1
|
Yang Z, Hu J, Zhang X, Yang H, Meng P, Zhao H, Sun Y. MXene-based composites as an electrochemical sensor for ultrasensitive determination of ofloxacin. Anal Bioanal Chem 2023; 415:157-166. [PMID: 36348040 DOI: 10.1007/s00216-022-04402-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 11/11/2022]
Abstract
Sensitive determination of ofloxacin (OFL) is very essential for human health and environmental protection. Here, a novel composite of gold nanoparticles(nAu)@MXene(Ti3C2Tx)/poly-p-aminobenzene sulfonic acid (PABSA) was fabricated on the surface of glassy carbon electrode (GCE) and used to sensitively determine OFL. The results of experiments showed that the obtained nAu@Ti3C2Tx/PABSA/GCE electrode could be used as an electrochemical sensor to directly detect ofloxacin (OFL) by differential pulse voltammetry (DPV). Under the optimal conditions, the proposed electrode displayed a broader linear range and a lower detection limit (LOD) for OFL determination when it was compared to those similar sensors. The linear range was from 5.0 × 10-8 to 5.0 × 10-4 mol/L and the LOD was 3.7 × 10-8 mol/L (S/N = 3). The nAu@Ti3C2Tx/PABSA/GCE electrode also showed good selectivity, repeatability, and reproducibility. Finally, the proposed electrode was used to detect OFL in commercial samples by the standard addition method. The obtained recovery was from 97.3% and 105.7% showing its potential applications in actual sample analysis.
Collapse
Affiliation(s)
- Zuan Yang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 116029, China
| | - Jing Hu
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 116029, China
| | - Xiaoyu Zhang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 116029, China
| | - Huimin Yang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 116029, China
| | - Peiran Meng
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 116029, China
| | - Huanying Zhao
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 116029, China
| | - Yue Sun
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 116029, China.
| |
Collapse
|
2
|
Zeng N, Wang X, Dong Y, Yang Y, Yin Y, Zhao L, Wang X. Aptasensor Based on Screen-Printed Carbon Electrodes Modified with CS/AuNPs for Sensitive Detection of Okadaic Acid in Shellfish. JOURNAL OF ANALYSIS AND TESTING 2022. [DOI: 10.1007/s41664-022-00245-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
3
|
Yahya R, Shah A, Kokab T, Ullah N, Hakeem MK, Hayat M, Haleem A, Shah I. Electrochemical Sensor for Detection and Degradation Studies of Ethyl Violet Dye. ACS OMEGA 2022; 7:34154-34165. [PMID: 36188263 PMCID: PMC9520707 DOI: 10.1021/acsomega.2c03472] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/30/2022] [Indexed: 06/16/2023]
Abstract
In this work, a simple and sensitive electrochemical method was developed to determine ethyl violet (EV) dye in aqueous systems by using square wave anodic stripping voltammetry (SWASV) employing a glassy carbon electrode modified with acidic-functionalized carbon nanotubes (COOH-fCNTs). In square wave anodic stripping voltammetry, EV exhibited a well-defined oxidation peak at 0.86 V at the modified GCE. Impedance spectroscopy and cyclic voltammetry were used to examine the charge transduction and sensing capabilities of the modified electrode. The influence of pH, deposition potential, and accumulation time on the electro-oxidation of EV was optimized. Under the optimum experimental conditions, the limit of detection with a value of 0.36 nM demonstrates high sensitivity of COOH-fCNTs/GCE for EV. After detection, it was envisioned to devise a method for the efficient removal of EV from an aqueous system. In this regard a photocatalytic degradation method of EV using Ho/TiO2 nanoparticles was developed. The Ho/TiO2 nanoparticles synthesized by the sol-gel method were characterized by UV-vis, XRD, FTIR, SEM, and EDX. The photocatalytic degradation studies revealed that basic medium is more suitable for a higher degradation rate of EV than acidic and neutral media. The photodegradation kinetic parameters were evaluated using UV-vis spectroscopic and electrochemical methods. The results revealed that the degradation process of EV follows first-order kinetics.
Collapse
Affiliation(s)
- Rashida Yahya
- Department
of Chemistry, Quaid-i-Azam University, 45320, Islamabad, Pakistan
| | - Afzal Shah
- Department
of Chemistry, Quaid-i-Azam University, 45320, Islamabad, Pakistan
| | - Tayyaba Kokab
- Department
of Chemistry, Quaid-i-Azam University, 45320, Islamabad, Pakistan
| | - Naimat Ullah
- Department
of Chemistry, Quaid-i-Azam University, 45320, Islamabad, Pakistan
| | | | - Mazhar Hayat
- Department
of Chemistry, Quaid-i-Azam University, 45320, Islamabad, Pakistan
| | - Abdul Haleem
- Department
of Chemistry, Quaid-i-Azam University, 45320, Islamabad, Pakistan
| | - Iltaf Shah
- Department
of Chemistry, College of Science, United
Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| |
Collapse
|
4
|
Electrochemical Synthesis of Polymelamine/Gold Nanoparticle Modified Carbon Paste Electrode as Voltammetric Sensor of Dopamine. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1016/j.cjac.2022.100052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
5
|
Liu Q, Dordick JS, Dinu CZ. Metal-Organic Framework-Based Composite for Photocatalytic Detection of Prevalent Pollutant. ACS APPLIED MATERIALS & INTERFACES 2019; 11:31049-31059. [PMID: 31374169 DOI: 10.1021/acsami.9b10438] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Photocatalytic properties of 2,5-furandicarboxylic acid (FDCA), a model organic molecule used for biopolymer production, are reported for the first time. Further integration of FDCA into metal-organic framework (MOF) structures and subsequent silver-based photoactivation leads to the next generation of hybrids with controlled morphologies, capable of forming sensorial platforms for prevalent phenol contaminant detection. The mechanisms that allow photocatalytic functionality are driven by the charge carrier generation in the organic molecule (either in its alone or integrated form) and depend on sample's physical and chemical properties as confirmed by scanning and transmission electron microscopy, Fourier transform infrared and X-ray photoelectron spectroscopy, and X-ray diffraction, respectively. Electrochemical analysis using cyclic voltammetry confirmed high sensitivity for p-nitrophenol (p-NP) detection as dictated by the selective electron migration at a user-controlled electrode interface. Considering the wide usage of p-NP and its increased discharge shown to lead to harmful effects on both the environment and biosystems, this new detection method is envisioned to allow effective control and regulation of such compound release, all under low-cost and environmentally friendly conditions.
Collapse
Affiliation(s)
- Qian Liu
- Department of Chemical and Biomedical Engineering , West Virginia University , Morgantown , West Virginia 26506 , United States
| | - Jonathan S Dordick
- Center for Biotechnology & Interdisciplinary Studies , Rensselaer Polytechnic Institute , Troy , New York 12180 , United States
| | - Cerasela Zoica Dinu
- Department of Chemical and Biomedical Engineering , West Virginia University , Morgantown , West Virginia 26506 , United States
| |
Collapse
|
6
|
Rana A, Kawde AN, Ibrahim M. Simple and sensitive detection of 4-nitrophenol in real water samples using gold nanoparticles modified pretreated graphite pencil electrode. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.04.055] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Shah A, Akhtar M, Aftab S, Shah AH, Kraatz HB. Gold copper alloy nanoparticles (Au-Cu NPs) modified electrode as an enhanced electrochemical sensing platform for the detection of persistent toxic organic pollutants. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.04.166] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
8
|
Luo J, Cong J, Liu J, Gao Y, Liu X. A facile approach for synthesizing molecularly imprinted graphene for ultrasensitive and selective electrochemical detecting 4-nitrophenol. Anal Chim Acta 2015; 864:74-84. [DOI: 10.1016/j.aca.2015.01.037] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 01/24/2015] [Accepted: 01/28/2015] [Indexed: 11/29/2022]
|
9
|
Simon ÍA, Vacaro BB, Nunes MR, Benvenutti EV, Dias SLP, Gushikem Y, Arguello J. Electrochemical Behavior of Gold Nanoparticles Generated In Situ on 3-(1-Imidazolyl)propyl-silsesquioxane. ELECTROANAL 2013. [DOI: 10.1002/elan.201300130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
10
|
Molecularly imprinted polyaniline-polyvinyl sulphonic acid composite based sensor for para-nitrophenol detection. Anal Chim Acta 2013; 777:63-71. [DOI: 10.1016/j.aca.2013.03.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 02/26/2013] [Accepted: 03/03/2013] [Indexed: 11/21/2022]
|
11
|
|