1
|
Anbiaee G, Khoshbin Z, Zahraee H, Ramezani M, Alibolandi M, Abnous K, Taghdisi SM. Exonuclease-based aptasensors: Promising for food safety and diagnostic aims. Talanta 2023; 259:124500. [PMID: 37001398 DOI: 10.1016/j.talanta.2023.124500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/21/2023] [Accepted: 03/28/2023] [Indexed: 04/07/2023]
Abstract
As of today's requirement, developing cost-effective smart sensing tools with ultrahigh sensitivity for food safety insurance is of special importance. For this purpose, aptamer-based biosensors (aptasensors) powered by the superiorities of the recycling signal amplification strategies have been expanded especially. Target recycling supported by enzymes is an appealing approach for implementing signal amplification. As the supreme biocatalyst enzymes, exonucleases can inaugurate signal improvement by involving a single target in a process would result in appreciable repeating cycles of the cleavage of the phosphodiester bonds between the building blocks of the nucleic acid strands, and also, their terminals. Although there are diverse substances for catalyzing amplification strategies, including nanoparticles, carbon-based nanocomposites, and quantum dots (QDs), exonucleases are of superiority over them by simplifying the amplification process with no need for the complicated pre-treatment processes. The outstanding selectivity and great sensitivity of the aptasensors tuned by amplification potency of exonucleases nominate them as the promising sensing tools for label-free, ease-of-use, cost-effective, and real-time diagnosis of diverse targets. Here, we summarize the achievements and perspectives in the scientific branch of aptasensor design for the qualitative monitoring of diverse targets by cooperation of exonucleases with the conspicuous potential for the signal amplification. Finally, some results are expressed to provide a comprehensive viewpoint for developing novel nuclease-based aptasensors in the future.
Collapse
Affiliation(s)
- Ghasem Anbiaee
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Khoshbin
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamed Zahraee
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Ye J, Bao H, Zheng M, Liu H, Chen J, Wang S, Ma H, Zhang Y. Development of a Novel Magnetic-Bead-Based Automated Strategy for Efficient and Low-Cost Sample Preparation for Ochratoxin A Detection Using Mycotoxin–Albumin Interaction. Toxins (Basel) 2023; 15:toxins15040270. [PMID: 37104208 PMCID: PMC10145472 DOI: 10.3390/toxins15040270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/28/2023] [Accepted: 04/04/2023] [Indexed: 04/08/2023] Open
Abstract
The mycotoxin ochratoxin A (OTA) is toxic to humans and frequently contaminates wine and beer. Antibodies are essential recognition probes for the detection of OTA. However, they have several drawbacks, such as high costs and difficulty in preparation. In this study, a novel magnetic-bead-based automated strategy for efficient and low-cost OTA sample preparation was developed. Human serum albumin, which is an economical and stable receptor based on the mycotoxin–albumin interaction, was adapted and validated to replace conventional antibodies to capture OTA in the sample. Ultra-performance liquid chromatography–fluorescence detection was used in combination with this preparation method for efficient detection. The effects of different conditions on this method were investigated. The recovery of OTA samples spiked at three different concentrations ranged from 91.2% to 102.1%, and the relative standard deviations (RSDs) were 1.2%–8.2% in wine and beer. For red wine and beer samples, the LODs were 0.37 and 0.15 µg/L, respectively. This reliable method overcomes the drawbacks of conventional methods and offers significant application prospects.
Collapse
Affiliation(s)
- Jin Ye
- Key Laboratory of Grain Information Processing and Control, Henan University of Technology, Ministry of Education, Zhengzhou 450001, China
- Henan Key Laboratory of Grain Photoelectric Detection and Control, Henan University of Technology, Zhengzhou 450001, China
- College of Information Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
- Academy of National Food and Strategic Reserves Administration, Beijing 102600, China
| | - Hui Bao
- Key Laboratory of Grain Information Processing and Control, Henan University of Technology, Ministry of Education, Zhengzhou 450001, China
- Henan Key Laboratory of Grain Photoelectric Detection and Control, Henan University of Technology, Zhengzhou 450001, China
- College of Information Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Mengyao Zheng
- Academy of National Food and Strategic Reserves Administration, Beijing 102600, China
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Hongmei Liu
- Academy of National Food and Strategic Reserves Administration, Beijing 102600, China
| | - Jinnan Chen
- Academy of National Food and Strategic Reserves Administration, Beijing 102600, China
| | - Songxue Wang
- Academy of National Food and Strategic Reserves Administration, Beijing 102600, China
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Haihua Ma
- Key Laboratory of Grain Information Processing and Control, Henan University of Technology, Ministry of Education, Zhengzhou 450001, China
- Henan Key Laboratory of Grain Photoelectric Detection and Control, Henan University of Technology, Zhengzhou 450001, China
- College of Information Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Yuan Zhang
- Key Laboratory of Grain Information Processing and Control, Henan University of Technology, Ministry of Education, Zhengzhou 450001, China
- Henan Key Laboratory of Grain Photoelectric Detection and Control, Henan University of Technology, Zhengzhou 450001, China
- College of Information Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| |
Collapse
|
3
|
Screening of specific aptamers against chlorpromazine and construction of novel ratiometric fluorescent aptasensor based on metal-organic framework. Talanta 2023; 252:123850. [DOI: 10.1016/j.talanta.2022.123850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/08/2022] [Accepted: 08/12/2022] [Indexed: 11/18/2022]
|
4
|
Suo Z, Liang X, Jin H, He B, Wei M. A signal-enhancement fluorescent aptasensor based on the stable dual cross DNA nanostructure for simultaneous detection of OTA and AFB 1. Anal Bioanal Chem 2021; 413:7587-7595. [PMID: 34748033 DOI: 10.1007/s00216-021-03723-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/03/2021] [Accepted: 10/06/2021] [Indexed: 01/16/2023]
Abstract
The simultaneous detection of multiple mycotoxins is of great significance for food safety and human health. Herein, a simple, convenient and accurate fluorescent aptasensor was designed based on the dual cross DNA nanostructure for the simultaneous detection of ochratoxin A (OTA) and aflatoxin B1 (AFB1), in which the stable dual cross DNA nanostructure provided an assay platform using the fluorescent dye-labeled aptamers as a sensing element. Owing to the higher affinity of aptamers for their target, the aptamer probes were released from the assay platform in the presence of OTA and AFB1, resulting in an enhanced fluorescence at 570 nm and 670 nm. This "signal-on" fluorescent aptasensor assay system can effectively avoid background signals and minimize false positive. Furthermore, the designed method can realize the simultaneous detection of OTA and AFB1 during the whole experiment. The limits of detection (LOD) were as low as 0.0058 ng/mL for OTA, ranging from 0.01 to 50 ng/mL and 0.046 ng/mL for AFB1, ranging from 0.05 to 100 ng/mL. The proposed fluorescent aptasensor exhibits excellent performance in practical application and provides a novel approach for the simultaneous detection of multiple mycotoxins by simply changing the aptamers. A "signal-on" fluorescent aptasensor assay system based on the stable dual cross DNA nanostructure was successfully developed for simultaneous detection of OTA and AFB1 with lower detection limits in wider linear ranges.
Collapse
Affiliation(s)
- Zhiguang Suo
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou, Henan, 450001, People's Republic of China.
| | - Xiujun Liang
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou, Henan, 450001, People's Republic of China
| | - Huali Jin
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou, Henan, 450001, People's Republic of China
| | - Baoshan He
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou, Henan, 450001, People's Republic of China
| | - Min Wei
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou, Henan, 450001, People's Republic of China.
| |
Collapse
|
5
|
Lin B, Liu H, Huang C, Xiao X, Pedersen-Bjergaard S, Shen X. Versatile Integration of Liquid-Phase Microextraction and Fluorescent Aptamer Beacons: A Synergistic Effect for Bioanalysis. Anal Chem 2021; 93:14323-14333. [PMID: 34648282 DOI: 10.1021/acs.analchem.1c03600] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Fluorescent aptamer beacons (FABs) are a major category of biosensors widely used in environmental analysis. However, due to their low compatibility, it is difficult to use the common FABs for biological samples. To overcome this challenge, construction of FABs with complex structures to adapt the nature of biological samples is currently in progress in this field. Unlike previous works, we moved our range of vision from the FAB itself to the biological sample. Inspired by this idea, in this work, flat membrane-based liquid-phase microextraction (FM-LPME) with sufficient sample cleanup and preconcentration capacities was integrated with FABs. With the merits of both FM-LPME and FABs, the integrated LPME-FAB system displayed a clear synergistic enhancement for target analysis. Specifically, LPME in the LPME-FAB system provided purified and enriched Hg2+ for the FAB recognition, while the FAB recognition event promoted the extraction efficiency of LPME. Due to superior performances, the LPME-FAB system achieved highly sensitive analysis of Hg2+ in urine samples with a detection limit of 27 nM and accuracies in the range of 98-113%. To the best of our knowledge, this is the first time that an integrated LPME-FAB system was constructed for target analysis in biological samples. We believe that this study will provide a new insight into the next generation of biosensors, where the integration of sample preparation with detection probes is as important as the design of complex probes in the field of bioanalysis.
Collapse
Affiliation(s)
- Bin Lin
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road #13, Wuhan 430030, China
| | - Huajing Liu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road #13, Wuhan 430030, China
| | - Chuixiu Huang
- Department of Forensic Medicine, Huazhong University of Science and Technology, Hangkong Road #13, Wuhan 430030, China
| | - Xianjin Xiao
- Institute of Reproductive Health, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road #13, Wuhan 430030, China
| | - Stig Pedersen-Bjergaard
- School of Pharmacy, University of Oslo, P.O. Box 1068, Blindern 0316, Oslo, Norway.,Faculty of Health and Medical Sciences, School of Pharmaceutical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen 2100, Denmark
| | - Xiantao Shen
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road #13, Wuhan 430030, China
| |
Collapse
|
6
|
Qu C, Xin L, Yu S, Wei M. A homogeneous electrochemical aptasensor based on
DNA
assembly for zearalenone detection. J CHIN CHEM SOC-TAIP 2021. [DOI: 10.1002/jccs.202100136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Chenling Qu
- Department of Food Quality and Food Safety, College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control Henan University of Technology Zhengzhou People's Republic of China
| | - Lingkun Xin
- Department of Food Quality and Food Safety, College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control Henan University of Technology Zhengzhou People's Republic of China
| | - Songcheng Yu
- Department of Sanitary Chemistry, College of Public Health Zhengzhou University Zhengzhou People's Republic of China
| | - Min Wei
- Department of Food Quality and Food Safety, College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control Henan University of Technology Zhengzhou People's Republic of China
| |
Collapse
|