1
|
Yu Y, Chen F, Jin X, Min J, Duan H, Li J, Wu Z, Cao B. Oxygen Vacancies-Rich S-Cheme BiOBr/CdS Heterojunction with Synergetic Effect for Highly Efficient Light Emitting Diode-Driven Pollutants Degradation. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:830. [PMID: 36903708 PMCID: PMC10005353 DOI: 10.3390/nano13050830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/14/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
Recently, the use of semiconductor-based photocatalytic technology as an effective way to mitigate the environmental crisis attracted considerable interest. Here, the S-scheme BiOBr/CdS heterojunction with abundant oxygen vacancies (Vo-BiOBr/CdS) was prepared by the solvothermal method using ethylene glycol as a solvent. The photocatalytic activity of the heterojunction was investigated by degrading rhodamine B (RhB) and methylene blue (MB) under 5 W light-emitting diode (LED) light. Notably, the degradation rate of RhB and MB reached 97% and 93% in 60 min, respectively, which were better than that of BiOBr, CdS, and BiOBr/CdS. It was due to the construction of the heterojunction and the introduction of Vo, which facilitated the spatial separation of carriers and enhanced the visible-light harvest. The radical trapping experiment suggested that superoxide radicals (·O2-) acted as the main active species. Based on valence balance spectra, Mott-Schottky(M-S) spectra, and DFT theoretical calculations, the photocatalytic mechanism of the S-scheme heterojunction was proposed. This research provides a novel strategy for designing efficient photocatalysts by constructing S-scheme heterojunctions and introducing oxygen vacancies for solving environmental pollution.
Collapse
Affiliation(s)
- Yang Yu
- Key Laboratory of Solid State Physics and Devices Autonomous Region, School of Physics Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Fengjuan Chen
- Key Laboratory of Solid State Physics and Devices Autonomous Region, School of Physics Science and Technology, Xinjiang University, Urumqi 830046, China
- Key Laboratory of Energy Materials Chemistry, Ministry of Education, Institute of Applied Chemistry, Xinjiang University, Urumqi 830046, China
| | - Xuekun Jin
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Junyong Min
- Key Laboratory of Solid State Physics and Devices Autonomous Region, School of Physics Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Haiming Duan
- Key Laboratory of Solid State Physics and Devices Autonomous Region, School of Physics Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Jin Li
- Key Laboratory of Solid State Physics and Devices Autonomous Region, School of Physics Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Zhaofeng Wu
- Key Laboratory of Solid State Physics and Devices Autonomous Region, School of Physics Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Biaobing Cao
- Key Laboratory of Solid State Physics and Devices Autonomous Region, School of Physics Science and Technology, Xinjiang University, Urumqi 830046, China
| |
Collapse
|
2
|
Xie L, Zhu P, Xu J, Duan M, Zhang S, Wu X. Highly Efficient Bi 4Ti 3O 12/g-C 3N 4/BiOBr Dual Z-Scheme Heterojunction Photocatalysts with Enhanced Visible Light-Responsive Activity for the Degradation of Antibiotics. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:9532-9545. [PMID: 35905457 DOI: 10.1021/acs.langmuir.2c00907] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A novel Bi4Ti3O12/g-C3N4/BiOBr(BTO/CN/BOB) composite was synthesized by a solvothermal-mechanical mixed thermal method. The composition, structure, and micromorphology of the samples were analyzed. The BTO/CN/BOB composite photocatalyst shows better photocatalytic performance for tetracycline hydrochloride (TC) degradation compared to Bi4Ti3O12 and binary composite photocatalysts. The highest degradation rate of TC can reach 89.84% using the BTO/CN/BOB photocatalyst under the optimal conditions, and BTO/CN/BOB still exhibits good photocatalytic properties after recycling. Moreover, it also shows good photodegradation activity for different kinds of antibiotics, implying its wide application prospect. The photocatalytic performance and reuse stability of BTO/CN/BOB were significantly improved, which may be because of the enhanced spectral absorption range and efficient electron transfer capability by the synergistic effect and interaction among Bi4Ti3O12, BiOBr, and g-C3N4. Finally, the possible degradation pathway and electron transfer mechanism of the dual Z-scheme heterojunction are proposed.
Collapse
Affiliation(s)
- Lisi Xie
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, P. R. China
| | - Pengfei Zhu
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, P. R. China
- Research Institute of Industrial Hazardous Waste Disposal and Resource Utilization, Southwest Petroleum University, Chengdu, Sichuan 610500, P. R. China
- Oil and Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University, Chengdu 610500, P. R. China
| | - Jing Xu
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, P. R. China
| | - Ming Duan
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, P. R. China
- Oil and Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University, Chengdu 610500, P. R. China
| | - Shasha Zhang
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, P. R. China
| | - Xiaolong Wu
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, P. R. China
| |
Collapse
|
3
|
Zhao H, Wu R, Yu Z, Han X, Zhao W, Ma F. Synthesis of
BiPO
4
/
SnO
2
heterojunction for the photocatalytic degradation of RhB under visible
light emitting diode
irradiation. J CHIN CHEM SOC-TAIP 2021. [DOI: 10.1002/jccs.202000464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Hong‐jian Zhao
- School of Chemistry and Chemical Engineering NingXia Normal University Guyuan China
| | - Ren‐Jang Wu
- Department of Applied Chemistry Providence University Taichung Taiwan, R.O.C
| | - Zhe Yu
- School of Chemistry and Chemical Engineering NingXia Normal University Guyuan China
| | - Xin‐ning Han
- School of Chemistry and Chemical Engineering NingXia Normal University Guyuan China
| | - Wen‐Xia Zhao
- School of Chemistry and Chemical Engineering NingXia Normal University Guyuan China
| | - Fu Ma
- School of Chemistry and Chemical Engineering NingXia Normal University Guyuan China
| |
Collapse
|
4
|
Yue J, Wen G, Ren G, Tang S, Ge B, Zhao L, Shao X. Superhydrophobic Self-Supporting BiOBr Aerogel for Wastewater Purification. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:406-416. [PMID: 33356320 DOI: 10.1021/acs.langmuir.0c03053] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This research was focused on the raw material level construction of bismuth oxybromide (BiOBr) catalysis-loaded 3D cross-linked network polyurethane (PU) foam via the in situ polymerization method. After modification of superhydrophobic polydivinylbenzene nanoparticles, the PU foam possessed excellent superhydrophobic stability. The larger selective absorption oil phase capacity depended on its macroporous structure, and the existence of catalyst BiOBr (the band gap energy was about 2.57 eV) among the PU foam played a crucial role in degrading water-soluble contaminants under visible light irradiation. In this article, the photocatalytic experiment results verify that it has remarkable recycle degradation ability (the degradation efficiency can reach ∼97%) and the capture experiments indicate that the uppermost active species is h+.
Collapse
Affiliation(s)
- Jie Yue
- School of Materials Science and Engineering, Liaocheng University, Liaocheng 252000, China
| | - Guochang Wen
- School of Materials Science and Engineering, Liaocheng University, Liaocheng 252000, China
| | - Guina Ren
- School of Environmental and Material Engineering, Yantai University, Yantai 264405, China
| | - Shaowang Tang
- School of Materials Science and Engineering, Liaocheng University, Liaocheng 252000, China
| | - Bo Ge
- School of Materials Science and Engineering, Liaocheng University, Liaocheng 252000, China
| | - Limin Zhao
- School of Materials Science and Engineering, Liaocheng University, Liaocheng 252000, China
| | - Xin Shao
- School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252000, China
| |
Collapse
|
5
|
Yasmeen H, Zada A, Ali S, Khan I, Ali W, Khan W, Khan M, Anwar N, Ali A, Huerta‐Flores AM, Subhan F. Visible light‐excited surface plasmon resonance charge transfer significantly improves the photocatalytic activities of
ZnO
semiconductor for pollutants degradation. J CHIN CHEM SOC-TAIP 2020. [DOI: 10.1002/jccs.202000205] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Humaira Yasmeen
- Materials Science and Engineering College, Northeast Forestry University Harbin China
| | - Amir Zada
- Department of Chemistry Abdul Wali Khan University Mardan Mardan Pakistan
| | - Sharafat Ali
- Key Laboratory of Functional Inorganic Materials Chemistry (Heilongjiang University), Ministry of Education, School of Chemistry and Materials Science, International Joint Research Center for Catalytic Technology Harbin China
| | - Imran Khan
- Key Laboratory of Functional Inorganic Materials Chemistry (Heilongjiang University), Ministry of Education, School of Chemistry and Materials Science, International Joint Research Center for Catalytic Technology Harbin China
| | - Wajid Ali
- Key Laboratory of Functional Inorganic Materials Chemistry (Heilongjiang University), Ministry of Education, School of Chemistry and Materials Science, International Joint Research Center for Catalytic Technology Harbin China
| | - Waliullah Khan
- Department of Chemistry Abdul Wali Khan University Mardan Mardan Pakistan
| | - Muhammad Khan
- Shaanxi Engineering Laboratory for Graphene New Carbon Materials and Applications School of Materials Science and Engineering, Northwestern Polytechnical University Xi'an China
| | - Natasha Anwar
- Department of Chemistry Abdul Wali Khan University Mardan Mardan Pakistan
| | - Asif Ali
- Department of Chemistry Abdul Wali Khan University Mardan Mardan Pakistan
| | - Ali M. Huerta‐Flores
- Facultad de Ingeniería Civil, Departamento de Ecomateriales y Energía Universidad Autónoma de Nuevo León, UANL, Av. Universidad S/N Ciudad Universitaria San Nicolás de los Garza Mexico
| | - Fazle Subhan
- Department of Chemistry Abdul Wali Khan University Mardan Mardan Pakistan
| |
Collapse
|