropic glutamate receptor 2. Proc Natl Acad Sci U S A 2024; 121:e2401079121. [PMID: 38739800 PMCID: PMC11126994 DOI: 10.1073/pnas.2401079121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/12/2024] [Indexed: 05/16/2024] Open
Abstract
Homomeric dimerization of metabotropic glutamate receptors (mGlus) is essential for the modulation of their functions and represents a promising avenue for the development of novel therapeutic approaches to address central nervous system diseases. Yet, the scarcity of detailed molecular and energetic data on mGlu2 impedes our in-depth comprehension of their activation process. Here, we employ computational simulation methods to elucidate the activation process and key events associated with the mGlu2, including a detailed analysis of its conformational transitions, the binding of agonists, Gi protein coupling, and the guanosine diphosphate (GDP) release. Our results demonstrate that the activation of mGlu2 is a stepwise process and several energy barriers need to be overcome. Moreover, we also identify the rate-determining step of the mGlu2's transition from the agonist-bound state to its active state. From the perspective of free-energy analysis, we find that the conformational dynamics of mGlu2's subunit follow coupled rather than discrete, independent actions. Asymmetric dimerization is critical for receptor activation. Our calculation results are consistent with the observation of cross-linking and fluorescent-labeled blot experiments, thus illustrating the reliability of our calculations. Besides, we also identify potential key residues in the Gi protein binding position on mGlu2, mGlu2 dimer's TM6-TM6 interface, and Gi α5 helix by the change of energy barriers after mutation. The implications of our findings could lead to a more comprehensive grasp of class C G protein-coupled receptor activation.
Collapse
Affiliation(s)
- Xiaohong Zhu
- Warshel Institute for Computational Biology, School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong518172, People’s Republic of China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei230026, People's Republic of China
| | - Mengqi Luo
- College of Management, Shenzhen University, Shenzhen518060, People's Republic of China
| | - Ke An
- Chenzhu (MoMeD) Biotechnology Co., Ltd, Hangzhou, Zhejiang310005, People's Republic of China
| | - Danfeng Shi
- Warshel Institute for Computational Biology, School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong518172, People’s Republic of China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei230026, People's Republic of China
| | - Tingjun Hou
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou310058, People's Republic of China
| | - Arieh Warshel
- Department of Chemistry, University of Southern California, Los Angeles, CA90089-1062
| | - Chen Bai
- Warshel Institute for Computational Biology, School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong518172, People’s Republic of China
- Chenzhu (MoMeD) Biotechnology Co., Ltd, Hangzhou, Zhejiang310005, People's Republic of China
| |
Collapse
|
9
|
Nandi A, Zhang A, Arad E, Jelinek R, Warshel A. Assessing the Catalytic Role of Native Glucagon Amyloid Fibrils. ACS Catal 2024; 14:4656-4664. [PMID: 39070231 PMCID: PMC11270920 DOI: 10.1021/acscatal.4c00452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Glucagon stands out as a pivotal peptide hormone, instrumental in controlling blood glucose levels and lipid metabolism. While the formation of glucagon amyloid fibrils has been documented, their biological functions remain enigmatic. Recently, we demonstrated experimentally that glucagon amyloid fibrils can act as catalysts in several biological reactions including esterolysis, lipid hydrolysis, and dephosphorylation. Herein, we present a multiscale quantum mechanics/molecular mechanics (QM/MM) simulation of the acylation step in the esterolysis of para-nitrophenyl acetate (p-NPA), catalyzed by native glucagon amyloid fibrils, serving as a model system to elucidate their catalytic function. This step entails a concerted mechanism, involving proton transfer from serine to histidine, followed by the nucleophilic attack of the serine oxy anion on the carbonyl carbon of p-NPA. We computed the binding energy and free-energy profiles of this reaction using the protein-dipole Langevin-dipole (PDLD) within the linear response approximation (LRA) framework (PDLD/S-LRA-2000) and the empirical valence bond (EVB) methods. This included simulations of the reaction in an aqueous environment and in the fibril, enabling us to estimate the catalytic effect of the fibril. Our EVB calculations obtained a barrier of 23.4 kcal mol-1 for the enzyme-catalyzed reaction compared to the experimental value of 21.9 kcal mol-1 (and a calculated catalytic effect of 3.2 kcal mol-1 compared to the observed effect of 4.7 kcal mol-1). This close agreement together with the barrier reduction when transitioning from the reference solution reaction to the amyloid fibril provides supporting evidence to the catalytic role of glucagon amyloid fibrils. Moreover, employing the PDLD/S-LRA-2000 approach further reinforced exclusively the enzyme's catalytic role. The results presented in this study contribute significantly to our understanding of the catalytic role of glucagon amyloid fibrils, marking, to the best of our knowledge, the first-principles mechanistic investigation of fibrils using QM/MM methods. Therefore, our findings offer fruitful insights for future research into the mechanisms of related amyloid catalysis.
Collapse
Affiliation(s)
- Ashim Nandi
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-1062, United States
| | - Aoxuan Zhang
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-1062, United States
| | - Elad Arad
- Ilse Katz Institute (IKI) for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Raz Jelinek
- Ilse Katz Institute (IKI) for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Arieh Warshel
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-1062, United States
| |
Collapse
|
10
|
Halder R, Warshel A. Energetic and structural insights behind calcium induced conformational transition in calmodulin. Proteins 2024; 92:384-394. [PMID: 37915244 PMCID: PMC10872638 DOI: 10.1002/prot.26620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/01/2023] [Accepted: 10/10/2023] [Indexed: 11/03/2023]
Abstract
Calmodulin (CaM) is a key signaling protein that triggers several cellular and physiological processes inside the cell. Upon binding with calcium ion, CaM undergoes large scale conformational transition from a closed state to an open state that facilitates its interaction with various target protein and regulates their activity. This work explores the origin of the energetic and structural variation of the wild type and mutated CaM and explores the molecular origin for the structural differences between them. We first calculated the sequential calcium binding energy to CaM using the PDLD/S-LRA/β approach. This study shows a very good correlation with experimental calcium binding energies. Next we calculated the calcium binding energies to the wild type CaM and several mutated CaM systems which were reported experimentally. On the structural aspect, it has been reported experimentally that certain mutation (Q41L-K75I) in calcium bound CaM leads to complete conformational transition from an open to a closed state. By using equilibrium molecular dynamics simulation, free energy calculation and contact frequency map analysis, we have shown that the formation of a cluster of long-range hydrophobic contacts, initiated by the Q41L-K75I CaM variant is the driving force behind its closing motion. This study unravels the energetics and structural aspects behind calcium ion induced conformational changes in wild type CaM and its variant.
Collapse
Affiliation(s)
- Ritaban Halder
- Department of Chemistry, University of Southern California, Los Angeles, California, USA
| | - Arieh Warshel
- Department of Chemistry, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
11
|
Zhang Y, Wu K, Li Y, Wu S, Warshel A, Bai C. Predicting Mutational Effects on Ca 2+-Activated Chloride Conduction of TMEM16A Based on a Simulation Study. J Am Chem Soc 2024; 146:4665-4679. [PMID: 38319142 DOI: 10.1021/jacs.3c11940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
The dysfunction and defects of ion channels are associated with many human diseases, especially for loss-of-function mutations in ion channels such as cystic fibrosis transmembrane conductance regulator mutations in cystic fibrosis. Understanding ion channels is of great current importance for both medical and fundamental purposes. Such an understanding should include the ability to predict mutational effects and describe functional and mechanistic effects. In this work, we introduce an approach to predict mutational effects based on kinetic information (including reaction barriers and transition state locations) obtained by studying the working mechanism of target proteins. Specifically, we take the Ca2+-activated chloride channel TMEM16A as an example and utilize the computational biology model to predict the mutational effects of key residues. Encouragingly, we verified our predictions through electrophysiological experiments, demonstrating a 94% prediction accuracy regarding mutational directions. The mutational strength assessed by Pearson's correlation coefficient is -0.80 between our calculations and the experimental results. These findings suggest that the proposed methodology is reliable and can provide valuable guidance for revealing functional mechanisms and identifying key residues of the TMEM16A channel. The proposed approach can be extended to a broad scope of biophysical systems.
Collapse
Affiliation(s)
- Yue Zhang
- Warshel Institute for Computational Biology, School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Kang Wu
- South China Hospital, Health Science Center, Shenzhen University, Shenzhen 518116, China
| | - Yuqing Li
- South China Hospital, Health Science Center, Shenzhen University, Shenzhen 518116, China
| | - Song Wu
- South China Hospital, Health Science Center, Shenzhen University, Shenzhen 518116, China
| | - Arieh Warshel
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-1062, United States
| | - Chen Bai
- Warshel Institute for Computational Biology, School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, China
- Chenzhu Biotechnology Co., Ltd., Hangzhou 310005, China
| |
Collapse
|
12
|
Parson WW, Huang J, Kulke M, Vermaas JV, Kramer DM. Electron transfer in a crystalline cytochrome with four hemes. J Chem Phys 2024; 160:065101. [PMID: 38341797 DOI: 10.1063/5.0186958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/18/2024] [Indexed: 02/13/2024] Open
Abstract
Diffusion of electrons over distances on the order of 100 μm has been observed in crystals of a small tetraheme cytochrome (STC) from Shewanella oneidensis [J. Huang et al. J. Am. Chem. Soc. 142, 10459-10467 (2020)]. Electron transfer between hemes in adjacent subunits of the crystal is slower and more strongly dependent on temperature than had been expected based on semiclassical electron-transfer theory. We here explore explanations for these findings by molecular-dynamics simulations of crystalline and monomeric STC. New procedures are developed for including time-dependent quantum mechanical energy differences in the gap between the energies of the reactant and product states and for evaluating fluctuations of the electronic-interaction matrix element that couples the two hemes. Rate constants for electron transfer are calculated from the time- and temperature-dependent energy gaps, coupling factors, and Franck-Condon-weighted densities of states using an expression with no freely adjustable parameters. Back reactions are considered, as are the effects of various protonation states of the carboxyl groups on the heme side chains. Interactions with water are found to dominate the fluctuations of the energy gap between the reactant and product states. The calculated rate constant for electron transfer from heme IV to heme Ib in a neighboring subunit at 300 K agrees well with the measured value. However, the calculated activation energy of the reaction in the crystal is considerably smaller than observed. We suggest two possible explanations for this discrepancy. The calculated rate constant for transfer from heme I to II within the same subunit of the crystal is about one-third that for monomeric STC in solution.
Collapse
Affiliation(s)
- William W Parson
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
| | - Jingcheng Huang
- DOE-Plant Research Laboratory and Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | - Martin Kulke
- DOE-Plant Research Laboratory and Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | - Josh V Vermaas
- DOE-Plant Research Laboratory and Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | - David M Kramer
- DOE-Plant Research Laboratory and Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
| |
Collapse
|
13
|
Kaldis P, Zhao LN. Molecular basis of the reaction mechanism of the methyltransferase HENMT1. PLoS One 2024; 19:e0293243. [PMID: 38198468 PMCID: PMC10781085 DOI: 10.1371/journal.pone.0293243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 10/09/2023] [Indexed: 01/12/2024] Open
Abstract
PIWI-interacting RNAs (piRNAs) are important for ensuring the integrity of the germline. 3'-terminal 2'-O-methylation is essential for piRNA maturation and to protect them from degradation. HENMT1 (HEN Methyltransferase 1) carries out the 2'-O-methylation, which is of key importance for piRNA stability and functionality. However, neither the structure nor the catalytic mechanism of mammalian HENMT1 have been studied. We have constructed a catalytic-competent HENMT1 complex using computational approaches, in which Mg2+ is primarily coordinated by four evolutionary conserved residues, and is further auxiliary coordinated by the 3'-O and 2'-O on the 3'-terminal nucleotide of the piRNA. Our study suggests that metal has limited effects on substrate and cofactor binding but is essential for catalysis. The reaction consists of deprotonation of the 2'-OH to 2'-O and a methyl transfer from SAM to the 2'-O. The methyl transfer is spontaneous and fast. Our in-depth analysis suggests that the 2'-OH may be deprotonated before entering the active site or it may be partially deprotonated at the active site by His800 and Asp859, which are in a special alignment that facilitates the proton transfer out of the active site. Furthermore, we have developed a detailed potential reaction scenario indicating that HENMT1 is Mg2+ utilizing but is not a Mg2+ dependent enzyme.
Collapse
Affiliation(s)
- Philipp Kaldis
- Department of Clinical Sciences, Lund University, Malmö, Skåne, Sweden
- Lund University Diabetes Centre, Lund University, Malmö, Skåne, Sweden
| | - Li Na Zhao
- Department of Clinical Sciences, Lund University, Malmö, Skåne, Sweden
| |
Collapse
|
14
|
Zhou J, Sang X, Wang J, Xu Y, An J, Chu ZT, Saha A, Warshel A, Huang Z. Elucidation of the α-Ketoamide Inhibition Mechanism: Revealing the Critical Role of the Electrostatic Reorganization Effect of Asp17 in the Active Site of the 20S Proteasome. ACS Catal 2023; 13:14368-14376. [PMID: 39188993 PMCID: PMC11346796 DOI: 10.1021/acscatal.3c03538] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
The 20S proteasome is an attractive drug target for the development of anticancer agents because it plays an important role in cellular protein degradation. It has a threonine residue that can act as a nucleophile to attack inhibitors with an electrophilic warhead, forming a covalent adduct. Fundamental understanding of the reaction mechanism between covalent inhibitors and the proteasome may assist the design and refinement of compounds with the desired activity. In this study, we investigated the covalent inhibition mechanism of an α-keto phenylamide inhibitor of the proteasome. We calculated the noncovalent binding free energy using the PDLD/S-LRA/β method and the reaction free energy through the empirical valence bond method (EVB). Several possible reaction pathways were explored. Subsequently, we validated the calculated activation and reaction free energies of the most plausible pathways by performing kinetic experiments. Furthermore, the effects of different ionization states of Asp17 on the activation energy at each step were also discussed. The results revealed that the ionization states of Asp17 remarkably affect the activation energies and there is an electrostatic reorganization of Asp17 during the course of the reaction. Our results demonstrate the critical electrostatic effect of Asp17 in the active site of the 20S proteasome.
Collapse
Affiliation(s)
- Jiao Zhou
- Ciechanover Institute of Precision and Regenerative Medicine, School of Medicine, Chinese University of Hong Kong, Shenzhen 518172, China
| | - Xiaohong Sang
- Ciechanover Institute of Precision and Regenerative Medicine, School of Medicine, Chinese University of Hong Kong, Shenzhen 518172, China
| | - Juan Wang
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yan Xu
- Ciechanover Institute of Precision and Regenerative Medicine, School of Medicine, Chinese University of Hong Kong, Shenzhen 518172, China
- Department of Medicine, Division of Infectious Diseases and Global Public Health, School of Medicine, University of California at San Diego, La Jolla, California 92037, United States
| | - Jing An
- Department of Medicine, Division of Infectious Diseases and Global Public Health, School of Medicine, University of California at San Diego, La Jolla, California 92037, United States
| | - Zhen Tao Chu
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Arjun Saha
- Department of Chemistry & Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53213, United States
| | - Arieh Warshel
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Ziwei Huang
- Ciechanover Institute of Precision and Regenerative Medicine, School of Medicine, Chinese University of Hong Kong Shenzhen 518172, China
- School of Life Sciences, Tsinghua University, Beijing 100084, China
- Department of Medicine, Division of Infectious Diseases and Global Public Health, School of Medicine, University of California at San Diego, La Jolla, California 92037, United States
| |
Collapse
|
15
|
Parson WW, Burda C. Calculated solvent reorganization entropies, free energies, and fluctuations of the energy gaps for intramolecular electron transfer and excitation of the solvatochromic dye B30. J Chem Phys 2023; 159:154505. [PMID: 37861297 DOI: 10.1063/5.0164136] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/01/2023] [Indexed: 10/21/2023] Open
Abstract
Intramolecular electron transfer between two biphenyl groups linked by an androstane spacer and excitation of the pyridinium-N-phenolate betaine dye B30 to the first excited singlet state are studied by quantum/classical molecular-dynamics simulations at temperatures between 150 and 300 K in solvents with a range of polarities. Temperature dependences of the solvent reorganization energies, free energies, entropies, and the inhomogeneous broadening of B30's absorption band are examined. The variances of fluctuations of the energy gap between the reactant and product states do not have the direct proportionality to temperature that often is assumed to hold. An explanation for the observations is suggested.
Collapse
Affiliation(s)
- William W Parson
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
| | - Clemens Burda
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106, USA
| |
Collapse
|
16
|
Zhang H, Zhang Y, Xu P, Bai C. Exploring the Phospholipid Transport Mechanism of ATP8A1-CDC50. Biomedicines 2023; 11:biomedicines11020546. [PMID: 36831082 PMCID: PMC9953615 DOI: 10.3390/biomedicines11020546] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
P4-ATPase translocates lipids from the exoplasmic to the cytosolic plasma membrane leaflet to maintain lipid asymmetry distribution in eukaryotic cells. P4-ATPase is associated with severe neurodegenerative and metabolic diseases such as neurological and motor disorders. Thus, it is important to understand its transport mechanism. However, even with progress in X-ray diffraction and cryo-electron microscopy techniques, it is difficult to obtain the dynamic information of the phospholipid transport process in detail. There are still some problems required to be resolved: (1) when does the lipid transport happen? (2) How do the key residues on the transmembrane helices contribute to the free energy of important states? In this work, we explore the phospholipid transport mechanism using a coarse-grained model and binding free energy calculations. We obtained the free energy landscape by coupling the protein conformational changes and the phospholipid transport event, taking ATP8A1-CDC50 (the typical subtype of P4-ATPase) as the research object. According to the results, we found that the phospholipid would bind to the ATP8A1-CDC50 at the early stage when ATP8A1-CDC50 changes from E2P to E2Pi-PL state. We also found that the electrostatic effects play crucial roles in the phospholipid transport process. The information obtained from this work could help us in designing novel drugs for P-type flippase disorders.
Collapse
Affiliation(s)
- Honghui Zhang
- Warshel Institute for Computational Biology, School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Yue Zhang
- Warshel Institute for Computational Biology, School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Peiyi Xu
- Warshel Institute for Computational Biology, School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Chen Bai
- Warshel Institute for Computational Biology, School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
- Chenzhu (MoMeD) Biotechnology Co., Ltd., Hangzhou 310005, China
- Correspondence:
| |
Collapse
|
17
|
An K, Zhu X, Yan J, Xu P, Hu L, Bai C. A systematic study on the binding affinity of SARS-CoV-2 spike protein to antibodies. AIMS Microbiol 2022; 8:595-611. [PMID: 36694585 PMCID: PMC9834082 DOI: 10.3934/microbiol.2022038] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/18/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022] Open
Abstract
The COVID-19 pandemic has caused a worldwide health crisis and economic recession. Effective prevention and treatment methods are urgently required to control the pandemic. However, the emergence of novel SARS-CoV-2 variants challenges the effectiveness of currently available vaccines and therapeutic antibodies. In this study, through the assessment of binding free energies, we analyzed the mutational effects on the binding affinity of the coronavirus spike protein to neutralizing antibodies, patient-derived antibodies, and artificially designed antibody mimics. We designed a scoring method to assess the immune evasion ability of viral variants. We also evaluated the differences between several targeting sites on the spike protein of antibodies. The results presented herein might prove helpful in the development of more effective therapies in the future.
Collapse
Affiliation(s)
- Ke An
- Warshel Institute for Computational Biology, School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen, 518172, Guangdong, People's Republic of China,School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Xiaohong Zhu
- Warshel Institute for Computational Biology, School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen, 518172, Guangdong, People's Republic of China,School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Junfang Yan
- Warshel Institute for Computational Biology, School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen, 518172, Guangdong, People's Republic of China
| | - Peiyi Xu
- Warshel Institute for Computational Biology, School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen, 518172, Guangdong, People's Republic of China
| | - Linfeng Hu
- Warshel Institute for Computational Biology, School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen, 518172, Guangdong, People's Republic of China
| | - Chen Bai
- Warshel Institute for Computational Biology, School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen, 518172, Guangdong, People's Republic of China,Chenzhu (MoMeD) Biotechnology Co., Ltd, Hangzhou, Zhejiang, 310005, P.R. China,* Correspondence:
| |
Collapse
|
18
|
An K, Zhu X, Bai C. The Nature of Functional Features of Different Classes of G-Protein-Coupled Receptors. BIOLOGY 2022; 11:1839. [PMID: 36552350 PMCID: PMC9775959 DOI: 10.3390/biology11121839] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/14/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
G-protein-coupled receptors (GPCRs) are a critical family in the human proteome and are involved in various physiological processes. They are also the most important drug target, with approximately 30% of approved drugs acting on such receptors. The members of the family are divided into six classes based on their structural and functional characteristics. Understanding their structural-functional relationships will benefit us in future drug development. In this article, we investigate the features of protein function, structure, and energy that describe the dynamics of the GPCR activation process between different families. GPCRs straddle the cell membrane and transduce signals from outside the membrane into the cell. During the process, the conformational change in GPCRs that is activated by the binding of signal molecules is essential. During the binding process, different types of signal molecules result in different signal transfer efficiencies. Therefore, the GPCR classes show a variety of structures and activation processes. Based on the experimental crystal structures, we modeled the activation process of the β2 adrenergic receptor (β2AR), glucagon receptor (GCGR), and metabotropic glutamate receptor 2 (mGluR2), which represent class A, B, and C GPCRs, respectively. We calculated their activation free-energy landscapes and analyzed the structure-energy-function relationship. The results show a consistent picture of the activation mechanisms between different types of GPCRs. This could also provide us a way to understand other signal transduction proteins.
Collapse
Affiliation(s)
- Ke An
- Warshel Institute for Computational Biology, School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Xiaohong Zhu
- Warshel Institute for Computational Biology, School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Chen Bai
- Warshel Institute for Computational Biology, School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China
- Chenzhu (MoMeD) Biotechnology Co., Ltd., Hangzhou 310005, China
| |
Collapse
|
19
|
Zhang Y, Zhu X, Zhang H, Yan J, Xu P, Wu P, Wu S, Bai C. Mechanism Study of Proteins under Membrane Environment. MEMBRANES 2022; 12:membranes12070694. [PMID: 35877897 PMCID: PMC9322369 DOI: 10.3390/membranes12070694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 11/24/2022]
Abstract
Membrane proteins play crucial roles in various physiological processes, including molecule transport across membranes, cell communication, and signal transduction. Approximately 60% of known drug targets are membrane proteins. There is a significant need to deeply understand the working mechanism of membrane proteins in detail, which is a challenging work due to the lack of available membrane structures and their large spatial scale. Membrane proteins carry out vital physiological functions through conformational changes. In the current study, we utilized a coarse-grained (CG) model to investigate three representative membrane protein systems: the TMEM16A channel, the family C GPCRs mGlu2 receptor, and the P4-ATPase phospholipid transporter. We constructed the reaction pathway of conformational changes between the two-end structures. Energy profiles and energy barriers were calculated. These data could provide reasonable explanations for TMEM16A activation, the mGlu2 receptor activation process, and P4-ATPase phospholipid transport. Although they all belong to the members of membrane proteins, they behave differently in terms of energy. Our work investigated the working mechanism of membrane proteins and could give novel insights into other membrane protein systems of interest.
Collapse
Affiliation(s)
- Yue Zhang
- School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China; (Y.Z.); (X.Z.); (H.Z.); (J.Y.); (P.X.)
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
- Warshel Institute for Computational Biology, Shenzhen 518172, China
| | - Xiaohong Zhu
- School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China; (Y.Z.); (X.Z.); (H.Z.); (J.Y.); (P.X.)
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
- Warshel Institute for Computational Biology, Shenzhen 518172, China
| | - Honghui Zhang
- School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China; (Y.Z.); (X.Z.); (H.Z.); (J.Y.); (P.X.)
- Warshel Institute for Computational Biology, Shenzhen 518172, China
| | - Junfang Yan
- School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China; (Y.Z.); (X.Z.); (H.Z.); (J.Y.); (P.X.)
- Warshel Institute for Computational Biology, Shenzhen 518172, China
| | - Peiyi Xu
- School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China; (Y.Z.); (X.Z.); (H.Z.); (J.Y.); (P.X.)
- Warshel Institute for Computational Biology, Shenzhen 518172, China
| | - Peng Wu
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518055, China;
| | - Song Wu
- South China Hospital, Health Science Center, Shenzhen University, Shenzhen 518116, China
- Correspondence: (S.W.); (C.B.)
| | - Chen Bai
- School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China; (Y.Z.); (X.Z.); (H.Z.); (J.Y.); (P.X.)
- Warshel Institute for Computational Biology, Shenzhen 518172, China
- Chenzhu Biotechnology Co., Ltd., Hangzhou 310005, China
- Correspondence: (S.W.); (C.B.)
| |
Collapse
|
20
|
The catalytic mechanism of the mitochondrial methylenetetrahydrofolate dehydrogenase/cyclohydrolase (MTHFD2). PLoS Comput Biol 2022; 18:e1010140. [PMID: 35613161 PMCID: PMC9173628 DOI: 10.1371/journal.pcbi.1010140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 06/07/2022] [Accepted: 04/26/2022] [Indexed: 11/19/2022] Open
Abstract
Methylenetetrahydrofolate dehydrogenase/cyclohydrolase (MTHFD2) is a new drug target that is expressed in cancer cells but not in normal adult cells, which provides an Achilles heel to selectively kill cancer cells. Despite the availability of crystal structures of MTHFD2 in the inhibitor- and cofactor-bound forms, key information is missing due to technical limitations, including (a) the location of absolutely required Mg2+ ion, and (b) the substrate-bound form of MTHFD2. Using computational modeling and simulations, we propose that two magnesium ions are present at the active site whereby (i) Arg233, Asp225, and two water molecules coordinate MgA2+, while MgA2+ together with Arg233 stabilize the inorganic phosphate (Pi); (ii) Asp168 and three water molecules coordinate MgB2+, and MgB2+ further stabilizes Pi by forming a hydrogen bond with two oxygens of Pi; (iii) Arg201 directly coordinates the Pi; and (iv) through three water-mediated interactions, Asp168 contributes to the positioning and stabilization of MgA2+, MgB2+ and Pi. Our computational study at the empirical valence bond level allowed us also to elucidate the detailed reaction mechanisms. We found that the dehydrogenase activity features a proton-coupled electron transfer with charge redistribution connected to the reorganization of the surrounding water molecules which further facilitates the subsequent cyclohydrolase activity. The cyclohydrolase activity then drives the hydration of the imidazoline ring and the ring opening in a concerted way. Furthermore, we have uncovered that two key residues, Ser197/Arg233, are important factors in determining the cofactor (NADP+/NAD+) preference of the dehydrogenase activity. Our work sheds new light on the structural and kinetic framework of MTHFD2, which will be helpful to design small molecule inhibitors that can be used for cancer treatment.
Collapse
|
21
|
Shi D, An K, Zhang H, Xu P, Bai C. Application of Coarse-Grained (CG) Models to Explore Conformational Pathway of Large-Scale Protein Machines. ENTROPY 2022; 24:e24050620. [PMID: 35626506 PMCID: PMC9140642 DOI: 10.3390/e24050620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/16/2022] [Accepted: 04/27/2022] [Indexed: 12/14/2022]
Abstract
Protein machines are clusters of protein assemblies that function in order to control the transfer of matter and energy in cells. For a specific protein machine, its working mechanisms are not only determined by the static crystal structures, but also related to the conformational transition dynamics and the corresponding energy profiles. With the rapid development of crystallographic techniques, the spatial scale of resolved structures is reaching up to thousands of residues, and the concomitant conformational changes become more and more complicated, posing a great challenge for computational biology research. Previously, a coarse-grained (CG) model aiming at conformational free energy evaluation was developed and showed excellent ability to reproduce the energy profiles by accurate electrostatic interaction calculations. In this study, we extended the application of the CG model to a series of large-scale protein machine systems. The spike protein trimer of SARS-CoV-2, ATP citrate lyase (ACLY) tetramer, and P4-ATPases systems were carefully studied and discussed as examples. It is indicated that the CG model is effective to depict the energy profiles of the conformational pathway between two endpoint structures, especially for large-scale systems. Both the energy change and energy barrier between endpoint structures provide reasonable mechanism explanations for the associated biological processes, including the opening of receptor binding domain (RBD) of spike protein, the phospholipid transportation of P4-ATPase, and the loop translocation of ACLY. Taken together, the CG model provides a suitable alternative in mechanistic studies related to conformational change in large-scale protein machines.
Collapse
Affiliation(s)
- Danfeng Shi
- Warshel Institute for Computational Biology, School of Life and Health Sciences, The Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, China; (D.S.); (K.A.); (H.Z.); (P.X.)
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Ke An
- Warshel Institute for Computational Biology, School of Life and Health Sciences, The Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, China; (D.S.); (K.A.); (H.Z.); (P.X.)
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Honghui Zhang
- Warshel Institute for Computational Biology, School of Life and Health Sciences, The Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, China; (D.S.); (K.A.); (H.Z.); (P.X.)
| | - Peiyi Xu
- Warshel Institute for Computational Biology, School of Life and Health Sciences, The Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, China; (D.S.); (K.A.); (H.Z.); (P.X.)
| | - Chen Bai
- Warshel Institute for Computational Biology, School of Life and Health Sciences, The Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, China; (D.S.); (K.A.); (H.Z.); (P.X.)
- Correspondence:
| |
Collapse
|
22
|
Chen CG, Nardi AN, Amadei A, D’Abramo M. Theoretical Modeling of Redox Potentials of Biomolecules. Molecules 2022; 27:1077. [PMID: 35164342 PMCID: PMC8838479 DOI: 10.3390/molecules27031077] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/21/2022] [Accepted: 01/25/2022] [Indexed: 11/28/2022] Open
Abstract
The estimation of the redox potentials of biologically relevant systems by means of theoretical-computational approaches still represents a challenge. In fact, the size of these systems typically does not allow a full quantum-mechanical treatment needed to describe electron loss/gain in such a complex environment, where the redox process takes place. Therefore, a number of different theoretical strategies have been developed so far to make the calculation of the redox free energy feasible with current computational resources. In this review, we provide a survey of such theoretical-computational approaches used in this context, highlighting their physical principles and discussing their advantages and limitations. Several examples of these approaches applied to the estimation of the redox potentials of both proteins and nucleic acids are described and critically discussed. Finally, general considerations on the most promising strategies are reported.
Collapse
Affiliation(s)
- Cheng Giuseppe Chen
- Department of Chemistry, Sapienza University of Rome, 00185 Rome, Italy; (C.G.C.); (A.N.N.)
| | | | - Andrea Amadei
- Department of Chemical and Technological Sciences, Tor Vergata University, 00133 Rome, Italy;
| | - Marco D’Abramo
- Department of Chemistry, Sapienza University of Rome, 00185 Rome, Italy; (C.G.C.); (A.N.N.)
| |
Collapse
|
23
|
Can docking scoring functions guarantee success in virtual screening? VIRTUAL SCREENING AND DRUG DOCKING 2022. [DOI: 10.1016/bs.armc.2022.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Bai C, Wang J, Chen G, Zhang H, An K, Xu P, Du Y, Ye RD, Saha A, Zhang A, Warshel A. Predicting Mutational Effects on Receptor Binding of the Spike Protein of SARS-CoV-2 Variants. J Am Chem Soc 2021; 143:17646-17654. [PMID: 34648291 PMCID: PMC8525340 DOI: 10.1021/jacs.1c07965] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Indexed: 12/17/2022]
Abstract
The pandemic caused by SARS-CoV-2 has cost millions of lives and tremendous social/financial loss. The virus continues to evolve and mutate. In particular, the recently emerged "UK", "South Africa", and Delta variants show higher infectivity and spreading speed. Thus, the relationship between the mutations of certain amino acids and the spreading speed of the virus is a problem of great importance. In this respect, understanding the mutational mechanism is crucial for surveillance and prediction of future mutations as well as antibody/vaccine development. In this work, we used a coarse-grained model (that was used previously in predicting the importance of mutations of N501) to calculate the free energy change of various types of single-site or combined-site mutations. This was done for the UK, South Africa, and Delta mutants. We investigated the underlying mechanisms of the binding affinity changes for mutations at different spike protein domains of SARS-CoV-2 and provided the energy basis for the resistance of the E484 mutant to the antibody m396. Other potential mutation sites were also predicted. Furthermore, the in silico predictions were assessed by functional experiments. The results establish that the faster spreading of recently observed mutants is strongly correlated with the binding-affinity enhancement between virus and human receptor as well as with the reduction of the binding to the m396 antibody. Significantly, the current approach offers a way to predict new variants and to assess the effectiveness of different antibodies toward such variants.
Collapse
Affiliation(s)
- Chen Bai
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Road, Shenzhen 518172, China
| | - Junlin Wang
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Road, Shenzhen 518172, China
| | - Geng Chen
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Road, Shenzhen 518172, China
| | - Honghui Zhang
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Road, Shenzhen 518172, China
| | - Ke An
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Road, Shenzhen 518172, China
| | - Peiyi Xu
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Road, Shenzhen 518172, China
| | - Yang Du
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Road, Shenzhen 518172, China
| | - Richard D Ye
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Road, Shenzhen 518172, China
| | - Arjun Saha
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089-1062, U.S.A
| | - Aoxuan Zhang
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089-1062, U.S.A
| | - Arieh Warshel
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089-1062, U.S.A
| |
Collapse
|
25
|
pK a Calculations in Membrane Proteins from Molecular Dynamics Simulations. Methods Mol Biol 2021. [PMID: 34302677 DOI: 10.1007/978-1-0716-1468-6_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
The conformational changes of membrane proteins are crucial to their function and usually lead to fluctuations in the electrostatic environment of the protein surface. A very effective way to quantify these changes is by calculating the pK a values of the protein's titratable residues, which can be regarded as electrostatic probes. To achieve this, we need to take advantage of the fast and reliable pK a calculators developed for globular proteins and adapt them to include the explicit effects of membranes. Here, we provide a detailed linear response approximation protocol that uses our own software (PypKa) to calculate reliable pK a values from short MD simulations of membrane proteins.
Collapse
|
26
|
Parson WW. Reorganization Energies, Entropies, and Free Energy Surfaces for Electron Transfer. J Phys Chem B 2021; 125:7940-7945. [PMID: 34275278 DOI: 10.1021/acs.jpcb.1c01932] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Reorganization energies for an intramolecular self-exchange electron-transfer reaction are calculated by quantum-classical molecular dynamics simulations in four solvents with varying polarity and at temperatures ranging from 250 to 350 K. The reorganization free energies for polar solvents decrease systematically with increasing temperature, indicating that they include substantial contributions from entropy changes. The variances of the energy gap between the reactant and product states have a major component that is relatively insensitive to temperature. Explanations are suggested for these observations, which appear to necessitate rethinking the free energy functions of a distributed coordinate that frequently are used in discussions of reaction dynamics.
Collapse
Affiliation(s)
- William W Parson
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
27
|
Bai C, Wang J, Mondal D, Du Y, Ye RD, Warshel A. Exploring the Activation Process of the β2AR-G s Complex. J Am Chem Soc 2021; 143:11044-11051. [PMID: 34255502 DOI: 10.1021/jacs.1c03696] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
G-Protein-coupled receptors (GPCRs) belong to an important family of integral membrane receptor proteins that are essential for a variety of transmembrane signaling process, such as vision, olfaction, and hormone responses. They are also involved in many human diseases (Alzheimer's, heart diseases, etc.) and are therefore common drug targets. Thus, understanding the details of the GPCR activation process is a task of major importance. Various types of crystal structures of GPCRs have been solved either at stable end-point states or at possible intermediate states. However, the detailed mechanism of the activation process is still poorly understood. For example, it is not completely clear when the nucleotide release from the G protein occurs and how the key residues on α5 contribute to the coupling process and further affect the binding specificity. In this work we show by free energy analysis that the guanosine diphosphate (GDP) molecule could be released from the Gs protein when the binding cavity is half open. This occurs during the transition to the Gs open state, which is the rate-determining step in the system conformational change. We also account for the experimentally observed slow-down effects by the change of the reaction barriers after mutations. Furthermore, we identify potential key residues on α5 and validated their significance by site-directed mutagenesis, which illustrates that computational works have predictive value even for complex biophysical systems. The methodology of the current work may be applied to other biophysical systems of interest.
Collapse
Affiliation(s)
- Chen Bai
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-1062, United States
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Road, Shenzhen 518172, China
| | - Junlin Wang
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Road, Shenzhen 518172, China
| | - Dibyendu Mondal
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-1062, United States
| | - Yang Du
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Road, Shenzhen 518172, China
| | - Richard D Ye
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Road, Shenzhen 518172, China
| | - Arieh Warshel
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-1062, United States
| |
Collapse
|
28
|
Zhao LN, Mondal D, Li W, Mu Y, Kaldis P. Histidine protonation states are key in the LigI catalytic reaction mechanism. Proteins 2021; 90:123-130. [PMID: 34318530 DOI: 10.1002/prot.26191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 07/16/2021] [Accepted: 07/20/2021] [Indexed: 02/03/2023]
Abstract
Lignin is one of the world's most abundant organic polymers, and 2-pyrone-4,6-dicarboxylate lactonase (LigI) catalyzes the hydrolysis of 2-pyrone-4,6-dicarboxylate (PDC) in the degradation of lignin. The pH has profound effects on enzyme catalysis and therefore we studied this in the context of LigI. We found that changes of the pH mostly affects surface residues, while the residues at the active site are more subject to changes of the surrounding microenvironment. In accordance with this, a high pH facilitates the deprotonation of the substrate. Detailed free energy calculations by the empirical valence bond (EVB) approach revealed that the overall hydrolysis reaction is more likely when the three active site histidines (His31, His33 and His180) are protonated at the ɛ site, however, protonation at the δ site may be favored during specific steps of the reaction. Our studies have uncovered the determinant role of the protonation state of the active site residues His31, His33 and His180 in the hydrolysis of PDC.
Collapse
Affiliation(s)
- Li Na Zhao
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Dibyendu Mondal
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California, USA
| | - Weifeng Li
- School of Physics, Shandong University, Jinan, China
| | - Yuguang Mu
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Philipp Kaldis
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| |
Collapse
|
29
|
Nash Y, Ganoth A, Borenstein-Auerbach N, Levy-Barazany H, Goldsmith G, Kopelevich A, Pozyuchenko K, Sakhneny L, Lazdon E, Blanga-Kanfi S, Alhadeff R, Benromano T, Landsman L, Tsfadia Y, Frenkel D. From virus to diabetes therapy: Characterization of a specific insulin-degrading enzyme inhibitor for diabetes treatment. FASEB J 2021; 35:e21374. [PMID: 33835493 DOI: 10.1096/fj.201901945r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 12/23/2020] [Accepted: 01/04/2021] [Indexed: 12/28/2022]
Abstract
Inhibition of insulin-degrading enzyme (IDE) is a possible target for treating diabetes. However, it has not yet evolved into a medical intervention, mainly because most developed inhibitors target the zinc in IDE's catalytic site, potentially causing toxicity to other essential metalloproteases. Since IDE is a cellular receptor for the varicella-zoster virus (VZV), we constructed a VZV-based inhibitor. We computationally characterized its interaction site with IDE showing that the peptide specifically binds inside IDE's central cavity, however, not in close proximity to the zinc ion. We confirmed the peptide's effective inhibition on IDE activity in vitro and showed its efficacy in ameliorating insulin-related defects in types 1 and 2 diabetes mouse models. In addition, we suggest that inhibition of IDE may ameliorate the pro-inflammatory profile of CD4+ T-cells toward insulin. Together, we propose a potential role of a designed VZV-derived peptide to serve as a selectively-targeted and as an efficient diabetes therapy.
Collapse
Affiliation(s)
- Yuval Nash
- Department of Neurobiology, School of Neurobiology, Biochemistry and Biophysics School, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Assaf Ganoth
- The Interdisciplinary Center (IDC), Herzliya, Israel.,Department of Physical Therapy, School of Health Professions, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Nofit Borenstein-Auerbach
- Department of Neurobiology, School of Neurobiology, Biochemistry and Biophysics School, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Hilit Levy-Barazany
- Department of Neurobiology, School of Neurobiology, Biochemistry and Biophysics School, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Guy Goldsmith
- Department of Neurobiology, School of Neurobiology, Biochemistry and Biophysics School, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Adi Kopelevich
- Department of Neurobiology, School of Neurobiology, Biochemistry and Biophysics School, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Katia Pozyuchenko
- Department of Neurobiology, School of Neurobiology, Biochemistry and Biophysics School, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Lina Sakhneny
- Department of Cell and Development Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ekaterina Lazdon
- Department of Neurobiology, School of Neurobiology, Biochemistry and Biophysics School, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Shani Blanga-Kanfi
- Department of Neurobiology, School of Neurobiology, Biochemistry and Biophysics School, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Raphael Alhadeff
- Department of Chemistry, University of Southern California, Los Angeles, CA, USA
| | - Tali Benromano
- Department of Neurobiology, School of Neurobiology, Biochemistry and Biophysics School, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Limor Landsman
- Department of Cell and Development Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yossi Tsfadia
- Department of Biochemistry and Molecular Biology, School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Dan Frenkel
- Department of Neurobiology, School of Neurobiology, Biochemistry and Biophysics School, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
30
|
Planas-Iglesias J, Marques SM, Pinto GP, Musil M, Stourac J, Damborsky J, Bednar D. Computational design of enzymes for biotechnological applications. Biotechnol Adv 2021; 47:107696. [PMID: 33513434 DOI: 10.1016/j.biotechadv.2021.107696] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 12/14/2022]
Abstract
Enzymes are the natural catalysts that execute biochemical reactions upholding life. Their natural effectiveness has been fine-tuned as a result of millions of years of natural evolution. Such catalytic effectiveness has prompted the use of biocatalysts from multiple sources on different applications, including the industrial production of goods (food and beverages, detergents, textile, and pharmaceutics), environmental protection, and biomedical applications. Natural enzymes often need to be improved by protein engineering to optimize their function in non-native environments. Recent technological advances have greatly facilitated this process by providing the experimental approaches of directed evolution or by enabling computer-assisted applications. Directed evolution mimics the natural selection process in a highly accelerated fashion at the expense of arduous laboratory work and economic resources. Theoretical methods provide predictions and represent an attractive complement to such experiments by waiving their inherent costs. Computational techniques can be used to engineer enzymatic reactivity, substrate specificity and ligand binding, access pathways and ligand transport, and global properties like protein stability, solubility, and flexibility. Theoretical approaches can also identify hotspots on the protein sequence for mutagenesis and predict suitable alternatives for selected positions with expected outcomes. This review covers the latest advances in computational methods for enzyme engineering and presents many successful case studies.
Collapse
Affiliation(s)
- Joan Planas-Iglesias
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
| | - Sérgio M Marques
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
| | - Gaspar P Pinto
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
| | - Milos Musil
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic; IT4Innovations Centre of Excellence, Faculty of Information Technology, Brno University of Technology, 61266 Brno, Czech Republic
| | - Jan Stourac
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
| | - Jiri Damborsky
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic.
| | - David Bednar
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic.
| |
Collapse
|
31
|
Mondal D, Warshel A. Exploring the Mechanism of Covalent Inhibition: Simulating the Binding Free Energy of α-Ketoamide Inhibitors of the Main Protease of SARS-CoV-2. Biochemistry 2020; 59:4601-4608. [PMID: 33205654 PMCID: PMC7688048 DOI: 10.1021/acs.biochem.0c00782] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/20/2020] [Indexed: 02/06/2023]
Abstract
The development of reliable ways of predicting the binding free energies of covalent inhibitors is a challenge for computer-aided drug design. Such development is important, for example, in the fight against the SARS-CoV-2 virus, in which covalent inhibitors can provide a promising tool for blocking Mpro, the main protease of the virus. This work develops a reliable and practical protocol for evaluating the binding free energy of covalent inhibitors. Our protocol presents a major advance over other approaches that do not consider the chemical contribution of the binding free energy. Our strategy combines the empirical valence bond method for evaluating the reaction energy profile and the PDLD/S-LRA/β method for evaluating the noncovalent part of the binding process. This protocol has been used in the calculations of the binding free energy of an α-ketoamide inhibitor of Mpro. Encouragingly, our approach reproduces the observed binding free energy. Our study of covalent inhibitors of cysteine proteases indicates that in the choice of an effective warhead it is crucial to focus on the exothermicity of the point on the free energy surface of a peptide cleavage that connects the acylation and deacylation steps. Overall, we believe that our approach should provide a powerful and effective method for in silico design of covalent drugs.
Collapse
Affiliation(s)
- Dibyendu Mondal
- Department of Chemistry, University of Southern California, 3620 McClintock Avenue, Los Angeles, California 90089, United States
| | - Arieh Warshel
- Department of Chemistry, University of Southern California, 3620 McClintock Avenue, Los Angeles, California 90089, United States
| |
Collapse
|
32
|
Oanca G, Asadi M, Saha A, Ramachandran B, Warshel A. Exploring the Catalytic Reaction of Cysteine Proteases. J Phys Chem B 2020; 124:11349-11356. [PMID: 33264018 DOI: 10.1021/acs.jpcb.0c08192] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cysteine proteases play a major role in many life processes and are the target of key drugs. The reaction mechanism of these enzymes is a complex process, which involves several steps that are divided into two main groups: acylation and deacylation. In this work, we studied the energy profile for the acylation and a part of the deacylation reaction of three different enzymes, cruzain, papain, and the Q19A-mutated papain with the benzyloxycarbonyl-phenylalanylarginine-4-methylcoumaryl-7-amide (CBZ-FR-AMC) substrate. The calculations were performed using the EVB and PDLD/S-LRA methods. The overall agreement between the calculated and observed results is encouraging and indicates that we captured the correct reaction mechanism. Finally, our finding indicates that the minimum of the reaction profile, between the acylation and deacylation steps, should provide an excellent state for the binding of covalent inhibitors.
Collapse
Affiliation(s)
- Gabriel Oanca
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-1062, United States
| | - Mojgan Asadi
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-1062, United States
| | - Arjun Saha
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-1062, United States
| | - Balajee Ramachandran
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-1062, United States.,Structural Biology and Bio-computing Lab, Department of Bioinformatics, Alagappa University, Karaikudi, Tamil Nadu 630 004, India
| | - Arieh Warshel
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-1062, United States
| |
Collapse
|
33
|
Mondal D, Kolev V, Warshel A. Exploring the activation pathway and G i-coupling specificity of the μ-opioid receptor. Proc Natl Acad Sci U S A 2020; 117:26218-26225. [PMID: 33020275 PMCID: PMC7585030 DOI: 10.1073/pnas.2013364117] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Understanding the activation mechanism of the μ-opioid receptor (μ-OR) and its selective coupling to the inhibitory G protein (Gi) is vital for pharmaceutical research aimed at finding treatments for the opioid overdose crisis. Many attempts have been made to understand the mechanism of the μ-OR activation, following the elucidation of new crystal structures such as the antagonist- and agonist-bound μ-OR. However, the focus has not been placed on the underlying energetics and specificity of the activation process. An energy-based picture would not only help to explain this coupling but also help to explore why other possible options are not common. For example, one would like to understand why μ-OR is more selective to Gi than a stimulatory G protein (Gs). Our study used homology modeling and a coarse-grained model to generate all of the possible "end states" of the thermodynamic cycle of the activation of μ-OR. The end points were further used to generate reasonable intermediate structures of the receptor and the Gi to calculate two-dimensional free energy landscapes. The results of the landscape calculations helped to propose a plausible sequence of conformational changes in the μ-OR and Gi system and for exploring the path that leads to its activation. Furthermore, in silico alanine scanning calculations of the last 21 residues of the C terminals of Gi and Gs were performed to shed light on the selective binding of Gi to μ-OR. Overall, the present work appears to demonstrate the potential of multiscale modeling in exploring the action of G protein-coupled receptors.
Collapse
Affiliation(s)
- Dibyendu Mondal
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089
| | - Vesselin Kolev
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089
| | - Arieh Warshel
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089
| |
Collapse
|
34
|
Hong G, Pachter R, Essen LO, Ritz T. Electron transfer and spin dynamics of the radical-pair in the cryptochrome from Chlamydomonas reinhardtii by computational analysis. J Chem Phys 2020; 152:065101. [PMID: 32061221 DOI: 10.1063/1.5133019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
In an effort to elucidate the origin of avian magnetoreception, it was postulated that a radical-pair formed in a cryptochrome upon light activation provided the basis for the mechanism that enables an inclination compass sensitive to the geomagnetic field. Photoreduction in this case involves formation of a flavin adenine dinucleotide (FAD)-tryptophan (TRP) radical-pair, following electron transfer within a conserved TRP triad in the cryptochrome. Recently, an animal-like cryptochrome from Chlamydomonas reinhardtii (CraCRY) was analyzed, demonstrating the role of a fourth aromatic residue, which serves as a terminal electron donor in the photoreduction pathway, resulting in the creation of a more distal radical-pair and exhibiting fast electron transfer. In this work, we investigated the electron transfer in CraCRY with a combination of free energy molecular dynamics (MD) simulations, frozen density functional theory, and QM/MM MD simulations, supporting the suggestion of a proton coupled electron transfer mechanism. Spin dynamics simulations discerned details on the dependence of the singlet yield on the direction of the external magnetic field for the [FAD•- TYRH•+] and [FAD•- TYR•] radical-pairs in CraCRY, in comparison with the previously modeled [FAD•- TRPH•+] radical-pair.
Collapse
Affiliation(s)
- Gongyi Hong
- Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson Air Force Base, Ohio 45433, USA
| | - Ruth Pachter
- Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson Air Force Base, Ohio 45433, USA
| | - Lars-Oliver Essen
- Department of Chemistry, Center for Synthetic Microbiology, Philipps University, Marburg 35032, Germany
| | - Thorsten Ritz
- Department of Physics and Astronomy, University of California, Irvine, California 92697, USA
| |
Collapse
|
35
|
Xia YL, Li YP, Fu YX, Liu SQ. The Energetic Origin of Different Catalytic Activities in Temperature-Adapted Trypsins. ACS OMEGA 2020; 5:25077-25086. [PMID: 33043186 PMCID: PMC7542600 DOI: 10.1021/acsomega.0c02401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 09/09/2020] [Indexed: 05/08/2023]
Abstract
Psychrophilic enzymes were always observed to have higher catalytic activity (k cat) than their mesophilic homologs at room temperature, while the origin of this phenomenon remains obscure. Here, we used two different temperature-adapted trypsins, the psychrophilic Atlantic cod trypsin (ACT) and the mesophilic bovine trypsin (BT), as a model system to explore the energetic origin of their different catalytic activities using computational methods. The results reproduce the characteristic changing trends in the activation free energy, activation enthalpy, and activation entropy between the psychrophilic and mesophilic enzymes, where, in particular, the slightly decreased activation free energy of ACT is determined by its considerably reduced activation enthalpy rather than by its more negative activation entropy compared to BT. The calculated electrostatic contributions to the solvation free energies in the reactant state/ground sate (RS/GS) and transition state (TS) show that, going from BT to ACT, the TS stabilization has a predominant effect over the RS stabilization on lowering the activation enthalpy of ACT. Comparison between the solvation energy components reveals a more optimized electrostatic preorganization to the TS in ACT, which provides a larger stabilization to the TS through reducing the reorganization energy, thus resulting in the lower activation enthalpy and hence lower activation free energy of ACT. Thus, it can be concluded that it is the difference in the protein electrostatic environment, and hence its different stabilizing effects on the TS, that brings about the different catalytic activities of different temperature-adapted trypsins.
Collapse
Affiliation(s)
- Yuan-Ling Xia
- State
Key Laboratory for Conservation and Utilization of Bio-Resources in
Yunnan, Yunnan University, Kunming 650091, Yunnan, China
- Editorial
Office of Journal of Yunnan University (Natural Sciences Edition), Yunnan University, Kunming 650091, Yunnan, China
| | - Yong-Ping Li
- School
of Agriculture, Yunnan University, Kunming 650091, Yunnan, China
| | - Yun-Xin Fu
- State
Key Laboratory for Conservation and Utilization of Bio-Resources in
Yunnan, Yunnan University, Kunming 650091, Yunnan, China
- Human
Genetics Center and Division of Biostatistics, School of Public Health, The University of Texas Health Science Center, Houston, Texas 77030, United States
| | - Shu-Qun Liu
- State
Key Laboratory for Conservation and Utilization of Bio-Resources in
Yunnan, Yunnan University, Kunming 650091, Yunnan, China
| |
Collapse
|
36
|
The catalytic dwell in ATPases is not crucial for movement against applied torque. Nat Chem 2020; 12:1187-1192. [PMID: 32958886 DOI: 10.1038/s41557-020-0549-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 08/10/2020] [Indexed: 02/07/2023]
Abstract
The ATPase-catalysed conversion of ATP to ADP is a fundamental process in biology. During the hydrolysis of ATP, the α3β3 domain undergoes conformational changes while the central stalk (γ/D) rotates unidirectionally. Experimental studies have suggested that different catalytic mechanisms operate depending on the type of ATPase, but the structural and energetic basis of these mechanisms remains unclear. In particular, it is not clear how the positions of the catalytic dwells influence the energy transduction. Here we show that the observed dwell positions, unidirectional rotation and movement against the applied torque are reflections of the free-energy surface of the systems. Instructively, we determine that the dwell positions do not substantially affect the stopping torque. Our results suggest that the three resting states and the pathways that connect them should not be treated equally. The current work demonstrates how the free-energy landscape determines the behaviour of different types of ATPases.
Collapse
|
37
|
Bai C, Warshel A. Critical Differences between the Binding Features of the Spike Proteins of SARS-CoV-2 and SARS-CoV. J Phys Chem B 2020; 124:5907-5912. [PMID: 32551652 PMCID: PMC7341686 DOI: 10.1021/acs.jpcb.0c04317] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/15/2020] [Indexed: 12/23/2022]
Abstract
The COVID-19 caused by SARS-CoV-2 has spread globally and caused tremendous loss of lives and properties, and it is of utmost urgency to understand its propagation process and to find ways to slow down the epidemic. In this work, we used a coarse-grained model to calculate the binding free energy of SARS-CoV-2 or SARS-CoV to their human receptor ACE2. The investigation of the free energy contribution of the interacting residues indicates that the residues located outside the receptor binding domain are the source of the stronger binding of the novel virus. Thus, the current results suggest that the essential evolution of SARS-CoV-2 happens remotely from the binding domain at the spike protein trimeric body. Such evolution may facilitate the conformational change and the infection process that occurs after the virus is bound to ACE2. By studying the binding pattern between SARS-CoV antibody m396 and SARS-CoV-2, it is found that the remote energetic contribution is missing, which might explain the absence of cross-reactivity of such antibodies.
Collapse
Affiliation(s)
- Chen Bai
- Department of Chemistry, University of Southern California, 418 SGM Building, 3620 McClintock Avenue, Los Angeles, California 90089-1062, United States
| | - Arieh Warshel
- Department of Chemistry, University of Southern California, 418 SGM Building, 3620 McClintock Avenue, Los Angeles, California 90089-1062, United States
| |
Collapse
|
38
|
Williamson G, Tamburrino G, Bizior A, Boeckstaens M, Dias Mirandela G, Bage MG, Pisliakov A, Ives CM, Terras E, Hoskisson PA, Marini AM, Zachariae U, Javelle A. A two-lane mechanism for selective biological ammonium transport. eLife 2020; 9:57183. [PMID: 32662768 PMCID: PMC7447429 DOI: 10.7554/elife.57183] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 07/13/2020] [Indexed: 11/13/2022] Open
Abstract
The transport of charged molecules across biological membranes faces the dual problem of accommodating charges in a highly hydrophobic environment while maintaining selective substrate translocation. This has been the subject of a particular controversy for the exchange of ammonium across cellular membranes, an essential process in all domains of life. Ammonium transport is mediated by the ubiquitous Amt/Mep/Rh transporters that includes the human Rhesus factors. Here, using a combination of electrophysiology, yeast functional complementation and extended molecular dynamics simulations, we reveal a unique two-lane pathway for electrogenic NH4+ transport in two archetypal members of the family, the transporters AmtB from Escherichia coli and Rh50 from Nitrosomonas europaea. The pathway underpins a mechanism by which charged H+ and neutral NH3 are carried separately across the membrane after NH4+ deprotonation. This mechanism defines a new principle of achieving transport selectivity against competing ions in a biological transport process.
Collapse
Affiliation(s)
- Gordon Williamson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Giulia Tamburrino
- Computational Biology, School of Life Sciences, University of Dundee, Dundee, United Kingdom.,Physics, School of Science and Engineering, University of Dundee, Dundee, United Kingdom
| | - Adriana Bizior
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Mélanie Boeckstaens
- Biology of Membrane Transport Laboratory, Department of Molecular Biology, Université Libre de Bruxelles, Gosselies, Belgium
| | - Gaëtan Dias Mirandela
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Marcus G Bage
- Computational Biology, School of Life Sciences, University of Dundee, Dundee, United Kingdom.,Physics, School of Science and Engineering, University of Dundee, Dundee, United Kingdom
| | - Andrei Pisliakov
- Computational Biology, School of Life Sciences, University of Dundee, Dundee, United Kingdom.,Physics, School of Science and Engineering, University of Dundee, Dundee, United Kingdom
| | - Callum M Ives
- Computational Biology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Eilidh Terras
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Paul A Hoskisson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Anna Maria Marini
- Biology of Membrane Transport Laboratory, Department of Molecular Biology, Université Libre de Bruxelles, Gosselies, Belgium
| | - Ulrich Zachariae
- Computational Biology, School of Life Sciences, University of Dundee, Dundee, United Kingdom.,Physics, School of Science and Engineering, University of Dundee, Dundee, United Kingdom
| | - Arnaud Javelle
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| |
Collapse
|
39
|
Saha A, Oanca G, Mondal D, Warshel A. Exploring the Proteolysis Mechanism of the Proteasomes. J Phys Chem B 2020; 124:5626-5635. [PMID: 32498514 DOI: 10.1021/acs.jpcb.0c04435] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The proteasome is a key protease in the eukaryotic cells which is responsible for various important cellular processes such as the control of the cell cycle, immune responses, protein homeostasis, inflammation, apoptosis, and the response to proteotoxic stress. Acting as a major molecular machine for protein degradation, proteasome first identifies damaged or obsolete regulatory proteins by attaching ubiquitin chains and subsequently utilizes conserved pore loops of the heterohexameric ring of AAA+ (ATPases associated with diverse cellular activities) to pull and mechanically unfold and translocate the misfolded protein to the active site for proteolysis. A detailed knowledge of the reaction mechanism for this proteasomal proteolysis is of central importance, both for fundamental understanding and for drug discovery. The present study investigates the mechanism of the proteolysis by the proteasome with full consideration of the protein's flexibility and its impact on the reaction free energy. Major attention is paid to the role of the protein electrostatics in determining the activation barriers. The reaction mechanism is studied by considering a small artificial fluorogenic peptide substrate (Suc-LLVY-AMC) and evaluating the activation barriers and reaction free energies for the acylation and deacylation steps, by using the empirical valence bond method. Our results shed light on the proteolysis mechanism and thus should be important for further studies of the proteasome action.
Collapse
Affiliation(s)
- Arjun Saha
- Department of Chemistry, University of Southern California, 418 SGM Building, 3620 McClintock Ave., Los Angeles, California 90089-1062, United States
| | - Gabriel Oanca
- Department of Chemistry, University of Southern California, 418 SGM Building, 3620 McClintock Ave., Los Angeles, California 90089-1062, United States
| | - Dibyendu Mondal
- Department of Chemistry, University of Southern California, 418 SGM Building, 3620 McClintock Ave., Los Angeles, California 90089-1062, United States
| | - Arieh Warshel
- Department of Chemistry, University of Southern California, 418 SGM Building, 3620 McClintock Ave., Los Angeles, California 90089-1062, United States
| |
Collapse
|
40
|
Affiliation(s)
- William W. Parson
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
41
|
Zhao LN, Kaldis P. Cascading proton transfers are a hallmark of the catalytic mechanism of SAM-dependent methyltransferases. FEBS Lett 2020; 594:2128-2139. [PMID: 32353165 DOI: 10.1002/1873-3468.13799] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 04/20/2020] [Accepted: 04/22/2020] [Indexed: 11/10/2022]
Abstract
The S-adenosyl methionine (SAM)-dependent methyltransferases attach a methyl group to the deprotonated methyl lysine using SAM as a donor. An intriguing, yet unanswered, question is how the deprotonation takes place. PRDM9 with well-defined enzyme activity is a good representative of the methyltransferase family to study the deprotonation and subsequently the methyl transfer. Our study has found that the pKa of Tyr357 is low enough to make it an ideal candidate for proton abstraction from the methyl lysine. The partially deprontonated Tyr357 is able to change its H-bond pattern thus bridging two proton tunneling states and providing a cascading proton transfer. We have uncovered a new catalytic mechanism for the deprotonation of the methyl lysine in methyltransferases.
Collapse
Affiliation(s)
- Li Na Zhao
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Philipp Kaldis
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Department of Clinical Sciences, Lund University, Clinical Research Center (CRC), Malmö, Sweden
| |
Collapse
|
42
|
Chattaraj KG, Paul R, Paul S. Switching of Self-Assembly to Solvent-Assisted Assembly of Molecular Motor: Unveiling the Mechanisms of Dynamic Control on Solvent Exchange. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:1773-1792. [PMID: 32024360 DOI: 10.1021/acs.langmuir.9b03718] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Natural biological molecular motors are capable of performing several biological functions, such as fuel production, mobility, transport, and many other dynamic features. Inspired by these biological motors, scientists effectively synthesized artificial molecular motors to mimic several biological functionalities. Several molecular systems, from sensitive materials to molecular motors, are essential for controlling dynamic processes in larger assemblies. In this work, we discuss the self-assembly of molecular motors in water and how this self-assembly switches to the solvent-assisted assembly as solvent changes to a water-THF (tetrahydrofuran) mixture. We present an elaborate description of the morphological changes of molecular motor assemblies from pure water to a water-THF mixture to pure THF. Under the influence of THF solvent, molecular motors form an assembled structure by taking a sufficient number of THF molecules in between themselves, resulting in an assembled molecular motor with a softened core. So, molecular motor assembly swells in the water-THF mixture, and in pure water, it shrinks. This solvent-assisted assembled structure has a specific shape. We have confirmed this assembly as a solvent-assisted assembly with the help of molecular dynamics simulation and quantum chemical analysis. Molecular motor-THF and THF-THF interactions are the main responsible interactions for solvent-assisted assembly over self-assembly. This work is a perfect example of conversion between self-assembly (shrinking) and solvent-assisted assembly (swelling) of molecular motors by adding THF into water or vice versa. A spectacular check on the shrinking and swelling by merely altering solvents illustrates so many intriguing possibilities for an alteration of dynamic processes at the nanoscale.
Collapse
Affiliation(s)
| | - Rabindranath Paul
- Department of Chemistry , Indian Institute of Technology , Guwahati , Assam 781039 , India
| | - Sandip Paul
- Department of Chemistry , Indian Institute of Technology , Guwahati , Assam 781039 , India
| |
Collapse
|
43
|
Zhao LN, Mondal D, Warshel A. Exploring alternative catalytic mechanisms of the Cas9 HNH domain. Proteins 2020; 88:260-264. [PMID: 31390092 PMCID: PMC6942198 DOI: 10.1002/prot.25796] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 07/25/2019] [Accepted: 07/30/2019] [Indexed: 01/09/2023]
Abstract
Understanding the reaction mechanism of CRISPR-associated protein 9 (Cas9) is crucial for the application of programmable gene editing. Despite the availability of the structures of Cas9 in apo- and substrate-bound forms, the catalytically active structure is still unclear. Our first attempt to explore the catalytic mechanism of Cas9 HNH domain has been based on the reasonable assumption that we are dealing with the same mechanism as endonuclease VII, including the assumption that the catalytic water is in the first shell of the Mg2+ . Trying this mechanism with the cryo-EM structure forced us to induce significant structural change driven by the movement of K848 (or other positively charged residue) close to the active site to facilitate the proton transfer step. In the present study, we explore a second reaction mechanism where the catalytic water is in the second shell of the Mg2+ and assume that the cryo-EM structure by itself is a suitable representation of a catalytic-ready structure. The alternative mechanism indicates that if the active water is from the second shell, then the calculated reaction barrier is lower compared with the corresponding barrier when the water comes from the first shell.
Collapse
Affiliation(s)
- Li Na Zhao
- Department of Chemistry, University of Southern California, Los Angeles, California
| | - Dibyendu Mondal
- Department of Chemistry, University of Southern California, Los Angeles, California
| | - Arieh Warshel
- Department of Chemistry, University of Southern California, Los Angeles, California
| |
Collapse
|
44
|
Paul R, Paul S. Computational Study of Encapsulation of Polyaromatic Hydrocarbons by Endo-Functionalized Receptors in Nonpolar Medium. J Chem Inf Model 2020; 60:212-225. [PMID: 31880935 DOI: 10.1021/acs.jcim.9b00799] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) constitute a large group of organic pollutants produced from either natural or artificial sources during the incomplete combustion of fossil fuels or derived from various industrial processes (such as refinery processes of crude petroleum). They are seriously hazardous to human health, and removing them is of major importance. The complexation likeliness with and selective recognition of PAH guests by endo-functionalized molecular tube hosts (host-abu and host-abtu) in a nonpolar medium are investigated using classical molecular dynamics simulation and quantum calculation to probe the factors and the molecular mechanism involved in complexation processes. We examine the role of different guest molecules in the structural changes of hosts, a prelude to van der Waals interactions and binding free energy in the complexation process. These types of host-guest interactions depend on various factors. We find that (i) both the host molecules (host-abtu and host-abu) interact with the guest π-electron cloud almost equally and (ii) these interactions also depend on the molecular size of PAHs. The larger the nonpolar surface area of PAHs, the greater the interactions with the host, and the more extensive the π-electron cloud of the guest, the stronger the interactions. The linear PAHs interact more strongly than isomeric branched/curved PAHs, and the presence of heteroatoms on PAHs decreases the interactions with the host by creating repulsion between the lone pairs of heteroatoms and the π-electron cloud of the host. Noncovalent van der Waals interactions and N-H···π interactions dominate the high affinities of PAHs toward host-abu and host-abtu. The potential of mean force and molecular mechanics Poisson-Boltzmann surface area calculations reveal that all host-guest complexes are energetically stable.
Collapse
Affiliation(s)
- Rabindranath Paul
- Department of Chemistry , Indian Institute of Technology , Guwahati , Assam 781039 , India
| | - Sandip Paul
- Department of Chemistry , Indian Institute of Technology , Guwahati , Assam 781039 , India
| |
Collapse
|
45
|
Mondal D, Florian J, Warshel A. Exploring the Effectiveness of Binding Free Energy Calculations. J Phys Chem B 2019; 123:8910-8915. [PMID: 31560539 DOI: 10.1021/acs.jpcb.9b07593] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Increasing the accuracy of the evaluation of ligand-binding energies is one of the most important tasks of current computational biology. Here we explore the accuracy of free energy perturbation (FEP) approaches by comparing the performance of a "regular" FEP method to the one using replica exchange to enhance the sampling on a well-defined benchmark. The examination was limited to the so-called alchemical perturbations which are restricted to a fragment of the drug, and therefore, the calculation is a relative one rather than the absolute binding energy of the drug. Overall, our calculations reach the 1 kcal/mol accuracy limit. It is also shown that the accurate prediction of the position of water molecules around the binding pocket is important for FEP calculations. Interestingly, the replica exchange method does not significantly improve the accuracy of binding energies, suggesting that we reach the limit where the force field quality is a critical factor for accurate calculations.
Collapse
Affiliation(s)
- Dibyendu Mondal
- Department of Chemistry , University of Southern California , 418 SGM Building, 3620 McClintock Avenue , Los Angeles , California 90089-1062 , United States
| | - Jacob Florian
- Department of Chemical Engineering , University of Michigan , 2300 Hayward Street , Ann Arbor , Michigan 48109 , United States
| | - Arieh Warshel
- Department of Chemistry , University of Southern California , 418 SGM Building, 3620 McClintock Avenue , Los Angeles , California 90089-1062 , United States
| |
Collapse
|
46
|
Revisiting the protomotive vectorial motion of F 0-ATPase. Proc Natl Acad Sci U S A 2019; 116:19484-19489. [PMID: 31511421 DOI: 10.1073/pnas.1909032116] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The elucidation of the detailed mechanism used by F0 to convert proton gradient to torque and rotational motion presents a major puzzle despite significant biophysical and structural progress. Although the conceptual model has advanced our understanding of the working principles of such systems, it is crucial to explore the actual mechanism using structure-based models that actually reproduce a unidirectional proton-driven rotation. Our previous work used a coarse-grained (CG) model to simulate the action of F0 However, the simulations were based on a very tentative structural model of the interaction between subunit a and subunit c. Here, we again use a CG model but with a recent cryo-EM structure of cF1F0 and also explore the proton path using our water flooding and protein dipole Langevin dipole semimacroscopic formalism with its linear response approximation version (PDLD/S-LRA) approaches. The simulations are done in the combined space defined by the rotational coordinate and the proton transport coordinate. The study reproduced the effect of the protomotive force on the rotation of the F0 while establishing the electrostatic origin of this effect. Our landscape reproduces the correct unidirectionality of the synthetic direction of the F0 rotation and shows that it reflects the combined electrostatic coupling between the proton transport path and the c-ring conformational change. This work provides guidance for further studies in other proton-driven mechanochemical systems and should lead (when combined with studies of F1) to a complete energy transduction picture of the F0F1-ATPase system.
Collapse
|
47
|
Alhadeff R, Warshel A. A free-energy landscape for the glucagon-like peptide 1 receptor GLP1R. Proteins 2019; 88:127-134. [PMID: 31294890 DOI: 10.1002/prot.25777] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/01/2019] [Accepted: 07/08/2019] [Indexed: 12/23/2022]
Abstract
G-protein-coupled receptors (GPCRs) are among the most important receptors in human physiology and pathology. They serve as master regulators of numerous key processes and are involved in as well as cause debilitating diseases. Consequently, GPCRs are among the most attractive targets for drug design and pharmaceutical interventions (>30% of drugs on the market). The glucagon-like peptide 1 (GLP-1) hormone receptor GLP1R is closely involved in insulin secretion by pancreatic β-cells and constitutes a major druggable target for the development of anti-diabetes and obesity agents. GLP1R structure was recently solved, with ligands, allosteric modulators and as part of a complex with its cognate G protein. However, the translation of this structural data into structure/function understanding remains limited. The current study functionally characterizes GLP1R with special emphasis on ligand and cellular partner binding interactions and presents a free-energy landscape as well as a functional model of the activation cycle of GLP1R. Our results should facilitate a deeper understanding of the molecular mechanism underlying GLP1R activation, forming a basis for improved development of targeted therapeutics for diabetes and related disorders.
Collapse
Affiliation(s)
- Raphael Alhadeff
- Department of Chemistry, University of Southern California, California, Los Angeles
| | - Arieh Warshel
- Department of Chemistry, University of Southern California, California, Los Angeles
| |
Collapse
|
48
|
Paul R, Paul S. How does the complexation ability between host endo-functionalized molecular tube and strongly hydrophilic guest molecules in water depend on guest concentration? J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.03.072] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
49
|
Maffeo C, Chou HY, Aksimentiev A. Molecular Mechanisms of DNA Replication and Repair Machinery: Insights from Microscopic Simulations. ADVANCED THEORY AND SIMULATIONS 2019; 2:1800191. [PMID: 31728433 PMCID: PMC6855400 DOI: 10.1002/adts.201800191] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Indexed: 12/15/2022]
Abstract
Reproduction, the hallmark of biological activity, requires making an accurate copy of the genetic material to allow the progeny to inherit parental traits. In all living cells, the process of DNA replication is carried out by a concerted action of multiple protein species forming a loose protein-nucleic acid complex, the replisome. Proofreading and error correction generally accompany replication but also occur independently, safeguarding genetic information through all phases of the cell cycle. Advances in biochemical characterization of intracellular processes, proteomics and the advent of single-molecule biophysics have brought about a treasure trove of information awaiting to be assembled into an accurate mechanistic model of the DNA replication process. In this review, we describe recent efforts to model elements of DNA replication and repair processes using computer simulations, an approach that has gained immense popularity in many areas of molecular biophysics but has yet to become mainstream in the DNA metabolism community. We highlight the use of diverse computational methods to address specific problems of the fields and discuss unexplored possibilities that lie ahead for the computational approaches in these areas.
Collapse
Affiliation(s)
- Christopher Maffeo
- Department of Physics, Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign,1110 W Green St, Urbana, IL 61801, USA
| | - Han-Yi Chou
- Department of Physics, Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign,1110 W Green St, Urbana, IL 61801, USA
| | - Aleksei Aksimentiev
- Department of Physics, Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign,1110 W Green St, Urbana, IL 61801, USA
| |
Collapse
|
50
|
TnI Structural Interface with the N-Terminal Lobe of TnC as a Determinant of Cardiac Contractility. Biophys J 2019; 114:1646-1656. [PMID: 29642034 DOI: 10.1016/j.bpj.2018.02.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 01/26/2018] [Accepted: 02/02/2018] [Indexed: 12/24/2022] Open
Abstract
The heterotrimeric cardiac troponin complex is a key regulator of contraction and plays an essential role in conferring Ca2+ sensitivity to the sarcomere. During ischemic injury, rapidly accumulating protons acidify the myoplasm, resulting in markedly reduced Ca2+ sensitivity of the sarcomere. Unlike the adult heart, sarcomeric Ca2+ sensitivity in fetal cardiac tissue is comparatively pH insensitive. Replacement of the adult cardiac troponin I (cTnI) isoform with the fetal troponin I (ssTnI) isoform renders adult cardiac contractile machinery relatively insensitive to acidification. Alignment and functional studies have determined histidine 132 of ssTnI to be the predominant source of this pH insensitivity. Substitution of histidine at the cognate position 164 in cTnI confers the same pH insensitivity to adult cardiac myocytes. An alanine at position 164 of cTnI is conserved in all mammals, with the exception of the platypus, which expresses a proline. Prolines are biophysically unique because of their innate conformational rigidity and helix-disrupting function. To provide deeper structure-function insight into the role of the TnC-TnI interface in determining contractility, we employed a live-cell approach alongside molecular dynamics simulations to ascertain the chemo-mechanical implications of the disrupted helix 4 of cTnI where position 164 exists. This important motif belongs to the critical switch region of cTnI. Substitution of a proline at position 164 of cTnI in adult rat cardiac myocytes causes increased contractility independent of alterations in the Ca2+ transient. Free-energy perturbation calculations of cTnC-Ca2+ binding indicate no difference in cTnC-Ca2+ affinity. Rather, we propose the enhanced contractility is derived from new salt bridge interactions between cTnI helix 4 and cTnC helix A, which are critical in determining pH sensitivity and contractility. Molecular dynamics simulations demonstrate that cTnI A164P structurally phenocopies ssTnI under baseline but not acidotic conditions. These findings highlight the evolutionarily directed role of the TnI-cTnC interface in determining cardiac contractility.
Collapse
|