1
|
Li X, Zhang J, Zhang S, Shi S, Lu Y, Leng Y, Li C. Biomarkers for neuromyelitis optica: a visual analysis of emerging research trends. Neural Regen Res 2024; 19:2735-2749. [PMID: 38595291 PMCID: PMC11168523 DOI: 10.4103/nrr.nrr-d-24-00109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 02/04/2024] [Accepted: 02/19/2024] [Indexed: 04/11/2024] Open
Abstract
Neuromyelitis optica is an inflammatory demyelinating disease of the central nervous system that differs from multiple sclerosis. Over the past 20 years, the search for biomarkers for neuromyelitis optica has been ongoing. Here, we used a bibliometric approach to analyze the main research focus in the field of biomarkers for neuromyelitis optica. Research in this area is consistently increasing, with China and the United States leading the way on the number of studies conducted. The Mayo Clinic is a highly reputable institution in the United States, and was identified as the most authoritative institution in this field. Furthermore, Professor Wingerchuk from the Mayo Clinic was the most authoritative expert in this field. Keyword analysis revealed that the terms "neuromyelitis optica" (261 times), "multiple sclerosis" (220 times), "neuromyelitis optica spectrum disorder" (132 times), "aquaporin 4" (99 times), and "optical neuritis" (87 times) were the most frequently used keywords in literature related to this field. Comprehensive analysis of the classical literature showed that the majority of publications provide conclusive research evidence supporting the use of aquaporin-4-IgG and neuromyelitis optica-IgG to effectively diagnose and differentiate neuromyelitis optica from multiple sclerosis. Furthermore, aquaporin-4-IgG has emerged as a highly specific diagnostic biomarker for neuromyelitis optica spectrum disorder. Myelin oligodendrocyte glycoprotein-IgG is a diagnostic biomarker for myelin oligodendrocyte glycoprotein antibody-associated disease. Recent biomarkers for neuromyelitis optica include cerebrospinal fluid immunological biomarkers such as glial fibrillary acidic protein, serum astrocyte damage biomarkers like FAM19A5, serum albumin, and gamma-aminobutyric acid. The latest prospective clinical trials are exploring the potential of these biomarkers. Preliminary results indicate that glial fibrillary acidic protein is emerging as a promising candidate biomarker for neuromyelitis optica spectrum disorder. The ultimate goal of future research is to identify non-invasive biomarkers with high sensitivity, specificity, and safety for the accurate diagnosis of neuromyelitis optica.
Collapse
Affiliation(s)
- Xiangjun Li
- Department of Ophthalmology, Affiliated Hospital of Beihua University, Jilin, Jilin Province, China
| | - Jiandong Zhang
- Department of Ophthalmology, Changchun Bright Eye Hospital, Changchun, Jilin Province, China
| | - Siqi Zhang
- Department of Ophthalmology, Affiliated Hospital of Beihua University, Jilin, Jilin Province, China
| | - Shengling Shi
- Department of Ophthalmology, Affiliated Hospital of Beihua University, Jilin, Jilin Province, China
| | - Yi’an Lu
- Department of Ophthalmology, Changchun Bright Eye Hospital, Changchun, Jilin Province, China
| | - Ying Leng
- Department of Ophthalmology, Affiliated Hospital of Beihua University, Jilin, Jilin Province, China
| | - Chunyan Li
- Department of Endocrinology, Affiliated Hospital of Beihua University, Jilin, Jilin Province, China
| |
Collapse
|
2
|
Ye XF, Huang ZP, Li MM, Liu SF, Huang WL, Hamud AMS, Ye LC, Li LY, Wu SJ, Zhuang JL, Chen YH, Chen XR, Lin S, Wei XF, Chen CN. Update on aquaporin-4 antibody detection: the early diagnosis of neuromyelitis optica spectrum disorders. Mult Scler Relat Disord 2024; 90:105803. [PMID: 39128164 DOI: 10.1016/j.msard.2024.105803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 07/06/2024] [Accepted: 08/03/2024] [Indexed: 08/13/2024]
Abstract
Neuromyelitis optica spectrum disorder (NMOSD) is an autoimmune-mediated primary inflammatory myelinopathy of the central nervous system that primarily affects the optic nerve and spinal cord. The aquaporin 4 antibody (AQP4-Ab) is a specific autoantibody marker for NMOSD. Most patients with NMOSD are seropositive for AQP4-Ab, thus aiding physicians in identifying ways to treat NMOSD. AQP4-Ab has been tested in many clinical and laboratory studies, demonstrating effectiveness in diagnosing NMOSD. Recently, novel assays have been developed for the rapid and accurate detection of AQP4-Ab, providing further guidance for the diagnosis and treatment of NMOSD. This article summarizes the importance of rapid and accurate diagnosis for treating NMOSD based on a review of the latest relevant literature. We discussed current challenges and methods for improvement to offer new ideas for exploring rapid and accurate AQP4-Ab detection methods, aiming for early diagnosis of NMOSD.
Collapse
Affiliation(s)
- Xiao-Fang Ye
- Department of Neurology, The Second Affiliated Hospital, Fujian Medical University, Quanzhou 362000, Fujian Province, China; The Second Clinical Medical College of Fujian Medical University, Quanzhou 362000Fujian Province, China
| | - Zheng-Ping Huang
- Department of Neurology, The Second Affiliated Hospital, Fujian Medical University, Quanzhou 362000, Fujian Province, China; The Second Clinical Medical College of Fujian Medical University, Quanzhou 362000Fujian Province, China
| | - Mi-Mi Li
- Department of Neurology, The Second Affiliated Hospital, Fujian Medical University, Quanzhou 362000, Fujian Province, China; The Second Clinical Medical College of Fujian Medical University, Quanzhou 362000Fujian Province, China
| | - Shu-Fen Liu
- Department of Neurology, The Second Affiliated Hospital, Fujian Medical University, Quanzhou 362000, Fujian Province, China; The Second Clinical Medical College of Fujian Medical University, Quanzhou 362000Fujian Province, China
| | - Wan-Li Huang
- Department of Neurology, The Second Affiliated Hospital, Fujian Medical University, Quanzhou 362000, Fujian Province, China; The Second Clinical Medical College of Fujian Medical University, Quanzhou 362000Fujian Province, China
| | - Abdullahi Mukhtar Sheik Hamud
- Department of Neurology, The Second Affiliated Hospital, Fujian Medical University, Quanzhou 362000, Fujian Province, China; The Second Clinical Medical College of Fujian Medical University, Quanzhou 362000Fujian Province, China
| | - Li-Chao Ye
- Department of Neurology, The Second Affiliated Hospital, Fujian Medical University, Quanzhou 362000, Fujian Province, China; The Second Clinical Medical College of Fujian Medical University, Quanzhou 362000Fujian Province, China
| | - Lin-Yi Li
- Department of Neurology, The Second Affiliated Hospital, Fujian Medical University, Quanzhou 362000, Fujian Province, China; The Second Clinical Medical College of Fujian Medical University, Quanzhou 362000Fujian Province, China
| | - Shu-Juan Wu
- Department of Neurology, The Second Affiliated Hospital, Fujian Medical University, Quanzhou 362000, Fujian Province, China; The Second Clinical Medical College of Fujian Medical University, Quanzhou 362000Fujian Province, China
| | - Jian-Long Zhuang
- Prenatal Diagnosis Centre, Quanzhou Women's and Children's Hospital, Quanzhou 362000, Fujian China
| | - Yan-Hong Chen
- Department of Neurology, Shishi General Hospital, Quanzhou 362000, Fujian Province, China
| | - Xiang-Rong Chen
- The Second Clinical Medical College of Fujian Medical University, Quanzhou 362000Fujian Province, China; Department of Neurosurgery, The Second Affiliated Hospital, Fujian Medical University, Quanzhou 362000, Fujian Province, China
| | - Shu Lin
- Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, Fujian Province, China; Group of Neuroendocrinology, Garvan Institute of Medical Research, 384 Victoria St, Sydney, Australia.
| | - Xiao-Feng Wei
- College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, Fujian Province, China.
| | - Chun-Nuan Chen
- Department of Neurology, The Second Affiliated Hospital, Fujian Medical University, Quanzhou 362000, Fujian Province, China; The Second Clinical Medical College of Fujian Medical University, Quanzhou 362000Fujian Province, China.
| |
Collapse
|
3
|
Alkabie S, Budhram A. Testing for Antibodies Against Aquaporin-4 and Myelin Oligodendrocyte Glycoprotein in the Diagnosis of Patients With Suspected Autoimmune Myelopathy. Front Neurol 2022; 13:912050. [PMID: 35669883 PMCID: PMC9163833 DOI: 10.3389/fneur.2022.912050] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 04/26/2022] [Indexed: 11/13/2022] Open
Abstract
Autoimmune myelopathies are immune-mediated disorders of the spinal cord that can cause significant neurologic disability. Discoveries of antibodies targeting aquaporin-4 (AQP4-IgG) and myelin oligodendrocyte glycoprotein (MOG-IgG) have facilitated the diagnosis of autoimmune myelopathies that were previously considered to be atypical presentations of multiple sclerosis (MS) or idiopathic, and represent major advancements in the field of autoimmune neurology. The detection of these antibodies can substantially impact patient diagnosis and management, and increasing awareness of this has led to a dramatic increase in testing for these antibodies among patients with suspected autoimmune myelopathy. In this review we discuss test methodologies used to detect these antibodies, the role of serum vs. cerebrospinal fluid testing, and the value of antibody titers when interpreting results, with the aim of helping laboratorians and clinicians navigate this testing when ordered as part of the diagnostic evaluation for suspected autoimmune myelopathy.
Collapse
Affiliation(s)
- Samir Alkabie
- Department of Clinical Neurological Sciences, London Health Sciences Centre, Western University, London, ON, Canada
| | - Adrian Budhram
- Department of Clinical Neurological Sciences, London Health Sciences Centre, Western University, London, ON, Canada
- Deparment of Pathology and Laboratory Medicine, London Health Sciences Centre, Western University, London, ON, Canada
- *Correspondence: Adrian Budhram
| |
Collapse
|
4
|
Jeyalatha MV, Therese KL, Anand AR. An Update on the Laboratory Diagnosis of Neuromyelitis Optica Spectrum Disorders. J Clin Neurol 2022; 18:152-162. [PMID: 35274835 PMCID: PMC8926771 DOI: 10.3988/jcn.2022.18.2.152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 12/06/2021] [Accepted: 12/06/2021] [Indexed: 11/17/2022] Open
Abstract
Neuromyelitis optica spectrum disorder (NMOSD) is an autoimmune disorder of the central nervous system that is specifically associated with demyelination of spinal cord and optic nerves. The discovery of specific autoantibody markers such as aquaporin-4 IgG and myelin oligodendrocyte glycoprotein IgG has led to several methodologies being developed and validated. There have been numerous investigations of the clinical and radiological presentations used in the clinical diagnosis of NMOSD. However, although various laboratory diagnostic techniques have been standardized and validated, a gold-standard test has yet to be finalized due to uncertain sensitivities and specificities of the methodologies. For this review, the literature was surveyed to compile the standardized laboratory techniques utilized for the differential diagnosis of NMOSD. Enzyme-linked immunosorbent assays enable screening of NMOSD, but they are considered less sensitive than cell-based assays (CBAs), which were found to be highly sensitive and specific. However, CBAs are laborious and prone to batch variations in their results, since the expression levels of protein need to be maintained and monitored meticulously. Standardizing point-of-care devices and peptide-based assays would make it possible to improve the turnaround time and accessibility of the test, especially in resource-poor settings.
Collapse
Affiliation(s)
- Mani Vimalin Jeyalatha
- Department of Microbiology, Larsen & Toubro Microbiology Research Centre, Vision Research Foundation, Kamal Nayan Bajaj Institute for Research in Vision and Ophthalmology, Chennai, India
| | - Kulandai Lily Therese
- Department of Microbiology, Larsen & Toubro Microbiology Research Centre, Vision Research Foundation, Kamal Nayan Bajaj Institute for Research in Vision and Ophthalmology, Chennai, India.
| | - Appakkudal Ramaswamy Anand
- Department of Microbiology, Larsen & Toubro Microbiology Research Centre, Vision Research Foundation, Kamal Nayan Bajaj Institute for Research in Vision and Ophthalmology, Chennai, India
| |
Collapse
|
5
|
Gómez-Pinedo U, García-Ávila Y, Gallego-Villarejo L, Matías-Guiu JA, Benito-Martín MS, Esteban-García N, Sanclemente-Alamán I, Pytel V, Moreno-Jiménez L, Sancho-Bielsa F, Vidorreta-Ballesteros L, Montero-Escribano P, Matías-Guiu J. Sera from Patients with NMOSD Reduce the Differentiation Capacity of Precursor Cells in the Central Nervous System. Int J Mol Sci 2021; 22:5192. [PMID: 34068922 PMCID: PMC8155872 DOI: 10.3390/ijms22105192] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/11/2021] [Accepted: 05/11/2021] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION AQP4 (aquaporin-4)-immunoglobulin G (IgG)-mediated neuromyelitis optica spectrum disorder (NMOSD) is an inflammatory demyelinating disease that affects the central nervous system, particularly the spinal cord and optic nerve; remyelination capacity in neuromyelitis optica is yet to be determined, as is the role of AQP4-IgG in cell differentiation. MATERIAL AND METHODS We included three groups-a group of patients with AQP4-IgG-positive neuromyelitis optica, a healthy group, and a sham group. We analyzed differentiation capacity in cultures of neurospheres from the subventricular zone of mice by adding serum at two different times: early and advanced stages of differentiation. We also analyzed differentiation into different cell lines. RESULTS AND CONCLUSIONS The effect of sera from patients with NMOSD on precursor cells differs according to the degree of differentiation, and probably affects oligodendrocyte progenitor cells from NG2 cells to a lesser extent than cells from the subventricular zone; however, the resulting oligodendrocytes may be compromised in terms of maturation and possibly limited in their ability to generate myelin. Furthermore, these cells decrease in number with age. It is very unlikely that the use of drugs favoring the migration and differentiation of oligodendrocyte progenitor cells in multiple sclerosis would be effective in the context of neuromyelitis optica, but cell therapy with oligodendrocyte progenitor cells seems to be a potential alternative.
Collapse
Affiliation(s)
- Ulises Gómez-Pinedo
- Laboratory of Neurobiology, Department of Neurology, Institute of Neurosciences, San Carlos Health Research Institute, Universidad Complutense, 28040 Madrid, Spain; (Y.G.-Á.); (L.G.-V.); (J.A.M.-G.); (M.S.B.-M.); (N.E.-G.); (I.S.-A.); (V.P.); (L.M.-J.); (L.V.-B.); (P.M.-E.); (J.M.-G.)
| | - Yolanda García-Ávila
- Laboratory of Neurobiology, Department of Neurology, Institute of Neurosciences, San Carlos Health Research Institute, Universidad Complutense, 28040 Madrid, Spain; (Y.G.-Á.); (L.G.-V.); (J.A.M.-G.); (M.S.B.-M.); (N.E.-G.); (I.S.-A.); (V.P.); (L.M.-J.); (L.V.-B.); (P.M.-E.); (J.M.-G.)
| | - Lucía Gallego-Villarejo
- Laboratory of Neurobiology, Department of Neurology, Institute of Neurosciences, San Carlos Health Research Institute, Universidad Complutense, 28040 Madrid, Spain; (Y.G.-Á.); (L.G.-V.); (J.A.M.-G.); (M.S.B.-M.); (N.E.-G.); (I.S.-A.); (V.P.); (L.M.-J.); (L.V.-B.); (P.M.-E.); (J.M.-G.)
| | - Jordi A. Matías-Guiu
- Laboratory of Neurobiology, Department of Neurology, Institute of Neurosciences, San Carlos Health Research Institute, Universidad Complutense, 28040 Madrid, Spain; (Y.G.-Á.); (L.G.-V.); (J.A.M.-G.); (M.S.B.-M.); (N.E.-G.); (I.S.-A.); (V.P.); (L.M.-J.); (L.V.-B.); (P.M.-E.); (J.M.-G.)
| | - María Soledad Benito-Martín
- Laboratory of Neurobiology, Department of Neurology, Institute of Neurosciences, San Carlos Health Research Institute, Universidad Complutense, 28040 Madrid, Spain; (Y.G.-Á.); (L.G.-V.); (J.A.M.-G.); (M.S.B.-M.); (N.E.-G.); (I.S.-A.); (V.P.); (L.M.-J.); (L.V.-B.); (P.M.-E.); (J.M.-G.)
| | - Noelia Esteban-García
- Laboratory of Neurobiology, Department of Neurology, Institute of Neurosciences, San Carlos Health Research Institute, Universidad Complutense, 28040 Madrid, Spain; (Y.G.-Á.); (L.G.-V.); (J.A.M.-G.); (M.S.B.-M.); (N.E.-G.); (I.S.-A.); (V.P.); (L.M.-J.); (L.V.-B.); (P.M.-E.); (J.M.-G.)
| | - Inmaculada Sanclemente-Alamán
- Laboratory of Neurobiology, Department of Neurology, Institute of Neurosciences, San Carlos Health Research Institute, Universidad Complutense, 28040 Madrid, Spain; (Y.G.-Á.); (L.G.-V.); (J.A.M.-G.); (M.S.B.-M.); (N.E.-G.); (I.S.-A.); (V.P.); (L.M.-J.); (L.V.-B.); (P.M.-E.); (J.M.-G.)
| | - Vanesa Pytel
- Laboratory of Neurobiology, Department of Neurology, Institute of Neurosciences, San Carlos Health Research Institute, Universidad Complutense, 28040 Madrid, Spain; (Y.G.-Á.); (L.G.-V.); (J.A.M.-G.); (M.S.B.-M.); (N.E.-G.); (I.S.-A.); (V.P.); (L.M.-J.); (L.V.-B.); (P.M.-E.); (J.M.-G.)
| | - Lidia Moreno-Jiménez
- Laboratory of Neurobiology, Department of Neurology, Institute of Neurosciences, San Carlos Health Research Institute, Universidad Complutense, 28040 Madrid, Spain; (Y.G.-Á.); (L.G.-V.); (J.A.M.-G.); (M.S.B.-M.); (N.E.-G.); (I.S.-A.); (V.P.); (L.M.-J.); (L.V.-B.); (P.M.-E.); (J.M.-G.)
| | - Francisco Sancho-Bielsa
- Department of Physiology, Ciudad Real School of Medicine, Universidad de Castilla-La Mancha, 13001 Ciudad Real, Spain;
| | - Lucía Vidorreta-Ballesteros
- Laboratory of Neurobiology, Department of Neurology, Institute of Neurosciences, San Carlos Health Research Institute, Universidad Complutense, 28040 Madrid, Spain; (Y.G.-Á.); (L.G.-V.); (J.A.M.-G.); (M.S.B.-M.); (N.E.-G.); (I.S.-A.); (V.P.); (L.M.-J.); (L.V.-B.); (P.M.-E.); (J.M.-G.)
| | - Paloma Montero-Escribano
- Laboratory of Neurobiology, Department of Neurology, Institute of Neurosciences, San Carlos Health Research Institute, Universidad Complutense, 28040 Madrid, Spain; (Y.G.-Á.); (L.G.-V.); (J.A.M.-G.); (M.S.B.-M.); (N.E.-G.); (I.S.-A.); (V.P.); (L.M.-J.); (L.V.-B.); (P.M.-E.); (J.M.-G.)
| | - Jorge Matías-Guiu
- Laboratory of Neurobiology, Department of Neurology, Institute of Neurosciences, San Carlos Health Research Institute, Universidad Complutense, 28040 Madrid, Spain; (Y.G.-Á.); (L.G.-V.); (J.A.M.-G.); (M.S.B.-M.); (N.E.-G.); (I.S.-A.); (V.P.); (L.M.-J.); (L.V.-B.); (P.M.-E.); (J.M.-G.)
| |
Collapse
|
6
|
Carnero Contentti E, Rojas JI, Cristiano E, Marques VD, Flores-Rivera J, Lana-Peixoto M, Navas C, Papais-Alvarenga R, Sato DK, Soto de Castillo I, Correale J. Latin American consensus recommendations for management and treatment of neuromyelitis optica spectrum disorders in clinical practice. Mult Scler Relat Disord 2020; 45:102428. [DOI: 10.1016/j.msard.2020.102428] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 02/06/2023]
|
7
|
Detection of autoantibodies in central nervous system inflammatory disorders: Clinical application of cell-based assays. Mult Scler Relat Disord 2019; 38:101858. [PMID: 31775115 DOI: 10.1016/j.msard.2019.101858] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/29/2019] [Accepted: 11/14/2019] [Indexed: 12/18/2022]
Abstract
The identification of autoantibodies in central nervous system (CNS) inflammatory disorders improves diagnostic accuracy and the identification of patients with a relapsing disease. Usual methods to detect autoantibodies are usually divided into 3 categories: tissue-based assays, protein-based assays and cell-based assays (CBA). Tissue-based assays are commonly used for initial identification of autoantibodies based on staining patterns and co-localization. Once the antigen is known, autoantibodies can be detected using other antigen-specific methods based on recombinant proteins and CBA using transfected cells expressing the protein in their cell membranes. Compared to traditional methods using recombinant proteins such as ELISA and western blot, the CBA have advantage of detecting conformational sensitive antibodies using natively folded proteins in the cell membrane. This article reviews the utility of CBA into the clinical practice.
Collapse
|
8
|
Prain K, Woodhall M, Vincent A, Ramanathan S, Barnett MH, Bundell CS, Parratt JDE, Silvestrini RA, Bukhari W, Brilot F, Waters P, Broadley SA. AQP4 Antibody Assay Sensitivity Comparison in the Era of the 2015 Diagnostic Criteria for NMOSD. Front Neurol 2019; 10:1028. [PMID: 31636597 PMCID: PMC6787171 DOI: 10.3389/fneur.2019.01028] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 09/10/2019] [Indexed: 11/24/2022] Open
Abstract
We have compared five different assays for antibodies to aquaporin-4 in 181 cases of suspected Neuromyelitis optica spectrum disorders (NMOSD) and 253 controls to assess their relative utility. As part of a clinically-based survey of NMOSD in Australia and New Zealand, cases of suspected NMOSD were referred from 23 centers. Clinical details and magnetic imaging were reviewed and used to apply the 2015 IPND diagnostic criteria. In addition, 101 age- and sex-matched patients with multiple sclerosis were referred. Other inflammatory disease (n = 49) and healthy controls (n = 103) were also recruited. Samples from all participants were tested using tissue-based indirect immunofluorescence assays and a subset were tested using four additional ELISA and cell-based assays. Antibodies to myelin oligodendrocyte glycoprotein (MOG) were also assayed. All aquaporin-4 antibody assays proved to be highly specific. Sensitivities ranged from 60 to 94%, with cell-based assays having the highest sensitivity. Antibodies to MOG were detected in 8/79 (10%) of the residual suspected cases of NMOSD. Under the 2015 IPND diagnostic criteria for NMOSD, cell-based assays for aquaporin-4 are sensitive and highly specific, performing better than tissue-based and ELISA assays. A fixed cell-based assay showed near-identical results to a live-cell based assay. Antibodies to MOG account for only a small number of suspected cases.
Collapse
Affiliation(s)
- Kerri Prain
- Pathology Queensland Central Laboratory, Division of Immunology, Royal Brisbane and Women's Hospital, Herston, QLD, Australia
| | - Mark Woodhall
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Angela Vincent
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Sudarshini Ramanathan
- Brain Autoimmunity Group, Kids Neuroscience Centre, Kids Research at the Children's Hospital, Westmead, NSW, Australia.,Brain and Mind Centre, University of Sydney, Camperdown, NSW, Australia
| | - Michael H Barnett
- Brain and Mind Centre, University of Sydney, Camperdown, NSW, Australia
| | - Christine S Bundell
- School of Biomedical Science, Medicine, University of Western Australia, Nedlands, WA, Australia.,PathWest Laboratory Medicine, Department of Immunology, QEII Medical Centre, Nedlands, WA, Australia
| | - John D E Parratt
- Brain and Mind Centre, University of Sydney, Camperdown, NSW, Australia.,Department of Neurology, Royal North Shore Hospital, Sydney, NSW, Australia
| | - Roger A Silvestrini
- Brain Autoimmunity Group, Kids Neuroscience Centre, Kids Research at the Children's Hospital, Westmead, NSW, Australia
| | - Wajih Bukhari
- School of Medicine, Gold Coast Campus, Griffith University, Southport, QLD, Australia.,Department of Neurology, Gold Coast University Hospital, Southport, QLD, Australia
| | | | - Fabienne Brilot
- Brain Autoimmunity Group, Kids Neuroscience Centre, Kids Research at the Children's Hospital, Westmead, NSW, Australia.,Brain and Mind Centre, University of Sydney, Camperdown, NSW, Australia
| | - Patrick Waters
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Simon A Broadley
- School of Medicine, Gold Coast Campus, Griffith University, Southport, QLD, Australia.,Department of Neurology, Gold Coast University Hospital, Southport, QLD, Australia
| |
Collapse
|
9
|
Tampoia M, Abbracciavento L, Barberio G, Fabris M, Bizzaro N. A new M23-based ELISA assay for anti-aquaporin 4 autoantibodies: diagnostic accuracy and clinical correlation. AUTOIMMUNITY HIGHLIGHTS 2019; 10:5. [PMID: 32257061 PMCID: PMC7065340 DOI: 10.1186/s13317-019-0115-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 05/30/2019] [Indexed: 01/05/2023]
Abstract
Purpose Although many assays have been developed to detect anti-aquaporin-4 (AQP4) antibodies, most of these assays require sophisticated techniques and are thus only available at specialized laboratories. The aim of this study was to evaluate the analytical and clinical performance of a new commercial enzyme-linked immunosorbent assay (ELISA RSR, AQP4 Ab Version 2) to detect anti-AQP4 antibodies performed on a fully automated system (SkyLAB 752). Methods Serum samples from 64 patients with neuromyelitis optica spectrum disorders (NMOSD) (including NMO, longitudinally extensive myelitis-LETM, optical neuritis and myelitis) and 27 controls were tested for anti-AQP4 antibodies. All sera were previously tested using an indirect immunofluorescence (IIF) method on primate tissue, as the reference method. Commercial control sera were used to determine within-run, between-day and within-laboratory precision (CLSI guidelines). Results At a cut-off value of 2.1 U/mL as determined by ROC curves, sensitivity and specificity for NMO were 83.3% and 100%, respectively. The ELISA assay provided 100% concordant results with the reference IIF method. The median concentration of anti-AQP4 antibodies was statistically higher in patients with NMO than in patients with LETM (p = 0.0006) or with other NMOSD and in controls (p < 0.0001). At the concentration of 12.4 and 28.1 U/mL, the within-run, between-day and within-laboratory coefficients of variation (CV) were 3.2% and 3%, 7.6% and 7.4%, and 8.2% and 8.0%, respectively. Conclusions This new ELISA method performed on a fully automated system, showed high sensitivity and absolute specificity, good CV in precision tests, and provided observer-independent quantitative results.
Collapse
Affiliation(s)
- Marilina Tampoia
- 1Clinical Pathology Laboratory, Polyclinic of Bari, Department of Biomedical Sciences and Human Oncology, University of Bari, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Letizia Abbracciavento
- 1Clinical Pathology Laboratory, Polyclinic of Bari, Department of Biomedical Sciences and Human Oncology, University of Bari, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Giuseppina Barberio
- 2Laboratory Medicine, Department of Clinical Pathology, Treviso Hospital, Treviso, Italy
| | - Martina Fabris
- 3Laboratory of Immunopathology and Allergology, University Hospital Udine, P.le S. Maria della Misericordia 15, 33100 Udine, Italy
| | - Nicola Bizzaro
- 4Laboratory of Clinical Pathology, San Antonio Hospital, Azienda Sanitaria Universitaria Integrata di Udine, Udine, Italy
| | | |
Collapse
|
10
|
Pisani F, Simone L, Mola MG, De Bellis M, Mastrapasqua M, Ruggieri M, Trojano M, Nicchia GP, Svelto M, Frigeri A. Host-Cell Type Dependent Features of Recombinant Human Aquaporin-4 Orthogonal Arrays of Particles-New Insights for Structural and Functional Studies. Cells 2019; 8:cells8020119. [PMID: 30717425 PMCID: PMC6406603 DOI: 10.3390/cells8020119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 01/26/2019] [Accepted: 02/01/2019] [Indexed: 11/16/2022] Open
Abstract
The CNS plasma-membrane water channel aquaporin-4 (AQP4) is expressed as two major isoforms able to aggregate into supramolecular assemblies known as ‘orthogonal arrays of particles’ (OAPs). OAP subnanometric features are largely unknown mainly because a method for the expression, isolation, and crystallization of integral human OAPs has not been developed. Here, the human OAP-forming isoform M23-AQP4 was expressed in insect and mammalian cell lines and AQP4 and OAP features evaluated. Native size exclusion chromatography was employed to isolate and analyze authentically folded OAPs, and neuromyelitis optica (NMO)-specific sandwich ELISA was developed to test OAP-integrity. The results demonstrate that in insect cells most AQP4 remains intracellular and unfolded and that OAPs are largely disassembled after the detergent extraction step. In mammalian cells, AQP4 showed regular plasma membrane targeting and OAPs exhibited strong post-extraction stability. Starting from the mammalian cell expression system, we isolated authentically folded OAPs. Together these data suggest a new strategy for expressing and isolating integral recombinant human OAPs and providing new insights into the cell-type dependent OAP-assembly and post-extraction stability, potentially useful to design new approaches for structural and functional studies of OAP and for other plasma membrane proteins organized into supramolecular structures.
Collapse
Affiliation(s)
- Francesco Pisani
- Department of Bioscience, Biotechnologies and Biopharmaceutic, Univ. of Bari "Aldo Moro", 70124 Bari, Italy.
| | - Laura Simone
- Fondazione IRCCS Casa Sollievo della Sofferenza, Cancer Stem Cells Unit, 71013 San Giovanni Rotondo (FG), Italy.
| | - Maria Grazia Mola
- Department of Bioscience, Biotechnologies and Biopharmaceutic, Univ. of Bari "Aldo Moro", 70124 Bari, Italy.
| | - Manuela De Bellis
- Department of Bioscience, Biotechnologies and Biopharmaceutic, Univ. of Bari "Aldo Moro", 70124 Bari, Italy.
| | - Maria Mastrapasqua
- School of Medicine, Basic Medical Sciences, Neuroscience and Sense Organs, Univ. of Bari "Aldo Moro", 70124 Bari, Italy.
| | - Maddalena Ruggieri
- School of Medicine, Basic Medical Sciences, Neuroscience and Sense Organs, Univ. of Bari "Aldo Moro", 70124 Bari, Italy.
| | - Maria Trojano
- School of Medicine, Basic Medical Sciences, Neuroscience and Sense Organs, Univ. of Bari "Aldo Moro", 70124 Bari, Italy.
| | - Grazia Paola Nicchia
- Department of Bioscience, Biotechnologies and Biopharmaceutic, Univ. of Bari "Aldo Moro", 70124 Bari, Italy.
| | - Maria Svelto
- Department of Bioscience, Biotechnologies and Biopharmaceutic, Univ. of Bari "Aldo Moro", 70124 Bari, Italy.
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, 70126 Bari, Italy.
| | - Antonio Frigeri
- School of Medicine, Basic Medical Sciences, Neuroscience and Sense Organs, Univ. of Bari "Aldo Moro", 70124 Bari, Italy.
| |
Collapse
|
11
|
Development of an Aquaporin-4 Orthogonal Array of Particle-Based ELISA for Neuromyelitis Optica Autoantibodies Detection. PLoS One 2015; 10:e0143679. [PMID: 26599905 PMCID: PMC4658006 DOI: 10.1371/journal.pone.0143679] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 11/09/2015] [Indexed: 12/28/2022] Open
Abstract
Serological markers of Nuromyelitis Optica (NMO), an autoimmune disorder of the central nervous system, are autoantibodies targeting the astrocytic water channel aquaporin-4 (AQP4). We have previously demonstrated that the main epitopes for these autoantibodies (AQP4-IgG) are generated by the supramolecular arrangement of AQP4 tetramers into an Orthogonal Array of Particles (OAPs). Many tests have been developed to detect AQP4-IgG in patient sera but several procedural issues affect OAP assembly and consequently test sensitivity. To date, the protein based ELISA test shows the lowest sensitivity while representing a valid alternative to the more sensitive cell based assay (CBA), which, however, shows economic, technical and interpretation problems. Here we have developed a high perfomance ELISA in which native OAPs are used as the molecular target. To this aim a native size exclusion chromatography method has been developed to isolate integral, highly pure and AQP4-IgG-recognized OAPs from rat brain. These OAPs were immobilized and oriented on a plastic plate by a sandwich approach and 139 human sera were tested, including 67 sera from NMO patients. The OAP-ELISA showed a 99% specificity and a higher sensitivity (91%) compared to the CBA test. A comparative analysis revealed an end-point titer three orders of magnitude higher than the commercial ELISA and six times higher than our in-house CBA test. We show that CNS-extracted OAPs are crucial elements in order to perform an efficient AQP4-IgG test and the OAP-ELISA developed represents a valid alternative to the CBA currently used.
Collapse
|
12
|
Specificity and sensitivity of aquaporin 4 antibody detection tests in patients with neuromyelitis optica: A meta-analysis. Mult Scler Relat Disord 2015. [DOI: 10.1016/j.msard.2015.06.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Waters PJ, Pittock SJ, Bennett JL, Jarius S, Weinshenker BG, Wingerchuk DM. Evaluation of aquaporin-4 antibody assays. CLINICAL & EXPERIMENTAL NEUROIMMUNOLOGY 2014. [PMID: 27840658 DOI: 10.1111/cen3.12107"] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Aquaporin-4 (AQP4) is a water channel protein that is most highly, but not exclusively, expressed in the central nervous system. In 2005 AQP4 was shown to be the antigenic target of neuromyelitis optica-immunoglobulin G (NMO-IgG, or AQP4-IgG), an antibody found specifically in patients with NMO and in formes frustes of NMO, such as longitudinally extensive transverse myelitis (LETM) or optic neuritis (ON). This discovery facilitated the clinical, pathological, and radiological distinction of NMO and the spectrum of NMO-related disorders from classical multiple sclerosis. In addition to its use as a diagnostic tool, AQP4-IgG predicts a high risk of relapse in patients with a clinically isolated syndrome of either LETM or ON. As disability in NMO is attack-related, early diagnosis and treatment are predicted to have a major effect on long-term disability. Thus, the importance of sensitive and specific assays to detect AQP4-IgG cannot be overstated. Both academic institutions and commercial companies have developed assays to identify AQP4-IgG in patients' sera or cerebrospinal fluid. Both AQP4 isoforms from different species have been used as the antigenic target in the form of frozen tissue sections in indirect immunofluorescence assays, partially purified protein for fluorescence immunoprecipitation assay, radioimmunoprecipita-tion assay or enzyme-linked immunosorbent assay, or transfected into cells for cell based assays or flow cytometry. We carried out a systematic review of the literature reporting different methodologies used to identify AQP4-IgG, examine whether longitudinal AQP4-IgG titers predict relapses in seropositive patients, and attempt to establish a reasonable timeframe for retesting negative serum samples.
Collapse
Affiliation(s)
- Patrick J Waters
- Neuroimmunology Group, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, UK
| | - Sean J Pittock
- Departments of Neurology, Mayo Clinic College of Medicine, Rochester, MN, USA; Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Jeffrey L Bennett
- Departments of Neurology and Ophthalmology, University of Colorado Denver, Aurora, CO, USA
| | - Sven Jarius
- Molecular Neuroimmunology, Department of Neurology, University of Heidelberg, Heidelberg, Germany
| | - Brian G Weinshenker
- Departments of Neurology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Dean M Wingerchuk
- Department of Neurology, Mayo Clinic College of Medicine, Scottsdale, AZ, USA
| |
Collapse
|
14
|
Jarius S, Wildemann B. Aquaporin-4 antibodies (NMO-IgG) as a serological marker of neuromyelitis optica: a critical review of the literature. Brain Pathol 2014; 23:661-83. [PMID: 24118483 DOI: 10.1111/bpa.12084] [Citation(s) in RCA: 185] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 08/13/2013] [Indexed: 01/19/2023] Open
Abstract
Antibodies to aquaporin-4 (called NMO-IgG or AQP4-Ab) constitute a sensitive and highly specific serum marker of neuromyelitis optica (NMO) that can facilitate the differential diagnosis of NMO and classic multiple sclerosis. NMO-IgG/AQP4-Ab seropositive status has also important prognostic and therapeutic implications in patients with isolated longitudinally extensive myelitis (LETM) or optic neuritis (ON). In this article, we comprehensively review and critically appraise the existing literature on NMO-IgG/AQP4-Ab testing. All available immunoassays-including tissue-based (IHC), cell-based (ICC, FACS) and protein-based (RIPA, FIPA, ELISA, Western blotting) assays-and their differential advantages and disadvantages are discussed. Estimates for sensitivity, specificity, and positive and negative likelihood ratios are calculated for all published studies and accuracies of the various immunoassay techniques compared. Subgroup analyses are provided for NMO, LETM and ON, for relapsing vs. monophasic disease, and for various control groups (eg, MS vs. other controls). Numerous aspects of NMO-IgG/AQP4-Ab testing relevant for clinicians (eg, impact of antibody titers and longitudinal testing, indications for repeat testing, relevance of CSF testing and subclass analysis, NMO-IgG/AQP4-Ab in patients with rheumatic diseases) as well as technical aspects (eg, AQP4-M1 vs. AQP4-M23-based assays, intact AQP4 vs. peptide substrates, effect of storage conditions and freeze/thaw cycles) and pitfalls are discussed. Finally, recommendations for the clinical application of NMO-IgG/AQP4-Ab serology are given.
Collapse
Affiliation(s)
- Sven Jarius
- Division of Molecular Neuroimmunology, Department of Neurology, University of Heidelberg, Heidelberg, Germany
| | | |
Collapse
|
15
|
Waters PJ, Pittock SJ, Bennett JL, Jarius S, Weinshenker BG, Wingerchuk DM. Evaluation of aquaporin-4 antibody assays. ACTA ACUST UNITED AC 2014; 5:290-303. [PMID: 27840658 DOI: 10.1111/cen3.12107] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Aquaporin-4 (AQP4) is a water channel protein that is most highly, but not exclusively, expressed in the central nervous system. In 2005 AQP4 was shown to be the antigenic target of neuromyelitis optica-immunoglobulin G (NMO-IgG, or AQP4-IgG), an antibody found specifically in patients with NMO and in formes frustes of NMO, such as longitudinally extensive transverse myelitis (LETM) or optic neuritis (ON). This discovery facilitated the clinical, pathological, and radiological distinction of NMO and the spectrum of NMO-related disorders from classical multiple sclerosis. In addition to its use as a diagnostic tool, AQP4-IgG predicts a high risk of relapse in patients with a clinically isolated syndrome of either LETM or ON. As disability in NMO is attack-related, early diagnosis and treatment are predicted to have a major effect on long-term disability. Thus, the importance of sensitive and specific assays to detect AQP4-IgG cannot be overstated. Both academic institutions and commercial companies have developed assays to identify AQP4-IgG in patients' sera or cerebrospinal fluid. Both AQP4 isoforms from different species have been used as the antigenic target in the form of frozen tissue sections in indirect immunofluorescence assays, partially purified protein for fluorescence immunoprecipitation assay, radioimmunoprecipita-tion assay or enzyme-linked immunosorbent assay, or transfected into cells for cell based assays or flow cytometry. We carried out a systematic review of the literature reporting different methodologies used to identify AQP4-IgG, examine whether longitudinal AQP4-IgG titers predict relapses in seropositive patients, and attempt to establish a reasonable timeframe for retesting negative serum samples.
Collapse
Affiliation(s)
- Patrick J Waters
- Neuroimmunology Group, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, UK
| | - Sean J Pittock
- Departments of Neurology, Mayo Clinic College of Medicine, Rochester, MN, USA; Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Jeffrey L Bennett
- Departments of Neurology and Ophthalmology, University of Colorado Denver, Aurora, CO, USA
| | - Sven Jarius
- Molecular Neuroimmunology, Department of Neurology, University of Heidelberg, Heidelberg, Germany
| | - Brian G Weinshenker
- Departments of Neurology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Dean M Wingerchuk
- Department of Neurology, Mayo Clinic College of Medicine, Scottsdale, AZ, USA
| |
Collapse
|
16
|
Lin A, Zhu J, Yao X, Lin S, Murong S, Li Z. Clinical Manifestations and Spinal Cord Magnetic Resonance Imaging Findings in Chinese Neuromyelitis Optica Patients. Eur Neurol 2013; 71:35-41. [DOI: 10.1159/000353983] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
17
|
Aquaporin-4 autoantibodies in Neuromyelitis Optica: AQP4 isoform-dependent sensitivity and specificity. PLoS One 2013; 8:e79185. [PMID: 24260168 PMCID: PMC3829826 DOI: 10.1371/journal.pone.0079185] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 09/20/2013] [Indexed: 11/19/2022] Open
Abstract
Neuromyelitis Optica (NMO) is an autoimmune demyelinating disease, characterized by the presence of autoantibody (NMO-IgG) to Aquaporin-4 (AQP4). NMO-IgG identification supports NMO diagnosis and several diagnostic tests have been developed, but their sensitivity is too variable, and some assay show low sensitivity. This impairs correct diagnosis of NMO. By cell based assay (CBA) we here evaluate the efficacy of different strategies to express AQP4 in mammalian cells in terms of: a) AQP4 translation initiation signals; b) AQP4 isoforms (M1 and M23) and fluorescent tag position; c) NMO serum concentration and AQP4 degradation. Our results demonstrate that when using AQP4-M1, the nucleotide in position -3 of the AUG greatly affects the AQP4-M1/M23 protein ratio, NMO-IgG binding, and consequently test sensitivity. Test sensitivity was highest with M23 expressing cells (97.5%) and only 27.5% with AQP4-M1. The fluorescent tag added to the N-terminus of AQP4-M23 considerably affected the NMO-IgG binding, and test sensitivity, due to disruption of AQP4 suprastructures. Furthermore, sera used at high concentration resulted in AQP4 degradation which affected test sensitivity. To further evaluate the reliability of the M23 based CBA test, samples of one NMO patient collected during about 2 years clinical follow-up were tested. The results of serum titer correlated with disease activity and treatment response. In conclusion, we provide a molecular explanation for the contrasting CBA test data reported and suggest the use of M23 with a C-terminus fluorescent tag as the proper test for NMO diagnosis.
Collapse
|
18
|
Jarius S, Wildemann B. Aquaporin-4 antibodies (NMO-IgG) as a serological marker of neuromyelitis optica: a critical review of the literature. BRAIN PATHOLOGY (ZURICH, SWITZERLAND) 2013. [PMID: 24118483 DOI: 10.1111/bpa.12084"] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Antibodies to aquaporin-4 (called NMO-IgG or AQP4-Ab) constitute a sensitive and highly specific serum marker of neuromyelitis optica (NMO) that can facilitate the differential diagnosis of NMO and classic multiple sclerosis. NMO-IgG/AQP4-Ab seropositive status has also important prognostic and therapeutic implications in patients with isolated longitudinally extensive myelitis (LETM) or optic neuritis (ON). In this article, we comprehensively review and critically appraise the existing literature on NMO-IgG/AQP4-Ab testing. All available immunoassays-including tissue-based (IHC), cell-based (ICC, FACS) and protein-based (RIPA, FIPA, ELISA, Western blotting) assays-and their differential advantages and disadvantages are discussed. Estimates for sensitivity, specificity, and positive and negative likelihood ratios are calculated for all published studies and accuracies of the various immunoassay techniques compared. Subgroup analyses are provided for NMO, LETM and ON, for relapsing vs. monophasic disease, and for various control groups (eg, MS vs. other controls). Numerous aspects of NMO-IgG/AQP4-Ab testing relevant for clinicians (eg, impact of antibody titers and longitudinal testing, indications for repeat testing, relevance of CSF testing and subclass analysis, NMO-IgG/AQP4-Ab in patients with rheumatic diseases) as well as technical aspects (eg, AQP4-M1 vs. AQP4-M23-based assays, intact AQP4 vs. peptide substrates, effect of storage conditions and freeze/thaw cycles) and pitfalls are discussed. Finally, recommendations for the clinical application of NMO-IgG/AQP4-Ab serology are given.
Collapse
Affiliation(s)
- Sven Jarius
- Division of Molecular Neuroimmunology, Department of Neurology, University of Heidelberg, Heidelberg, Germany
| | | |
Collapse
|