1
|
Jadon N, Tomar P, Shrivastava S, Hosseinzadeh B, Kaya SI, Ozkan SA. Monitoring of Specific Phytoestrogens by Dedicated Electrochemical Sensors: A Review. Food Chem 2024; 460:140404. [PMID: 39068721 DOI: 10.1016/j.foodchem.2024.140404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/05/2024] [Accepted: 07/07/2024] [Indexed: 07/30/2024]
Abstract
Phytoestrogens are non-steroidal estrogens produced from plants that can bind with the human body's estrogenic receptor site and be used as a substitute for maintaining hormonal balance. They are mainly classified as flavonoids, phenolic acids, lignans, stilbenes, and coumestans; some are resocyclic acids of lactones, which are mycotoxins and not natural phytoestrogen. Phytoestrogens have many beneficial medicinal properties, making them an important part of the daily diet. Electrochemical sensors are widely used analytical tools for analysing various pharmaceuticals, chemicals, pollutants and food items. Electrochemical sensors provide an extensive platform for highly sensitive and rapid analysis. Several reviews have been published on the importance of the biological and medicinal properties of phytoestrogens. However, this review provides an overview of recent work performed through electrochemical measurements with electrochemical sensors and biosensors for all the classes of phytoestrogens done so far since 2019.
Collapse
Affiliation(s)
- Nimisha Jadon
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560 Ankara, Türkiye; School of Studies in Environmental Chemistry, Jiwaji University, Gwalior, M.P., 474011, India.
| | - Puja Tomar
- School of Studies in Environmental Chemistry, Jiwaji University, Gwalior, M.P., 474011, India
| | - Swati Shrivastava
- School of Studies in Environmental Chemistry, Jiwaji University, Gwalior, M.P., 474011, India
| | - Batoul Hosseinzadeh
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560 Ankara, Türkiye
| | - S Irem Kaya
- University of Health Sciences, Gulhane Faculty of Pharmacy, Department of Analytical Chemistry, Ankara, Türkiye
| | - Sibel A Ozkan
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560 Ankara, Türkiye.
| |
Collapse
|
2
|
Liu Y, Li Z, Chen W, Feng X. Fast Determination of Rutin on a Biosensor Made Using a Layered Double Hydroxide Nanocomposite Modified Electrode. BIOSENSORS 2023; 14:18. [PMID: 38248395 PMCID: PMC10813314 DOI: 10.3390/bios14010018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/21/2023] [Accepted: 12/27/2023] [Indexed: 01/23/2024]
Abstract
In this study, a nanocomposite of LDH/graphene/polyaniline/gold (LDH/rGO/PANI/Au) was synthesized and characterized. The results of characterization showed that the composite material preserved the layered structure of LDH. The composite was dropped onto the glassy carbon electrode and laccase was then immobilized. Electrochemical tests showed that the composite could accelerate the electron transfer between the enzyme and the electrode. The composite/laccase showed an obvious response to rutin and the optimal detection conditions were discussed. The oxidative peak current of the biosensor constructed using the modified electrode was negatively correlated with rutin in the range of 0.05-4 μg/mL. The detection limit was 0.0017 μg/mL at a signal-to-noise ratio of 3. This biosensor of rutin also possessed high sensitivity, excellent anti-interference ability, and stability. The contents of rutin in tablets, first determined using HPLC, were also detected using the sensor constructed in this research as an application, and the results were acceptable. This research here provides a facile way for the fast detection of rutin in real samples.
Collapse
Affiliation(s)
- Yuge Liu
- Key Laboratory of Clean Energy Materials Chemistry of Guangdong Higher Education Institutes, School of Chemistry and Chemical Engineering, Lingnan Normal University, Zhanjiang 524048, China; (Z.L.); (W.C.)
| | - Zhiguo Li
- Key Laboratory of Clean Energy Materials Chemistry of Guangdong Higher Education Institutes, School of Chemistry and Chemical Engineering, Lingnan Normal University, Zhanjiang 524048, China; (Z.L.); (W.C.)
| | - Weizhen Chen
- Key Laboratory of Clean Energy Materials Chemistry of Guangdong Higher Education Institutes, School of Chemistry and Chemical Engineering, Lingnan Normal University, Zhanjiang 524048, China; (Z.L.); (W.C.)
| | - Xiaomiao Feng
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| |
Collapse
|
3
|
Efficient direct electrocatalysis of nano-dodecahedron for the highly sensitive and selective detection of rutin. Microchem J 2023. [DOI: 10.1016/j.microc.2022.108332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
4
|
Portable Wireless Intelligent Electrochemical Sensor for the Ultrasensitive Detection of Rutin Using Functionalized Black Phosphorene Nanocomposite. Molecules 2022; 27:molecules27196603. [PMID: 36235140 PMCID: PMC9571638 DOI: 10.3390/molecules27196603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/27/2022] [Accepted: 09/30/2022] [Indexed: 11/04/2022] Open
Abstract
To build a portable and sensitive method for monitoring the concentration of the flavonoid rutin, a new electrochemical sensing procedure was established. By using nitrogen-doped carbonized polymer dots (N-CPDs) anchoring few-layer black phosphorene (N-CPDs@FLBP) 0D-2D heterostructure and gold nanoparticles (AuNPs) as the modifiers, a carbon ionic liquid electrode and a screen-printed electrode (SPE) were used as the substrate electrodes to construct a conventional electrochemical sensor and a portable wireless intelligent electrochemical sensor, respectively. The electrochemical behavior of rutin on the fabricated electrochemical sensors was explored in detail, with the analytical performances investigated. Due to the electroactive groups of rutin, and the specific π-π stacking and cation-π interaction between the nanocomposite with rutin, the electrochemical responses of rutin were greatly enhanced on the AuNPs/N-CPDs@FLBP-modified electrodes. Under the optimal conditions, ultra-sensitive detection of rutin could be realized on AuNPs/N-CPDs@FLBP/SPE with the detection range of 1.0 nmol L-1 to 220.0 μmol L-1 and the detection limit of 0.33 nmol L-1 (S/N = 3). Finally, two kinds of sensors were applied to test the real samples with satisfactory results.
Collapse
|
5
|
Petrucci R, Bortolami M, Di Matteo P, Curulli A. Gold Nanomaterials-Based Electrochemical Sensors and Biosensors for Phenolic Antioxidants Detection: Recent Advances. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:959. [PMID: 35335772 PMCID: PMC8950254 DOI: 10.3390/nano12060959] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/25/2022] [Accepted: 03/08/2022] [Indexed: 02/05/2023]
Abstract
Antioxidants play a central role in the development and production of food, cosmetics, and pharmaceuticals, to reduce oxidative processes in the human body. Among them, phenolic antioxidants are considered even more efficient than other antioxidants. They are divided into natural and synthetic. The natural antioxidants are generally found in plants and their synthetic counterparts are generally added as preventing agents of lipid oxidation during the processing and storage of fats, oils, and lipid-containing foods: All of them can exhibit different effects on human health, which are not always beneficial. Because of their relevant bioactivity and importance in several sectors, such as agro-food, pharmaceutical, and cosmetic, it is crucial to have fast and reliable analysis Rmethods available. In this review, different examples of gold nanomaterial-based electrochemical (bio)sensors used for the rapid and selective detection of phenolic compounds are analyzed and discussed, evidencing the important role of gold nanomaterials, and including systems with or without specific recognition elements, such as biomolecules, enzymes, etc. Moreover, a selection of gold nanomaterials involved in the designing of this kind of (bio)sensor is reported and critically analyzed. Finally, advantages, limitations, and potentialities for practical applications of gold nanomaterial-based electrochemical (bio)sensors for detecting phenolic antioxidants are discussed.
Collapse
Affiliation(s)
- Rita Petrucci
- Department of Basic and Applied Sciences of Engineering, Sapienza University of Rome, 00161 Rome, Italy; (R.P.); (M.B.); (P.D.M.)
| | - Martina Bortolami
- Department of Basic and Applied Sciences of Engineering, Sapienza University of Rome, 00161 Rome, Italy; (R.P.); (M.B.); (P.D.M.)
| | - Paola Di Matteo
- Department of Basic and Applied Sciences of Engineering, Sapienza University of Rome, 00161 Rome, Italy; (R.P.); (M.B.); (P.D.M.)
| | - Antonella Curulli
- Consiglio Nazionale delle Ricerche, Istituto per lo Studio dei Materiali Nanostrutturati, Unità Operativa di Support, Sapienza, 00161 Rome, Italy
| |
Collapse
|
6
|
Hu S, Chen H, Zhan X, Qin X, Kuang Y, Li M, Liang Z, Yang J, Su Z. One-pot electrodeposition of metal organic frameworks composites accelerated by electroreduced graphene oxide and gold nanoparticles for rutin electroanalysis. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115590] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
Tunable electrochemical behavior of dicarboxylic acids anchored Co-MOF: Sensitive determination of rutin in pharmaceutical samples. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126667] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
8
|
Arul P, Huang ST, Gowthaman NSK, Govindasamy M, Jeromiyas N. Surfactant-free solvothermal synthesis of Cu-MOF via protonation-deprotonation approach: A morphological dependent electrocatalytic activity for therapeutic drugs. Mikrochim Acta 2020; 187:650. [PMID: 33165679 DOI: 10.1007/s00604-020-04631-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 10/28/2020] [Indexed: 02/07/2023]
Abstract
A copper-1,4-naphthalenedicarboxylic acid-based organic framework (Cu-NDCA MOF) with different morphologies was synthesized by solvothermal synthetic route via a simple protonation-deprotonation approach. The synthesized Cu-NDCA MOFs were analyzed by diverse microscopic and spectral techniques. The FE-SEM and TEM image results exhibited the flake-like (FL), partial anisotropic (PAT), and anisotropic (AT)-Cu-NDCA MOFs formation obtained at different pH (3.0, 7.0, and 9.0) of the reaction medium. The AT-Cu-NDCA MOF/GC electrode not only increases the electroactive surface area but also boosts the electron transfer rate reaction compared to other modified electrodes (PAT- and FL-Cu-NDCA MOFs/GCEs). Under the optimized conditions, the modified electrode (AT-Cu-NDCA MOF) exhibited a sharp oxidation peak (+ 0.46 V vs. Ag/AgCl) and higher current response for rutin. The electrode provides a wide linear range from 1 × 10-9 to 50 × 10-6 M, a low detection limit of 1.21 × 10-10 M, LOQ of 0.001 μM, and sensitivity of 0.149 μA μM-1 cm-2. The AT-Cu-NDCA MOF/GC electrode exhibited good stability (RSD = 3.52 ± 0.02% over 8 days of storage), and excellent reproducibility (RSD = 2.62 ± 0.02% (n = 3)). The modified electrode was applied to the determination of rutin in apple, orange, and lemon samples with good recoveries (99.79-99.91, 99.24-99.69, and 99.53-99.83, respectively). Graphical abstract Anisotropic structure of Cu-NDCA MOFs and its modification on glassy carbon electrode for ultra-sensitive determination of rutin in fruit samples.
Collapse
Affiliation(s)
- P Arul
- Institute of Biochemical and Biomedical Engineering, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, 106, Taiwan
| | - Sheng-Tung Huang
- Institute of Biochemical and Biomedical Engineering, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, 106, Taiwan.
| | - N S K Gowthaman
- Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Mani Govindasamy
- Department of Materials Science and Engineering, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei, 106, Taiwan
| | - Nithiya Jeromiyas
- Institute of Biochemical and Biomedical Engineering, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, 106, Taiwan
| |
Collapse
|
9
|
Moro G, Barich H, Driesen K, Felipe Montiel N, Neven L, Domingues Mendonça C, Thiruvottriyur Shanmugam S, Daems E, De Wael K. Unlocking the full power of electrochemical fingerprinting for on-site sensing applications. Anal Bioanal Chem 2020; 412:5955-5968. [DOI: 10.1007/s00216-020-02584-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/28/2020] [Accepted: 03/09/2020] [Indexed: 02/07/2023]
|
10
|
El Jaouhari A, Yan L, Zhu J, Zhao D, Zaved Hossain Khan M, Liu X. Enhanced molecular imprinted electrochemical sensor based on zeolitic imidazolate framework/reduced graphene oxide for highly recognition of rutin. Anal Chim Acta 2020; 1106:103-114. [DOI: 10.1016/j.aca.2020.01.039] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/25/2019] [Accepted: 01/17/2020] [Indexed: 01/19/2023]
|