1
|
Ahmad M, Riaz Q, Tabassum M, Shafqat SS, Ayesha AT, Zubair M, Xiong Y, Syed A, Al-Shwaiman HA, Nadeem MA, Jia X, Xu G, Zafar MN. DFT and comparative adsorption study of NiO, MnO, and Mn 2NiO 4 nanomaterials for the removal of amaranth dye from synthetic water. RSC Adv 2024; 14:28285-28297. [PMID: 39239279 PMCID: PMC11372564 DOI: 10.1039/d4ra04208e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 07/26/2024] [Indexed: 09/07/2024] Open
Abstract
In the current study, NiO nanoparticles, MnO nanoparticles, and Mn2NiO4 nanocomposites (Ni-NPs, Mn-NPs and MN-NCs, respectively) were synthesized using a facile hydrothermal method, and their performance in the removal of amaranth (AM) dye from synthetic wastewater was compared. XRD, FTIR spectroscopy, SEM, BET analysis, and TGA were performed to characterize the produced catalysts. The effect of pertinent parameters, including pH, dosage of catalysts, temperature, and shaking speed on the uptake of AM was investigated through batch experiments. The MN-NCs showed ultrafast and high efficiency for AM removal compared to their counter parts Mn-NPs and Ni-NPs. Under ideal conditions, the highest adsorption efficiencies of AM onto Ni-NPs, Mn-NPs, and MN-NCs were calculated to be 80.50%, 93.85%, and 98.50%, respectively. The Langmuir isotherm fitted the experimental data of AM removal better as shown by the higher values of r 2, compared to the Freundlich isotherm, indicating monolayer type adsorption of AM. According to kinetic analyses, the adsorption of AM was best described by the pseudo-second-order kinetic model. Further, regeneration/recycling studies showed that MN-NCs retained 79% adsorption efficiency after four cycles. DFT experiments were also conducted to gain a deeper understanding of the process and behavior of AM adsorption. In conclusion, as Ni-NPs, Mn-NPs, and MN-NCs adsorb AM predominantly via electrostatic interaction, they can be applied for the removal of both cationic and anionic dyes by controlling the pH factor.
Collapse
Affiliation(s)
- Madiha Ahmad
- Department of Chemistry, University of Gujrat Gujrat 50700 Pakistan
| | - Qamar Riaz
- Department of Chemistry, University of Gujrat Gujrat 50700 Pakistan
| | - Mehwish Tabassum
- Key Laboratory Incubation Base for Green Processing of Chemical Engineering, School of Chemistry and Chemical Engineering/State, Shihezi University Shihezi 832003 PR China
| | - Syed Salman Shafqat
- Department of Chemistry, Division of Science and Technology, University of Education Lahore 54770 Pakistan
| | - Aima Tul Ayesha
- Department of Chemistry, University of Gujrat Gujrat 50700 Pakistan
| | - Muhammad Zubair
- Department of Chemistry, University of Gujrat Gujrat 50700 Pakistan
| | - Youpeng Xiong
- Key Laboratory Incubation Base for Green Processing of Chemical Engineering, School of Chemistry and Chemical Engineering/State, Shihezi University Shihezi 832003 PR China
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University PO Box 2455 Riyadh 11451 Saudi Arabia
| | - Hind A Al-Shwaiman
- Department of Botany and Microbiology, College of Science, King Saud University PO Box 2455 Riyadh 11451 Saudi Arabia
| | - Muhammad Arif Nadeem
- Catalysis and Nanomaterials Lab 27, Department of Chemistry, Quaid-i- Azam University Islamabad Islamabad 45320 Pakistan
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences 5625 Renmin Street Changchun 130022 People's Republic of China
| | - Xin Jia
- Key Laboratory Incubation Base for Green Processing of Chemical Engineering, School of Chemistry and Chemical Engineering/State, Shihezi University Shihezi 832003 PR China
| | - Guobao Xu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences 5625 Renmin Street Changchun 130022 People's Republic of China
- School of Applied Chemistry and Engineering, University of Science and Technology of China No. 96 Jinzhai Road Hefei Anhui 230026 People's Republic of China
| | - Muhammad Nadeem Zafar
- Department of Chemistry, University of Gujrat Gujrat 50700 Pakistan
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences 5625 Renmin Street Changchun 130022 People's Republic of China
| |
Collapse
|
2
|
Javaid A, Farrukh MA. Comparison of photocatalytic and antibacterial activities of allotropes of graphene doped
Sm
2
O
3
nanocomposites: Optical, thermal, and structural studies. J CHIN CHEM SOC-TAIP 2022. [DOI: 10.1002/jccs.202200478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Arooj Javaid
- Department of Chemistry Forman Christian College (A Chartered University) Lahore Pakistan
| | - Muhammad Akhyar Farrukh
- Department of Basic and Applied Chemistry, Faculty of Science and Technology University of Central Punjab Lahore Pakistan
| |
Collapse
|
3
|
Rashid J, Imtiaz F, Xu M, Savina IN. Hydrogen peroxide modified and bismuth vanadate decorated titanium dioxide nanocomposite (BiVO 4@HMT) for enhanced visible light photocatalytic growth inhibition of harmful cyanobacteria in water. RSC Adv 2022; 12:31338-31351. [PMID: 36349036 PMCID: PMC9623613 DOI: 10.1039/d2ra05317a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/25/2022] [Indexed: 12/23/2022] Open
Abstract
The persistence of harmful cyanobacterial algal blooms in aquatic ecosystems leads to health damage for various life forms. In this study, a photocatalyst active in the visible light range was prepared by combining BiVO4 with hydrogen peroxide modified titanium dioxide (BiVO4@HMT; for short), using an impregnation method. The catalyst was used to photocatalytically inhibit the growth of cyanobacteria collected from a bloom site. To infer the optimum pH for cyanobacterial growth, the effect of pH was studied. The growth of cyanobacteria was favoured in an alkaline environment at pH values in the range of 8-9.5 when analysed on the 20th day of incubation. Structural and chemical analysis of pristine and composite nano-powders was performed using XRD, SEM, TEM and XPS, confirming the heterojunction formation, while optical and band gap analysis revealed increased visible light absorption and reduced band gap of the composite. A small strawberry seed-like assembly of BiVO4 particles increased the light absorption in the 15%BiVO4@HMT composite and increased the inhibition efficiency up to 2.56 times compared to pristine HMT at an exposure time of 6 h and cell concentration at 0.1 g L-1 with an optimum catalyst dose of 1 g L-1. The amount of chlorophyll 'a' decreased due to the generation of catalytically reactive species, especially holes (h+), which caused oxidative damage to the cell wall, cell membrane and antioxidants in algal cells. This study reports that visible light active nanocatalysts can be used as a promising method for reducing algal blooms in water bodies.
Collapse
Affiliation(s)
- Jamshaid Rashid
- BNU-HKUST Laboratory for Green Innovation, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai Zhuhai 519087 China
- Department of Environmental Science, Faculty of Biological Sciences, Quaid-I-Azam University Islamabad 45320 Pakistan
| | - Fatima Imtiaz
- Department of Environmental Science, Faculty of Biological Sciences, Quaid-I-Azam University Islamabad 45320 Pakistan
| | - Ming Xu
- BNU-HKUST Laboratory for Green Innovation, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai Zhuhai 519087 China
| | - Irina N Savina
- School of Applied Sciences, University of Brighton Huxley Building, Lewes Road Brighton BN2 4GJ UK
| |
Collapse
|
4
|
Song G, Sun H, Chen J, Chen Z, Liu B, Liu Z, Cong S, Zhao Z. Quantum Effects Enter Semiconductor-Based SERS: Multiresonant MoO 3· xH 2O Quantum Dots Enabling Direct, Sensitive SERS Detection of Small Inorganic Molecules. Anal Chem 2022; 94:5048-5054. [PMID: 35297614 DOI: 10.1021/acs.analchem.1c05142] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
There is keen research interest in building highly effective semiconductor-based surface-enhanced Raman scattering (SERS) platforms, due to their selectivity for many probe molecules and suitability for complex scenario applications. However, current tuning approaches have not yet been successful in creating semiconductor-based SERS sensors for small inorganic molecules, due to the challenge of creating sufficient SERS enhancement in semiconductors. Here, we demonstrate the use of MoO3·xH2O quantum dots (QDs), to achieve direct and sensitive fingerprinting of the inorganic species hydrazine, which is a first attempt in semiconductor-based SERS research, as well as various other probe molecules. The resulting SERS platform that uses QDs with average size of 2.2 nm could successfully detect the signal of hydrazine with a limit of detection estimated to be around 4 × 10-5 M, significantly lowering the detectable concentration by at least 1000-fold, in sharp contrast to the weak performance of 10 and 100 nm particles, demonstrating that quantum size effect triggered by small particle size below the Bohr radius is crucially responsible for high SERS activity. The significantly enhanced SERS activity is a result of vibronically coupled multipathway, highly efficient charge-transfer resonances induced by the divergence of energy states in quantum-sized MoO3·xH2O. This is a proof-of-concept demonstration of the exploitation of quantum size effect, toward significantly enhanced intrinsic SERS activity in semiconductor-based SERS materials.
Collapse
Affiliation(s)
- Ge Song
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China.,Key Lab of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Hongzhao Sun
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China.,Key Lab of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Jian Chen
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China.,Key Lab of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Zhigang Chen
- Key Lab of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Boyang Liu
- Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Zhenghui Liu
- Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Shan Cong
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China.,Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Chinese Academy of Sciences (CAS), Suzhou 215123, China.,Gusu Laboratory of Materials, Suzhou 215123, China
| | - Zhigang Zhao
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China.,Key Lab of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.,Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Chinese Academy of Sciences (CAS), Suzhou 215123, China
| |
Collapse
|
5
|
Aerobic oxidation of 5-[(formyloxy)methyl]furfural to 2,5-furandicarboxylic acid over MoCuOx catalyst. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2021.111986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Ishtiaq A, Farrukh MA, Rehman AU, Karim S, Chong K. Facile synthesis of zwitterionic surfactant‐assisted molybdenum oxide/reduced graphene oxide nanocomposite with enhanced photocatalytic and antimicrobial activities. J CHIN CHEM SOC-TAIP 2021. [DOI: 10.1002/jccs.202100469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Aisha Ishtiaq
- Department of Chemistry Forman Christian College (A Chartered University) Lahore Pakistan
| | | | - Atta ur Rehman
- Department of Pharmacy Forman Christian College (A Chartered University) Lahore Pakistan
| | - Shafqat Karim
- Nanomaterials Research Group, Physics Division PINSTECH Islamabad Pakistan
| | - Kok‐Keong Chong
- Lee Kong Chian Faculty of Engineering and Science Universiti Tunku Abdul Rahman Kajang Malaysia
| |
Collapse
|
7
|
Ilyas I, Bashir I, Farrukh MA. Optimization of Fe2O3–CeO2 Nanocomposite As an Efficient Catalyst for the Synthesis of 2,4,5-Triarylimidazoles. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2021. [DOI: 10.1134/s0036024421050150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Farid S, Ameen S, Sharif S, Tariq M, Kundi IA, Sahin O, Sayyad MH, Khan IU. Facile solvothermal syntheses of isostructural lanthanide(III) formates: Photocatalytic, photoluminescent chemosensing properties, and proficient precursors for metal oxide nanoparticles. J COORD CHEM 2021. [DOI: 10.1080/00958972.2021.1907843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Sidra Farid
- Material Chemistry Laboratory, Department of Chemistry, GC University, Lahore, Pakistan
| | - Saima Ameen
- Material Chemistry Laboratory, Department of Chemistry, GC University, Lahore, Pakistan
| | - Shahzad Sharif
- Material Chemistry Laboratory, Department of Chemistry, GC University, Lahore, Pakistan
| | - Madiha Tariq
- Material Chemistry Laboratory, Department of Chemistry, GC University, Lahore, Pakistan
| | - Israr Ahmad Kundi
- Material Chemistry Laboratory, Department of Chemistry, GC University, Lahore, Pakistan
| | - Onur Sahin
- Department of Occupational Health & Safety, Faculty of Health Sciences, Sinop University, Sinop, Turkey
| | - Muhammd Hassan Sayyad
- Faculty of Engineering Sciences, Ghulam Ishaq Institute of Engineering & Technoloy, Topi, Pakistan
| | - Islam Ullah Khan
- Department of Chemistry, Faculty of Sciences, University of Mianwali, Mianwali 42200
| |
Collapse
|
9
|
Mir J, Malik BA, Khan MW, Maurya RC. Molybdenum dinitrosyl Schiff base complexes of dehydroacetic acid and thiourea derivatives: DFT‐experimental characterization and nosocomial anti‐infectious implications. J CHIN CHEM SOC-TAIP 2019. [DOI: 10.1002/jccs.201800337] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- JanMohammad Mir
- Coordination, Bioinorganic and Computational Chemistry Laboratory, Department of P. G. Studies and Research in Chemistry and PharmacyR. D. University Jabalpur India
| | - Bashir Ahmad Malik
- Coordination, Bioinorganic and Computational Chemistry Laboratory, Department of P. G. Studies and Research in Chemistry and PharmacyR. D. University Jabalpur India
| | - Mohd Washid Khan
- Coordination, Bioinorganic and Computational Chemistry Laboratory, Department of P. G. Studies and Research in Chemistry and PharmacyR. D. University Jabalpur India
| | - Ram Charitra Maurya
- Coordination, Bioinorganic and Computational Chemistry Laboratory, Department of P. G. Studies and Research in Chemistry and PharmacyR. D. University Jabalpur India
| |
Collapse
|