1
|
Raza AR, Rubab SL, Ashfaq M, Altaf Y, Tahir MN, Rehman MFU, Aziz T, Alharbi M, Alasmari AF. Evaluation of Antimicrobial, Anticholinesterase Potential of Indole Derivatives and Unexpectedly Synthesized Novel Benzodiazine: Characterization, DFT and Hirshfeld Charge Analysis. Molecules 2023; 28:5024. [PMID: 37446687 DOI: 10.3390/molecules28135024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/07/2023] [Accepted: 06/15/2023] [Indexed: 07/15/2023] Open
Abstract
The pharmacological effectiveness of indoles, benzoxazepines and benzodiazepines initiated our synthesis of indole fused benoxazepine/benzodiazepine heterocycles, along with enhanced biological usefulness of the fused rings. Activated indoles 5, 6 and 7 were synthesized using modified Bischler indole synthesis rearrangement. Indole 5 was substituted with the trichloroacetyl group at the C7 position, yielding 8, exclusively due to the increased nucleophilic character of C7. When trichloroacylated indole 8 was treated with basified ethanol or excess amminia, indole acid 9 and amide 10 were yielded, respectively. Indole amide 10 was expected to give indole fused benoxazepine/benzodiazepine 11a/11b on treatment with alpha halo ester followed by a coupling agent, but when the reaction was tried, an unexpectedly rearranged novel product, 1,3-bezodiazine 12, was obtained. The synthetic compounds were screened for anticholinesterase and antibacterial potential; results showed all products to be very important candidates for both activities, and their potential can be explored further. In addition, 1,3-bezodiazine 12 was explored by DFT studies, Hirshfeld surface charge analysis and structural insight to obrain a good picture of the structure and reactivity of the products for the design of derivatised drugs from the novel compound.
Collapse
Affiliation(s)
- Abdul Rauf Raza
- Institute of Chemistry, Ibn e Sina Block, University of Sargodha, Sargodha 40100, Pakistan
| | - Syeda Laila Rubab
- Department of Chemistry, Division of Science and Technology, University of Education, Lahore 54770, Pakistan
| | - Muhammad Ashfaq
- Department of Physics, University of Sargodha, Sargodha 40100, Pakistan
| | - Yasir Altaf
- Department of Chemistry, Division of Science and Technology, University of Education, Lahore 54770, Pakistan
- School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington 6140, New Zealand
| | | | | | - Tariq Aziz
- Department of Agriculture, University of Ioannina, 471 32 Arta, Greece
| | - Metab Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Abdullah F Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
2
|
Sayed M, Shi Z, Gholami F, Fatehi P, Soliman AIA. Ag@TiO 2 Nanocomposite as an Efficient Catalyst for Knoevenagel Condensation. ACS OMEGA 2022; 7:32393-32400. [PMID: 36120061 PMCID: PMC9476541 DOI: 10.1021/acsomega.2c03852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
In the present study, a new series of different heterocycles was synthesized through base-free Knoevenagel condensation of various aldehydes and active methylene-containing compounds using the hydrothermal developed Ag@TiO2 as a heterogeneous catalyst. The catalyst was synthesized by mixing TiO2 (P25) with AgNO3 and hydrothermally treated in ethanol at 180 °C for 12 h. The developed Ag@TiO2 catalyst was directly applied for Knoevenagel condensation, and the optimized procedure involved stirring the aldehydes and active methylene-containing compounds with Ag@TiO2 in ethanol at 65 °C. The reaction scope was investigated for various aromatic and heterocyclic aldehydes with active methylene-containing compounds, and the isolated yields were significantly high. The reusability of the catalyst was investigated for up to five cycles, where an insignificant decrease in the catalyst's reactivity was observed. Also, the reaction could proceed in water as a solvent, and the isolated yield was 40%. Hence, this protocol features mild reaction conditions, a facile procedure, and clean reaction profiles.
Collapse
Affiliation(s)
- Mostafa Sayed
- Department
of Chemistry, University of Science and
Technology of China, Hefei 230026, China
- Chemistry
Department, Faculty of Science, New Valley
University, El-Kharja 72511, Egypt
| | - Zhipeng Shi
- Department
of Chemistry, University of Science and
Technology of China, Hefei 230026, China
| | - Farzad Gholami
- Chemical
Engineering Department, Lakehead University, Thunder Bay, ON P7B5E1, Canada
| | - Pedram Fatehi
- Chemical
Engineering Department, Lakehead University, Thunder Bay, ON P7B5E1, Canada
| | - Ahmed I. A. Soliman
- Chemical
Engineering Department, Lakehead University, Thunder Bay, ON P7B5E1, Canada
- Chemistry
Department, Faculty of Science, Assiut University, Assiut 71516, Egypt
| |
Collapse
|
3
|
Tolba MS, Hamed MM, Sayed M, Kamal El-Dean AM, Abdel-Mohsen SA, Ibrahim OA, Elgaher WA, Hirsch AKH, Saddik AA. Design, Synthesis, Antimicrobial Activity, and Molecular Docking of Some New Diclofenac Derivatives. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2102661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Mahmoud S. Tolba
- Chemistry Department, Faculty of Science, New Valley University, El-Kharja, Egypt
| | - Mahmoud M. Hamed
- Chemistry Department, Faculty of Science, Assiut University, Assiut, Egypt
| | - Mostafa Sayed
- Chemistry Department, Faculty of Science, New Valley University, El-Kharja, Egypt
- Department of Chemistry, University of Science and Technology of China, Hefei, China
| | | | | | - Omneya A. Ibrahim
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Walid A.M. Elgaher
- Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research, Saarbrucken, Germany
- Department of Pharmacy, Saarland University, Saarbrucken, Germany
| | - Anna K. H. Hirsch
- Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research, Saarbrucken, Germany
- Department of Pharmacy, Saarland University, Saarbrucken, Germany
| | - Abdelreheem Abdelfatah Saddik
- Materials Science and Engineering Laboratory, Department of Chemistry, Faculty of Science, Assiut University, Assiut, Egypt
| |
Collapse
|
4
|
Younis O, Sayed M, Mohammed AA, Tolba MS, Hassanien R, Kamal El-Dean AM, Tsutsumi O, Ahmed M. Solid-State Luminescent Materials Containing Both Indole and Pyrimidine Moieties: Design, Synthesis, and Density Functional Theory Calculations. ACS OMEGA 2022; 7:15016-15026. [PMID: 35557695 PMCID: PMC9089344 DOI: 10.1021/acsomega.2c00775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/11/2022] [Indexed: 05/25/2023]
Abstract
Heterocyclic compounds with effective solid-state luminescence offer a wide range of uses. It has been observed that combining pyrimidine and indole moieties in a single molecule can enhance material behavior dramatically. Here, different heterocyclic compounds with indole and pyrimidine moieties have been synthesized effectively, and their structures have been validated using NMR, IR, and mass spectroscopy. The photoluminescence behavior of two substances was investigated in powder form and solutions of varying concentrations. After aggregation, one molecule displayed a redshifted luminescence spectrum, whereas another homolog showed a blueshift. Thus, density functional theory calculations were carried out to establish that introducing a terminal group allows modifying of the luminescence behavior by altering the molecular packing. Because of the non-planarity, intermolecular interactions, and tiny intermolecular distances within the dimers, the materials demonstrated a good emission quantum yield (Φem) in the solid state (ex. 25.6%). At high temperatures, the compounds also demonstrated a stable emission characteristic.
Collapse
Affiliation(s)
- Osama Younis
- Chemistry
Department, Faculty of Science, New Valley
University, El-Kharga 72511, Egypt
- Department
of Applied Chemistry, College of Life Sciences, Ritsumeikan University, Kusatsu 525-8577, Japan
| | - Mostafa Sayed
- Chemistry
Department, Faculty of Science, New Valley
University, El-Kharga 72511, Egypt
| | - Ahmed A.K. Mohammed
- Chemistry
Department, Faculty of Science, Assiut University, Assiut 71516, Egypt
| | - Mahmoud S. Tolba
- Chemistry
Department, Faculty of Science, New Valley
University, El-Kharga 72511, Egypt
| | - Reda Hassanien
- Chemistry
Department, Faculty of Science, New Valley
University, El-Kharga 72511, Egypt
| | | | - Osamu Tsutsumi
- Department
of Applied Chemistry, College of Life Sciences, Ritsumeikan University, Kusatsu 525-8577, Japan
| | - Mostafa Ahmed
- Chemistry
Department, Faculty of Science, New Valley
University, El-Kharga 72511, Egypt
| |
Collapse
|
5
|
Younis O, Al-Hossainy AF, Sayed M, Kamal El-dean AM, Tolba MS. Synthesis and intriguing single-component white-light emission from oxadiazole or thiadiazole integrated with coumarin luminescent core. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.113992] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Tolba MS, Sayed AM, Sayed M, Ahmed M. Design, synthesis, biological evaluation, and molecular docking of some new Thieno[2,3-d] pyrimidine derivatives. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.131179] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
7
|
Efficient synthesis and evaluation of antiviral and antitumor activity of novel 3-phosphonylated thiazolo[3,2-a]oxopyrimidines. Med Chem Res 2021. [DOI: 10.1007/s00044-021-02801-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
8
|
Gupta S, Pathak AK, Ameta C, Punjabi PB. Microwave-Induced Expeditious Synthesis of Biologically Active Substituted Imidazoles using CuO-TiO2-GO Nanocomposite as a Recyclable Catalyst. LETT ORG CHEM 2021. [DOI: 10.2174/1570178617999200708161330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
An efficient, green and rapid protocol for one-pot synthesis of substituted imidazoles from
isatin, aryl/hetero-aryl aldehydes and ammonium acetate in presence of CuO-TiO2-GO nanocomposite
as catalyst under microwave irradiation has been reported in this article. The CuO-TiO2-GO nanocomposite
was synthesized by the hydrothermal method. Further, the prepared composite was characterized
by FT-IR, XRD, FESEM, EDS, TEM, Raman and TGA techniques. The protocol offered several advantages
such as high rate of reaction, excellent yields, economic feasibility, simple work-up and reusability
of catalyst up to six cycles. Further antimicrobial activities of the synthesized substituted imidazoles
were evaluated by the broth dilution method.
Collapse
Affiliation(s)
- Sharoni Gupta
- Microwave Synthesis Laboratory, Department of Chemistry, University College of Science, Mohanlal Sukhadia University, Udaipur-313001, Rajasthan,India
| | - Arpit K. Pathak
- Department of Chemistry, Shri Govind Guru Government College, Banswara- 327001, Rajasthan,India
| | - Chetna Ameta
- Microwave Synthesis Laboratory, Department of Chemistry, University College of Science, Mohanlal Sukhadia University, Udaipur-313001, Rajasthan,India
| | - Pinki B. Punjabi
- Microwave Synthesis Laboratory, Department of Chemistry, University College of Science, Mohanlal Sukhadia University, Udaipur-313001, Rajasthan,India
| |
Collapse
|
9
|
Rajeev N, Sharath Kumar KS, Bommegowda YK, Rangappa KS, Sadashiva MP. Catalyst free sequential one‐pot reaction for the synthesis of 3‐indole propanoates/propanoic acid/propanamides as antituberculosis agents. J CHIN CHEM SOC-TAIP 2020. [DOI: 10.1002/jccs.202000386] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
10
|
Ahmed M, Sayed M, Saber AF, Hassanien R, Kamal El-Dean AM, Tolba MS. Synthesis, Characterization, and Antimicrobial Activity of New Thienopyrimidine Derivatives. Polycycl Aromat Compd 2020. [DOI: 10.1080/10406638.2020.1852587] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Mostafa Ahmed
- Department of Chemistry, Faculty of Science, New Valley University, New Valley, Egypt
| | - Mostafa Sayed
- Department of Chemistry, Faculty of Science, New Valley University, New Valley, Egypt
| | - Ahmed F. Saber
- Department of Chemistry, Faculty of Science, Assiut University, Assiut, Egypt
| | - Reda Hassanien
- Department of Chemistry, Faculty of Science, New Valley University, New Valley, Egypt
| | | | - Mahmoud S. Tolba
- Department of Chemistry, Faculty of Science, New Valley University, New Valley, Egypt
| |
Collapse
|
11
|
Song F, Li Z, Bian Y, Huo X, Fang J, Shao L, Zhou M. Indole/isatin-containing hybrids as potential antibacterial agents. Arch Pharm (Weinheim) 2020; 353:e2000143. [PMID: 32667714 DOI: 10.1002/ardp.202000143] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/18/2020] [Accepted: 06/22/2020] [Indexed: 12/11/2022]
Abstract
The emergence and worldwide spread of drug-resistant bacteria have already posed a serious threat to human life, creating the urgent need to develop potent and novel antibacterial drug candidates with high efficacy. Indole and isatin (indole-2,3-dione) present a wide structural and mechanistic diversity, so their derivatives possess various pharmacological properties and occupy a salient place in the development of new drugs. Indole/isatin-containing hybrids, which demonstrate a promising activity against a panel of clinically important Gram-positive and Gram-negative bacteria, are privileged scaffolds for the discovery of novel antibacterial candidates. This review, covering articles published between January 2015 and May 2020, focuses on the development and structure-activity relationship (SAR) of indole/isatin-containing hybrids with potential application for fighting bacterial infections, to facilitate further rational design of novel drug candidates.
Collapse
Affiliation(s)
- Feng Song
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, Shandong, China.,School of Life Sciences, Dezhou University, Dezhou, Shandong, China
| | - Zhenghua Li
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, Shandong, China
| | - Yunqiang Bian
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, Shandong, China
| | - Xiankai Huo
- Department of Medical Imaging, Dezhou People's Hospital, Dezhou, Shandong, China
| | - Junman Fang
- School of Life Sciences, Dezhou University, Dezhou, Shandong, China
| | - Linlin Shao
- School of Life Sciences, Dezhou University, Dezhou, Shandong, China
| | - Meng Zhou
- School of Life Sciences, Dezhou University, Dezhou, Shandong, China
| |
Collapse
|
12
|
Vargas-Oviedo D, Butassi E, Zacchino S, Portilla J. Eco-friendly synthesis and antifungal evaluation of N-substituted benzimidazoles. MONATSHEFTE FUR CHEMIE 2020. [DOI: 10.1007/s00706-020-02575-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
13
|
Gopinatha VK, Dukanya, Mantelingu K, Rangappa KS. Synthesis and biological evaluation of theophylline acetohydrazide hydrazone derivatives as antituberculosis agents. J CHIN CHEM SOC-TAIP 2020. [DOI: 10.1002/jccs.201900558] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
| | - Dukanya
- Department of Studies in Organic Chemistry; University of Mysore; Mysuru India
| | | | | |
Collapse
|
14
|
Sayed M, Younis O, Hassanien R, Ahmed M, Mohammed AA, Kamal AM, Tsutsumi O. Design and synthesis of novel indole derivatives with aggregation-induced emission and antimicrobial activity. J Photochem Photobiol A Chem 2019. [DOI: 10.1016/j.jphotochem.2019.111969] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|