1
|
Xu K, Zhang C, WeiGao, Shi Y, Pu S, Huang N, Dou W. The involvement of circRNAs in molecular processes and their potential use in therapy and diagnostics for glioblastoma. Gene 2025; 940:149214. [PMID: 39756549 DOI: 10.1016/j.gene.2025.149214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/10/2024] [Accepted: 01/02/2025] [Indexed: 01/07/2025]
Abstract
Glioblastoma, a type of brain tumor, is well-known for its aggressive nature and can affect individuals of all ages. Glioblastoma continues to be a difficult cancer to manage because of various resistance mechanisms. The blood-brain barrier restricts the delivery of drugs, and the heterogeneity of tumors, along with overlapping signaling pathways, complicates its effective treatment. Patients diagnosed with glioblastoma typically survive for no more than 2 years. Innovative therapies and early diagnostic tools for glioblastoma are essential. Circular RNAs have emerged as significant contributors to glioblastoma, and influence cancer mechanisms such as cell growth, death, invasion, and resistance to treatment. The circRNAs presence makes them essential candidates for treatment and practical diagnostic tools for glioblastoma. This review highlights the therapeutic approaches and diagnostic potential of circRNAs and explores their role in the molecular mechanisms underlying glioblastoma.
Collapse
Affiliation(s)
- Kanghong Xu
- Department of Clinical Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250011, PR China
| | - Chunlai Zhang
- Department of Clinical Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250011, PR China; The First Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250011, PR China
| | - WeiGao
- Department of Clinical Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250011, PR China
| | - Yushan Shi
- Department of Clinical Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250011, PR China
| | - Shuangshuang Pu
- Department of Clinical Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250011, PR China
| | - Ning Huang
- Department of Clinical Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250011, PR China.
| | - Weitao Dou
- Department of Medical Intervention, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, PR China.
| |
Collapse
|
2
|
Saadh MJ, Ehymayed HM, Alazzawi TS, Fahdil AA, Athab ZH, Yarmukhamedov B, Al-Anbari HHA, Shallal MM, Alsaikhan F, Farhood B. Role of circRNAs in regulating cell death in cancer: a comprehensive review. Cell Biochem Biophys 2024:10.1007/s12013-024-01492-6. [PMID: 39243349 DOI: 10.1007/s12013-024-01492-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2024] [Indexed: 09/09/2024]
Abstract
Despite multiple diagnostic and therapeutic advances, including surgery, radiation therapy, and chemotherapy, cancer preserved its spot as a global health concern. Prompt cancer diagnosis, treatment, and prognosis depend on the discovery of new biomarkers and therapeutic strategies. Circular RNAs (circRNAs) are considered as a stable, conserved, abundant, and varied group of RNA molecules that perform multiple roles such as gene regulation. There is evidence that circRNAs interact with RNA-binding proteins, especially capturing miRNAs. An extensive amount of research has presented the substantial contribution of circRNAs in various types of cancer. To fully understand the linkage between circRNAs and cancer growth as a consequence of various cell death processes, including autophagy, ferroptosis, and apoptosis, more research is necessary. The expression of circRNAs could be controlled to limit the occurrence and growth of cancer, providing a more encouraging method of cancer treatment. Consequently, it is critical to understand how circRNAs affect various forms of cancer cell death and evaluate whether circRNAs could be used as targets to induce tumor death and increase the efficacy of chemotherapy. The current study aims to review and comprehend the effects that circular RNAs exert on cell apoptosis, autophagy, and ferroptosis in cancer to investigate potential cancer treatment targets.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan
| | | | - Tuqa S Alazzawi
- College of dentist, National University of Science and Technology, Dhi Qar, Iraq
| | - Ali A Fahdil
- Medical technical college, Al-Farahidi University, Baghdad, Iraq
| | - Zainab H Athab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | - Bekhzod Yarmukhamedov
- Department of Surgical Dentistry and Dental Implantology, Tashkent State Dental Institute, Tashkent, Uzbekistan
- Department of Scientific affairs, Samarkand State Medical University, Samarkand, Uzbekistan
| | | | | | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia.
- School of Pharmacy, Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia.
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
3
|
Hedayati N, Mafi A, Farahani A, Hashemi M, Nabavi N, Alimohammadi M, Rahimzadeh P, Taheriazam A, Farahani N. The importance of the circRNA/Wnt axis in gliomas: Biological functions and clinical opportunities. Pathol Res Pract 2024; 261:155510. [PMID: 39116573 DOI: 10.1016/j.prp.2024.155510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/24/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024]
Abstract
Gliomas are among the most common cancers in the central nervous system, arising through various signaling pathways. One significant pathway is Wnt signaling, a tightly regulated process that plays a crucial role in gliomagenesis and development. The current study aims to explore the relationship between circular RNAs (circRNAs) and the Wnt/β-catenin signaling pathway in gliomas, considering the growing recognition of circRNAs in disease pathogenesis. A comprehensive review of recent research was conducted to investigate the roles of circRNAs in gliomas, focusing on their expression patterns and interactions with the Wnt signaling pathway. The analysis included studies examining circRNAs' function as microRNA sponges and their impact on glioma biology. The findings reveal that circRNAs are differentially expressed in gliomas and significantly influence the occurrence, growth, and metastasis of these tumors. Specifically, circRNAs interact with the Wnt signaling pathway, affecting glioma development and progression. This interaction highlights the importance of circRNAs in glioma pathophysiology. Understanding the regulatory network involving circRNAs and Wnt signaling offers valuable insights into glioma pathophysiology. CircRNAs hold promise as diagnostic and prognostic biomarkers and may serve as targets for novel therapeutic strategies in glioma treatment.
Collapse
Affiliation(s)
- Neda Hedayati
- School of Medicine, Iran University of Medical Science, Tehran, Iran
| | - Alireza Mafi
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran; Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Aryan Farahani
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical sciences, Tehran, Iran
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Noushin Nabavi
- Independent Researcher, Victoria, British Columbia, Canada
| | - Mina Alimohammadi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Payman Rahimzadeh
- Surgical Research Society (SRS), Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Najma Farahani
- Department of Genetics and Molecular Biology, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
4
|
Zhang X, Ma L, Wan L, Wang H, Wang Z. Circ_0003945: an emerging biomarker and therapeutic target for human diseases. Front Oncol 2024; 14:1275009. [PMID: 38711855 PMCID: PMC11070578 DOI: 10.3389/fonc.2024.1275009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 03/29/2024] [Indexed: 05/08/2024] Open
Abstract
Due to the rapid development of RNA sequencing techniques, a circular non-coding RNA (ncRNA) known as circular RNAs (circRNAs) has gradually come into focus. As a distinguished member of the circRNA family, circ_0003945 has garnered attention for its aberrant expression and biochemical functions in human diseases. Subsequent studies have revealed that circ_0003945 could regulate tumor cells proliferation, migration, invasion, apoptosis, autophagy, angiogenesis, drug resistance, and radio resistance through the molecular mechanism of competitive endogenous RNA (ceRNA) during tumorigenesis. The expression of circ_0003945 is frequently associated with some clinical parameters and implies a poorer prognosis in the majority of cancers. In non-malignant conditions, circ_0003945 also holds considerable importance in diseases pathogenesis. This review aims to recapitulate molecular mechanism of circ_0003945 and elucidates its potential as a diagnostic and therapeutic target in neoplasms and other diseases.
Collapse
Affiliation(s)
- Xiaofei Zhang
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Li Ma
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Li Wan
- Department of Oncology, The Affiliated Huai’an No.1 People’s Hospital of Nanjing Medical University, Huai’an, China
| | - Haoran Wang
- Division of Spine Surgery, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhaoxia Wang
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
5
|
Dain L, Zhu G. Nucleic acid immunotherapeutics and vaccines: A promising approach to glioblastoma multiforme treatment. Int J Pharm 2023; 638:122924. [PMID: 37037396 PMCID: PMC10194422 DOI: 10.1016/j.ijpharm.2023.122924] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 04/12/2023]
Abstract
Glioblastoma multiforme (GBM) is a deadly and difficult to treat primary brain tumor for which satisfactory therapeutics have yet to be discovered. While cancer immunotherapeutics, such as immune checkpoint inhibitors, have successfully improved the treatment of some other types of cancer, the poorly immunogenic GBM tumor cells and the immunosuppressive GBM tumor microenvironment have made it difficult to develop GBM immunotherapeutics. Nucleic acids therapeutics and vaccines, particularly those of mRNA, have become a popular field of research in recent years. This review presents the progress of nucleic acid therapeutics and vaccines for GBM and briefly covers some representative delivery methods of nucleic acids to the central nervous system (CNS) for GBM therapy.
Collapse
Affiliation(s)
- Lauren Dain
- Department of Pharmaceutics and Center for Pharmaceutical Engineering and Sciences, Institute for Structural Biology and Drug Discovery, School of Pharmacy; The Developmental Therapeutics Program, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Guizhi Zhu
- Department of Pharmaceutics and Center for Pharmaceutical Engineering and Sciences, Institute for Structural Biology and Drug Discovery, School of Pharmacy; The Developmental Therapeutics Program, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA; Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
6
|
Wang H, Liu S, Sha X, Gao X, Liu G, Jiang X. Unveiling the prominent roles of circular RNAs ubiquitin binding associated protein 2 in cancers. Pathol Res Pract 2023; 241:154282. [PMID: 36580797 DOI: 10.1016/j.prp.2022.154282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
Circular RNAs (circRNAs), a novel type of covalently closed non-coding RNAs, are widely expressed in eukaryotes and viruses. Accumulating evidence has shown that circRNAs play key roles in the pathophysiological changes process of human diseases and can affect cancer development and progression through regulating target genes expression, linear RNA transcription and protein generation. Recent studies had found that circRNA-UBAP2 (ubiquitin binding associated protein 2) was aberrantly expressed in various human tumors and could affect tumor cells proliferation, migration, invasion, cell cycle, anti-apoptosis, radioresistance, chemoresistance and other malignant biological behavioral progress. Mechanistic studies further revealed that circUBAP2 could affect the occurrence and development of human tumors through multiple different molecular regulatory pathways in vivo and in vitro. In addition, the abnormal expression of circUBAP2 was significantly correlated with the clinicopathological characteristics of malignant tumors and had potential value as biomarkers for the diagnosis and prognosis evaluation of cancer patients, which deserved further study. This review had summarized and discussed the oncogenic roles and clinical performances of circUBAP2 in various human malignancies with a focus on biological functions and molecular mechanisms, which could help to elevate the understanding to the roles of circRNAs and continue subsequent studies on circUBAP2.
Collapse
Affiliation(s)
- Haicun Wang
- General Surgery Department, The 2nd Affiliated Hospital of Harbin Medical University, No. 246 XueFu-ro, Harbin 150086, Heilongjiang Province, China
| | - Sidi Liu
- General Surgery Department, The 2nd Affiliated Hospital of Harbin Medical University, No. 246 XueFu-ro, Harbin 150086, Heilongjiang Province, China
| | - Xiangjun Sha
- General Surgery Department, The 2nd Affiliated Hospital of Harbin Medical University, No. 246 XueFu-ro, Harbin 150086, Heilongjiang Province, China
| | - Xin Gao
- General Surgery Department, The 2nd Affiliated Hospital of Harbin Medical University, No. 246 XueFu-ro, Harbin 150086, Heilongjiang Province, China
| | - Guanglin Liu
- General Surgery Department, The 2nd Affiliated Hospital of Harbin Medical University, No. 246 XueFu-ro, Harbin 150086, Heilongjiang Province, China
| | - Xingming Jiang
- General Surgery Department, The 2nd Affiliated Hospital of Harbin Medical University, No. 246 XueFu-ro, Harbin 150086, Heilongjiang Province, China.
| |
Collapse
|
7
|
Role of Circular RNA in Brain Tumor Development. Cells 2022; 11:cells11142130. [PMID: 35883576 PMCID: PMC9315629 DOI: 10.3390/cells11142130] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/04/2022] [Accepted: 07/04/2022] [Indexed: 11/20/2022] Open
Abstract
Central nervous system tumors are a leading cause of cancer-related death in children and adults, with medulloblastoma (MB) and glioblastoma (GBM) being the most prevalent malignant brain tumors, respectively. Despite tremendous breakthroughs in neurosurgery, radiation, and chemotherapeutic techniques, cell heterogeneity and various genetic mutations impacting cell cycle control, cell proliferation, apoptosis, and cell invasion result in unwanted resistance to treatment approaches, with a 5-year survival rate of 70–80% for medulloblastoma, and the median survival time for patients with glioblastoma is only 15 months. Developing new medicines and utilizing combination medications may be viewed as excellent techniques for battling MB and GBM. Circular RNAs (circRNAs) can affect cancer-developing processes such as cell proliferation, cell apoptosis, invasion, and chemoresistance in this regard. As a result, several compounds have been introduced as prospective therapeutic targets in the fight against MB and GBM. The current study aims to elucidate the fundamental molecular and cellular mechanisms underlying the pathogenesis of GBM in conjunction with circRNAs. Several mechanisms were examined in detail, including PI3K/Akt/mTOR signaling, Wnt/-catenin signaling, angiogenic processes, and metastatic pathways, in order to provide a comprehensive knowledge of the involvement of circRNAs in the pathophysiology of MB and GBM.
Collapse
|
8
|
Sun JS, Wang L, Zhu X, Shen M. Hsa_circ_0006427 Suppresses Multiplication, Migration and Invasion of Non-Small Cell Lung Cancer Cells through miR-346/VGLL4 Pathway. CELL JOURNAL 2022; 24:245-254. [PMID: 35717572 PMCID: PMC9445522 DOI: 10.22074/cellj.2022.7795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 01/11/2021] [Indexed: 11/16/2022]
Abstract
Objective Circular RNAs (circRNAs) are identified as key modulators in cancer biology. Nonetheless, the role of circ_0006427 in non-small cell lung cancer (NSCLC) and its modulatory mechanism are undefined. This study aimed to investigate the potential function and mechanism of circ_0006427 in NSCLC. Materials and Methods In this experimental study, circ_0006427, miR-346 and vestigial like family member 4 (VGLL4) mRNA expressions were analyzed in NSCLC tissues and cells, using quantitative reverse transcription polymerase chain reaction (qRT-PCR). Multiplication, migration and invasion of NSCLC cells were examined using the CCK-8 method and Transwell experiment, respectively. Dual-luciferase reporter gene experiments were conducted to identify the paring relationship between circ_0006427 and miR-346. Western blot was employed to determine expressions of VGLL4 and epithelial-mesenchymal transition (EMT) markers on protein levels. Immuno-histochemistry (IHC) method was adopted to assess VGLL4 protein expression in NSCLC tissues. Results Circ_0006427 expression was down-regulated in NSCLC tissues and cells, and circ_0006427 suppressed multiplication, migration, invasion and EMT of NSCLC cells. miR-346 expression was upregulated in NSCLC tissues and cells, and miR-346 worked as a target of circ_0006427. VGLL4 was down-regulated in NSCLC tissues and cells, and knockdown of VGLL4 accelerated multiplication, migration, invasion and EMT of NSCLC cells. Circ_0006427 enhanced VGLL4 expression by competitively binding with miR-346. Conclusion Circ_0006427/miR-346/VGLL4 axis regulated NSCLC progression.
Collapse
Affiliation(s)
- Jiacheng Sun Sun
- Department of Thoracic Surgery, Pinghu First People's Hospital, Pinghu City, Jiaxing, Zhejiang, China
| | - Lei Wang
- Department of Anesthesiology, Pinghu First People's Hospital, Pinghu City, Jiaxing, Zhejiang, China
| | - Xinhai Zhu
- Department of Thoracic Surgery, Zhejiang Hospital, Xihu District, Hangzhou, Zhejiang, China,Department of Thoracic SurgeryZhejiang HospitalXihu DistrictHangzhouZhejiangChinaDepartment of Thoracic SurgeryPinghu First People's HospitalPinghu CityJiaxingZhejiangChina
Emails:,
| | - Molei Shen
- Department of Thoracic Surgery, Pinghu First People's Hospital, Pinghu City, Jiaxing, Zhejiang, China,Department of Thoracic SurgeryZhejiang HospitalXihu DistrictHangzhouZhejiangChinaDepartment of Thoracic SurgeryPinghu First People's HospitalPinghu CityJiaxingZhejiangChina
Emails:,
| |
Collapse
|
9
|
Deng L, Gong K, Wang G. Hsa_circ_0008344 Promotes Glioma Tumor Progression and Angiogenesis Presumably by Regulating miR-638/SZRD1 Pathway. Neurotox Res 2022; 40:825-836. [PMID: 35394558 DOI: 10.1007/s12640-022-00504-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 03/04/2022] [Accepted: 03/30/2022] [Indexed: 11/29/2022]
Abstract
Hsa_circRNA_0008344 (circ_0008344) is a new glioma-related circular RNA. Our study aims to explore its functions in glioma tumor progression. Real-time quantitative PCR and western blotting were used to detect RNA and protein abundances. RNase R assay, actinomycin D assay, and subcellular fractionation method were performed to identify the features of circ_0008344. Cell-counting kit-8, 5-ethynyl-2'-deoxyuridine assays, transwell assays, tube formation assay, flow cytometry, and nude mice xenograft tumor model were performed. Target relationship was predicted by bioinformatics algorithms and confirmed by dual-luciferase reporter assay. Abundances of circ_0008344 and SUZ RNA binding domain containing 1 (SZRD1) were highly elevated, while miR-638 was downregulated in glioma tumors and cells. Circ_0008344 was identified as a stable circRNA with a circular structure. Silencing circ_0008344 could restrain glioma proliferation, migration, invasion, and angiogenesis. Circ_0008344 functioned as a sponge for miR-638. The negative regulation of circ_0008344 knockdown on glioma progression and angiogenesis could be reversed by miR-638 inhibitor. SZRD1 was a target of miR-318, and its overexpression overturned the inhibition effect of miR-638 mimic on glioma progression and angiogenesis. Meanwhile, we confirmed that circ_0008344 knockdown inhibited SZRD1 expression, and its effect was reversed by miR-638 inhibitor. Also, circ_00008344 knockdown suppressed glioma tumor growth. Circ_0008344 might contribute to glioma progression through miR-638/SZRD1 axis, which might be a novel pathology and treatment target in glioma.
Collapse
Affiliation(s)
- Liyong Deng
- Department of Oncology, Changsha Central Hospital, No. 161, Shaoshan South Road, Changsha, Hunan, China
| | - Kuiyu Gong
- Department of Oncology, Changsha Central Hospital, No. 161, Shaoshan South Road, Changsha, Hunan, China
| | - Guihua Wang
- Department of Oncology, Changsha Central Hospital, No. 161, Shaoshan South Road, Changsha, Hunan, China.
| |
Collapse
|
10
|
Guo X, Piao H. Research Progress of circRNAs in Glioblastoma. Front Cell Dev Biol 2021; 9:791892. [PMID: 34881248 PMCID: PMC8645988 DOI: 10.3389/fcell.2021.791892] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 11/02/2021] [Indexed: 01/10/2023] Open
Abstract
Circular RNAs (circRNAs) are a class of single-stranded covalently closed non-coding RNAs without a 5' cap structure or 3' terminal poly (A) tail, which are expressed in a variety of tissues and cells with conserved, stable and specific characteristics. Glioblastoma (GBM) is the most aggressive and lethal tumor in the central nervous system, characterized by high recurrence and mortality rates. The specific expression of circRNAs in GBM has demonstrated their potential to become new biomarkers for the development of GBM. The specific expression of circRNAs in GBM has shown their potential as new biomarkers for GBM cell proliferation, apoptosis, migration and invasion, which provides new ideas for GBM treatment. In this paper, we will review the biological properties and functions of circRNAs and their biological roles and clinical applications in GBM.
Collapse
Affiliation(s)
- Xu Guo
- Department of Neurosurgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Haozhe Piao
- Department of Neurosurgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China
| |
Collapse
|
11
|
Chen S, Deng X, Sheng H, Rong Y, Zheng Y, Zhang Y, Lin J. Noncoding RNAs in pediatric brain tumors: Molecular functions and pathological implications. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 26:417-431. [PMID: 34552822 PMCID: PMC8426460 DOI: 10.1016/j.omtn.2021.07.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Brain tumors are common solid pediatric malignancies and the main reason for cancer-related death in the pediatric setting. Recently, evidence has revealed that noncoding RNAs (ncRNAs), including microRNAs (miRNAs), long ncRNAs (lncRNAs), and circular RNAs (circRNAs), play a critical role in brain tumor development and progression. Therefore, in this review article, we describe the functions and molecular mechanisms of ncRNAs in multiple types of cancer, including medulloblastoma, pilocytic astrocytoma, ependymoma, atypical teratoid/rhabdoid tumor, glioblastoma, diffuse intrinsic pontine glioma, and craniopharyngioma. We also mention the limitations of using ncRNAs as therapeutic targets because of the nonspecificity of ncRNA targets and the delivery methods of ncRNAs. Due to the critical role of ncRNAs in brain oncogenesis, targeting aberrantly expressed ncRNAs might be an effective strategy to improve the outcomes of pediatric patients with brain tumors.
Collapse
Affiliation(s)
- Shaohuai Chen
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiangyang Deng
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hansong Sheng
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yuxi Rong
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yanhao Zheng
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yusong Zhang
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jian Lin
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
12
|
Liu R, Dai W, Wu A, Li Y. CircCDC45 promotes the malignant progression of glioblastoma by modulating the miR-485-5p/CSF-1 axis. BMC Cancer 2021; 21:1090. [PMID: 34627193 PMCID: PMC8501713 DOI: 10.1186/s12885-021-08803-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 09/22/2021] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Glioblastoma (GBM) is characterized by progressive growth and metastasis. Numerous studies claim that the deregulation of circular RNAs (circRNAs) is associated with cancer progression. However, the role of circRNAs in GBM is largely limited. The purpose of this study was to investigate the functions of circCDC45 in GBM and provide a feasible functional mechanism to support its role. METHODS The expression of circCDC45, miR-485-5p and colony-stimulating factor 1 (CSF-1) mRNA was examined using quantitative real-time polymerase chain reaction (qRT-PCR). Cell proliferation was assessed using cell counting kit - 8 (CCK-8) assay and colony formation assay. Cell migration and cell invasion were monitored using transwell assay. The protein levels of proliferation-related markers and CSF-1 were determined using western blot. The target relationship was predicted using bioinformatics tools and validated using dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay. Animal models were constructed to verify the role of circCDC45 in vivo. RESULTS The expression of circCDC45 and CSF-1 was elevated in GBM tissues and cells, while the expression of miR-485-5p was declined. Downregulation of circCDC45 or CSF-1 blocked GBM cell proliferation, invasion and migration as well as tumor growth in vivo. In mechanism, circCDC45 positively regulated the expression of CSF-1 by targeting miR-485-5p. Inhibition of miR-485-5p reversed the biological effects caused by circCDC45 downregulation in GBM cells. CONCLUSION CircCDC45 promoted the progression of GBM by mediating the miR-485-5p/CSF-1 axis, and circCDC45 might be a promising plasmatic biomarker for GBM diagnosis and treatment.
Collapse
Affiliation(s)
- Rongcai Liu
- Department of Neurosurgery, Quzhou People's Hospital, No. 2, Zhongloudi, Kecheng District, Quzhou, 324000, Zhejiang, China
| | - Weimin Dai
- Department of Neurosurgery, Quzhou People's Hospital, No. 2, Zhongloudi, Kecheng District, Quzhou, 324000, Zhejiang, China.
| | - An Wu
- Department of Neurosurgery, Quzhou People's Hospital, No. 2, Zhongloudi, Kecheng District, Quzhou, 324000, Zhejiang, China
| | - Yunping Li
- Department of Neurosurgery, Quzhou People's Hospital, No. 2, Zhongloudi, Kecheng District, Quzhou, 324000, Zhejiang, China
| |
Collapse
|
13
|
Di L, Zhao X, Ding J. Knockdown of circ_0008344 contributes to radiosensitization in glioma via miR-433-3p/RNF2 axis. J Biosci 2021. [DOI: 10.1007/s12038-021-00198-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
14
|
CircABCC3 knockdown inhibits glioblastoma cell malignancy by regulating miR-770-5p/SOX2 axis through PI3K/AKT signaling pathway. Brain Res 2021; 1764:147465. [PMID: 33811842 DOI: 10.1016/j.brainres.2021.147465] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 03/23/2021] [Accepted: 03/28/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND Circular RNAs (circRNAs) are found to regulate glioblastoma evolution. However, the role of circ-ATP binding cassette subfamily C member 3 (circABCC3) in glioblastoma process is still unknown. In this study, the effects of circABCC3 on glioblastoma tumorigenesis and underlying mechanism were revealed. METHODS The expression levels of circABCC3, microRNA-770-5p (miR-770-5p) and sex determining region Y-box protein 2 (SOX2) mRNA were determined by quantitative real-time polymerase chain reaction (qRT-PCR). The expression of phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) pathway-related proteins and SOX2 protein was detected by western blot analysis. Cell proliferation and invasion were severally investigated by cell colony formation and transwell invasion assays. Cell migration was demonstrated by transwell migration and wound-healing assays. Cell apoptosis was revealed by flow cytometry analysis. Tube formation was investigated by tube formation assay. The associated relationship between miR-770-5p and circABCC3 or SOX2 was predicted by starbase or targetscan online database, and identified by dual-luciferase reporter assay, RNA immunoprecipitation assay or RNA pull-down assay. The impacts of circABCC3 knockdown on glioblastoma growth in vivo were revealed by in vivo assay. RESULTS CircABCC3 and SOX2 expression were dramatically upregulated, while miR-770-5p expression was apparently downregulated in glioblastoma tissues and cells compared with control groups. CircABCC3 expression was higher in stage III glioblastoma tissues than in stage I + II glioblastoma tissues with close correlation with tumor-node-metastasis (TNM) stage. CircABCC3 absence inhibited cell proliferation, migration, invasion, tube formation and the activation of PI3K/AKT pathway, whereas induced cell apoptosis in glioblastoma. Additionally, circABCC3 acted as a sponge for miR-770-5p, and miR-770-5p targeted SOX2. MiR-770-5p inhibitors impaired the impacts of circABCC3 silencing on glioblastoma progression, angiogenesis and PI3K/AKT pathway. Furthermore, circABCC3 knockdown repressed tumor growth in vivo. CONCLUSION CircABCC3 regulated glioblastoma development via miR-770-5p/SOX2 axis through PI3K/AKT pathway. This finding lays a theoretical foundation for studying circRNA-directed therapy for glioblastoma.
Collapse
|
15
|
Wang J, Li T, Wang B. Circ-UBAP2 functions as sponges of miR-1205 and miR-382 to promote glioma progression by modulating STC1 expression. Cancer Med 2021; 10:1815-1828. [PMID: 33543830 PMCID: PMC7940226 DOI: 10.1002/cam4.3759] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/23/2020] [Accepted: 01/17/2021] [Indexed: 12/12/2022] Open
Abstract
Background Circular RNAs (circRNAs) exert vital functions in glioma pathogenesis. CircRNA ubiquitin‐associated protein 2 (circ‐UBAP2, hsa_circ_0008344) has been illuminated as a tumor driver in glioma. Nevertheless, the mechanisms underlying the oncogenic regulation of circ‐UBAP2 in glioma are still undefined. Methods Circ‐UBAP2, miR‐1205, miR‐382, and GPRC5A were quantified using qRT‐PCR and western blot. Cell viability was detected using a CCK‐8 assay. Cell migration and invasion were measured using the would‐healing and transwell assays. Flow cytometry and colony formation assay were applied to evaluate cell apoptosis and colony formation, respectively. The xenograft model assays were used to examine the impact of circ‐UBAP2 on tumorigenic effect in vivo. Direct relationships among circ‐UBAP2, miR‐1205, miR‐382, and GPRC5A were confirmed using dual‐luciferase reporter assays. Results Circ‐UBAP2 expression was upregulated in glioma. The reduced level of circ‐UBAP2 hampered cell proliferation, migration, invasion, and enhanced apoptosis in vitro and weakened tumor growth in vivo. Mechanistically, circ‐UBAP2 directly bound to miR‐1205 and miR‐382. miR‐1205 and miR‐382 mediated the regulation of circ‐UBAP2 silencing on glioma cell behaviors. Moreover, GPRC5A was a functional target of miR‐1205 and miR‐382 in regulating glioma cell behaviors. Furthermore, circ‐UBAP2 mediated GPRC5A expression through miR‐1205 or miR‐382 in glioma cells. Conclusion Our current findings identified that circ‐UBAP2 silencing impeded glioma malignant progression partially by downregulating GPRC5A through targeting miR‐1205 and miR‐382.
Collapse
Affiliation(s)
- Jianxin Wang
- Department of Neurosurgery, Henan Provincial People's Hospital (Zhengzhou University People's Hospital), Zhengzhou, Henan, China.,Department of Neurosurgery, Henan Provincial Cerebrovascular Hospital, Zhengzhou, Henan, China.,Department of Neurosurgery, Henan University People's Hospital, Kaifeng, Henan, China
| | - Tianxiao Li
- Department of Cerebrovascular, Henan Provincial Cerebrovascular Hospital, Zhengzhou, Henan, China.,Department of Cerebrovascular, Henan Provincial Cerebrovascular Hospital, Kaifeng, Henan, China
| | - Bin Wang
- Department of Neurosurgery, Henan Provincial People's Hospital (Zhengzhou University People's Hospital), Zhengzhou, Henan, China.,Department of Neurosurgery, Henan University People's Hospital, Kaifeng, Henan, China
| |
Collapse
|
16
|
Zhou J, Wang H, Hong F, Hu S, Su X, Chen J, Chu J. CircularRNA circPARP4 promotes glioblastoma progression through sponging miR-125a-5p and regulating FUT4. Am J Cancer Res 2021; 11:138-156. [PMID: 33520365 PMCID: PMC7840713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 11/28/2020] [Indexed: 06/12/2023] Open
Abstract
Circular RNA (circRNA) is a widely expressed non-coding RNA element characterized by a covalently closed continuous loop. Emerging evidence suggests important roles of circRNAs in the pathogenesis of human cancers. However, the functions and underlying mechanisms of circRNAs in glioma remain largely unclear. Previously, our studies uncovered a batch of abnormally expressed circRNAs in glioma tissue, among which circPARP4 was significantly upregulated with the top fold change. Here, we focused on the functional investigation toward circPARP4 in glioblastoma progression and looked for insight into its underlying mechanisms. The results confirmed the elevated expression of circPARP4 in glioma and found its association with glioma pathological grade. Gain- and loss-of-function strategies showed that circPARP4 could obviously promote glioma cell proliferation, migration, invasion, and epithelial-mesenchymal transition. Mechanistically, in vivo and in vitro studies demonstrated that circPARP4, as a miRNA sponge, directly interacted with miR-125a-5p, which then regulated FUT4 to exert the oncogenic effect on glioma behavior. Our findings illustrate functions of circPARP4 in modulating glioma progression through miR-125a-5p/FUT4 pathway, which provides a novel and potential target for glioma therapy.
Collapse
Affiliation(s)
- Jinxu Zhou
- Department of Neurosurgery, Wuxi Clinical School of Anhui Medical UniversityWuxi 214044, China
- Department of Neurosurgery, The 904th Hospital of Joint Logistic Support Force of PLAWuxi 214044, China
| | - Hongxiang Wang
- Department of Neurosurgery, Shanghai Changzheng Hospital, Naval Military Medical UniversityShanghai 200003, China
| | - Fan Hong
- Department of Neurosurgery, Shanghai Changzheng Hospital, Naval Military Medical UniversityShanghai 200003, China
| | - Shuai Hu
- Department of Neurosurgery, Wuxi Clinical School of Anhui Medical UniversityWuxi 214044, China
- Department of Neurosurgery, The 904th Hospital of Joint Logistic Support Force of PLAWuxi 214044, China
| | - Xin Su
- Department of Neurosurgery, Wuxi Clinical School of Anhui Medical UniversityWuxi 214044, China
- Department of Neurosurgery, The 904th Hospital of Joint Logistic Support Force of PLAWuxi 214044, China
| | - Juxiang Chen
- Department of Neurosurgery, Shanghai Changzheng Hospital, Naval Military Medical UniversityShanghai 200003, China
| | - Junsheng Chu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical UniversityBeijing 100070, China
| |
Collapse
|
17
|
Wei B, Wang L, Zhao J. Circular RNA hsa_circ_0005114-miR-142-3p/miR-590-5p-adenomatous polyposis coli protein axis as a potential target for treatment of glioma. Oncol Lett 2020; 21:58. [PMID: 33281969 PMCID: PMC7709550 DOI: 10.3892/ol.2020.12320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 10/22/2020] [Indexed: 12/12/2022] Open
Abstract
Glioma is the most common type of brain tumor and is associated with a high mortality rate. Despite recent advances in treatment options, the overall prognosis in patients with glioma remains poor. Studies have suggested that circular (circ)RNAs serve important roles in the development and progression of glioma and may have potential as therapeutic targets. However, the expression profiles of circRNAs and their functions in glioma have rarely been studied. The present study aimed to screen differentially expressed circRNAs (DECs) between glioma and normal brain tissues using sequencing data collected from the Gene Expression Omnibus database (GSE86202 and GSE92322 datasets) and explain their mechanisms based on the competing endogenous (ce)RNA regulatory hypothesis. In total, 424 commonly downregulated DECs (with the Gene_symbol annotated in the circBase database) in these two datasets were identified. Using the CircInteractome and Starbase databases, 18 micro (mi)RNAs (miRs) were predicted to interact with DECs, while 22 glioma-related genes obtained from the Comparative Toxicogenomics Database were predicted to be regulated by 15 miRNAs via the miRwalk 2.0 database. A ceRNA network was established based on 115 DECs, 15 miRNAs and 22 mRNAs. LinkedOmics online analysis using The Cancer Genome Atlas (TCGA) data showed that hsa-miR-142-3p/hsa-miR-590-5p and their target gene adenomatous polyposis coli protein (APC) were all significantly associated with overall survival rate and their prognosis trend was opposite, revealing that high expression levels of hsa-miR-142-3p/hsa-miR-590-5 were associated with a poor overall survival rate, while high APC expression with a good overall survival rate. UALCAN analysis using TCGA data of glioblastoma multiforme and the GSE25632 and GSE103229 microarray datasets showed that hsa-miR-142-3p/hsa-miR-590-5p was upregulated and APC was downregulated. Thus, hsa-miR-142-3p/hsa-miR-590-5p-APC-related circ/ceRNA axes may be important in glioma, and hsa_circ_0005114 interacted with both of these miRNAs. Functional analysis showed that hsa_circ_0005114 was involved in insulin secretion, while APC was associated with the Wnt signaling pathway. In conclusion, hsa_circ_0005114-miR-142-3p/miR-590-5p-APC ceRNA axes may be potential targets for the treatment of glioma.
Collapse
Affiliation(s)
- Bo Wei
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Le Wang
- Department of Ophthalmology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Jingwei Zhao
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| |
Collapse
|
18
|
Zhou JX, Chen KF, Hu S, Dong JR, Wang HX, Su X, Wang YH, Chu JS. Up-regulation of circular RNA hsa_circ_01844 induces apoptosis and suppresses proliferation and migration of glioblastoma cells. Chin Med J (Engl) 2020; 134:81-87. [PMID: 32804726 PMCID: PMC7862802 DOI: 10.1097/cm9.0000000000000979] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Previous studies have demonstrated that various circular RNAs are involved in the malignant proliferation of cancers, such as liver cancer, lung cancer, breast cancer, and others. The potential role of circular RNAs in glioblastoma, however, is still uncertain. In this study, we aimed to study the potential role of hsa_circ_01844 in glioblastoma. METHODS Using reverse transcription-polymerase chain reaction (RT-PCR) method, hsa_circ_01844 expression was measured in five glioblastoma samples and five normal brain samples. To evaluate the potential function of hsa_circ_01844 in glioblastoma, hsa_circ_01844 was overexpressed in glioblastoma cell lines (U251 and U87 cells). Using these two cell lines, in vitro experiments including the flow cytometry assay, 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide assay, Transwell assay, and cell apoptosis assay were performed to investigate the role of hsa_circ_01844 in glioblastoma. Student t test and one-way analysis of variance were used for statistical analysis. RESULTS The expression of circular RNA hsa_circ_01844 was lower in glioblastoma tissues when compared with the normal brain tissues by RT-PCR method (0.034 ± 0.036 vs. 1.630 ± 0.891, P < 0.001). Using two glioblastoma cell lines, we found that overexpression of hsa_circ_01844 in glioblastoma cells suppressed their proliferation, colony formation, migration, and increased the apoptotic rate compared with empty vector group and blank control group (all P < 0.05). CONCLUSION Hsa_circ_01844 shows decreased expression in glioblastoma and its overexpression induces apoptosis and inhibits proliferation, migration, and invasion of glioblastoma cells.
Collapse
Affiliation(s)
- Jin-Xu Zhou
- Department of Neurosurgery, The 904th Hospital of Joint Logistic Support Force PLA, Wuxi, Jiangsu 214000, China
- Wuxi Clinical College of Anhui Medical University, Wuxi, Jiangsu 214000, China
| | - Ke-Fei Chen
- Department of Neurosurgery, Wuxi People's Hospital, Wuxi, Jiangsu 214000, China
| | - Shuai Hu
- Department of Neurosurgery, The 904th Hospital of Joint Logistic Support Force PLA, Wuxi, Jiangsu 214000, China
- Wuxi Clinical College of Anhui Medical University, Wuxi, Jiangsu 214000, China
| | - Ji-Rong Dong
- Department of Neurosurgery, The 904th Hospital of Joint Logistic Support Force PLA, Wuxi, Jiangsu 214000, China
- Wuxi Clinical College of Anhui Medical University, Wuxi, Jiangsu 214000, China
| | - Hong-Xiang Wang
- Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai 200001, China
| | - Xin Su
- Department of Neurosurgery, The 904th Hospital of Joint Logistic Support Force PLA, Wuxi, Jiangsu 214000, China
- Wuxi Clinical College of Anhui Medical University, Wuxi, Jiangsu 214000, China
| | - Yu-Hai Wang
- Department of Neurosurgery, The 904th Hospital of Joint Logistic Support Force PLA, Wuxi, Jiangsu 214000, China
- Wuxi Clinical College of Anhui Medical University, Wuxi, Jiangsu 214000, China
| | - Jun-Sheng Chu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100160, China
| |
Collapse
|
19
|
Shen L, Xu M, Wang Z, Yu Z. Prognostic evaluation of serum long non-coding RNA H19 for endoscopic keyhole surgery or craniotomy in glioma. Ann Clin Biochem 2020; 57:365-372. [PMID: 32586100 DOI: 10.1177/0004563220941888] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND Our study aims to explore the effect of serum long non-coding RNA (lncRNA) H19 level on the long-term prognosis of endoscopic keyhole surgery or craniotomy for glioma. METHODS A total of 264 glioma patients were selected. Patients were randomly divided into the Craniotomy-high H19 group, the Craniotomy-low H19 group, the Endoscopic keyhole surgery-high H19 group and the Endoscopic keyhole surgery-low H19 group. RESULTS Compared with adjacent tissues (5.19 ± 1.42), H19 level in cancer tissues (7.45 ± 1.60) and serum (6.44 ± 1.57) was significantly increased (P < 0.05). Compared with serum, H19 level in cancer tissues was significantly increased (P < 0.05). Pearson correlation analysis found that the relative expression level of serum H19 in glioma patients was positively correlated with cancer tissues (rPearson = 0.547, P < 0.001), but had no significant correlation with adjacent tissues (rPearson = 0.126, P = 0.207). The expression of H19 in serum was significantly related to WHO grade (rPearson = 0.514, P < 0.001). Compared with the Endoscopic keyhole surgery-high H19 group and the Endoscopic keyhole surgery-low H19 group, the survival rate of patients in the Craniotomy-high H19 group (χ2 = 17.115 and log-rank P < 0.001; χ2 = 18.406 and log-rank P < 0.001) and the Craniotomy-low H19 group was significantly reduced (χ2 = 15.007 and log-rank P < 0.001; χ2 = 16.121 and log-rank P < 0.001). Cox regression results showed that serum H19 level, craniotomy and WHO grade were risk factors for glioma. When H19 level was lower than 6.28, the 30-month survival rate of patients with the endoscopic keyhole surgery was 100%. CONCLUSION For patients with low H19 level (<5.36), both endoscopic keyhole surgery and craniotomy are available, otherwise, endoscopic keyhole surgery is more recommended.
Collapse
Affiliation(s)
- Likui Shen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China.,Department of Neurosurgery, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, China
| | - Min Xu
- Department of Neurosurgery, Kunshan Hospital of Traditional Chinese Medicine, Kunshan Affiliated Hospital of Nanjing University of Chinese Medicine, Suzhou, China
| | - Zhimin Wang
- Department of Neurosurgery, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, China
| | - Zhengquan Yu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
20
|
Zhu H, Niu X, Li Q, Zhao Y, Chen X, Sun H. Circ_0085296 suppresses trophoblast cell proliferation, invasion, and migration via modulating miR-144/E-cadherin axis. Placenta 2020; 97:18-25. [PMID: 32792057 DOI: 10.1016/j.placenta.2020.06.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 05/14/2020] [Accepted: 06/01/2020] [Indexed: 12/25/2022]
Abstract
BACKGROUND Circular RNAs (circRNAs) have been revealed to be important regulators in the biological behavior of cells, and aberrant circRNAs may be associated with the etiology of pre-eclampsia (PE). However, the role and underlying molecular mechanisms of circ_0085296 in PE remain unclear. METHODS The expression of circ_0085296, microRNA (miR)-144, and E-cadherin was detected using quantitative real-time polymerase chain reaction and western blot, respectively. Cell proliferation, migration, and invasion were analyzed by cell counting kit-8, colony formation and transwell assay. The interaction between miR-144 and circ_0085296 or E-cadherin was analyzed by the dual-luciferase reporter assay and pull-down assay. RESULTS Circ_0085296 was elevated in PE placental tissues, knockdown of circ_0085296 promoted trophoblast cell proliferation, invasion, and migration, while circ_0085296 up-regulation showed opposite effects. MiR-144 was down-regulated in PE placental tissues, and restoration of miR-144 induced proliferation, invasion, and migration in trophoblast cells. Further mechanistic analysis found miR-144 directly bound to circ_0085296 and E-cadherin, and circ_0085296 functioned as a sponge of miR-144 to regulate E-cadherin expression. Furthermore, miR-144 inhibition or E-cadherin overexpression attenuated the effectsof circ_0085296 on cell processes in trophoblast cells. CONCLUSION Circ_0085296 inhibited trophoblast cell proliferation, invasion, and migration via regulating miR-144/E-cadherin axis, providing a novel insight into the pathogenesis of PE and a new prospective therapeutic target for PE patients.
Collapse
Affiliation(s)
- Hailing Zhu
- Department of Pediatric, The Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Xia Niu
- Department of Pediatric, The Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Qinghua Li
- Department of Pediatric, The Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Yuehua Zhao
- Department of Pediatric, The Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Xue Chen
- Department of Pediatric, The Sunshine Union Hospital, Weifang, Shandong, China
| | - Hesheng Sun
- Department of Pediatric, The Sunshine Union Hospital, Weifang, Shandong, China.
| |
Collapse
|
21
|
Yang X, Li S, Wu Y, Ge F, Chen Y, Xiong Q. The circular RNA CDR1as regulate cell proliferation via TMED2 and TMED10. BMC Cancer 2020; 20:312. [PMID: 32293333 PMCID: PMC7160961 DOI: 10.1186/s12885-020-06794-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 03/26/2020] [Indexed: 12/13/2022] Open
Abstract
Background Circular RNAs (CircRNAs) are biologically active RNAs. CDR1as is one such circRNA previously reported to be a microRNA-7 (miR-7) sponge, thereby regulating associated gene expression. The specific underlying molecular mechanisms of CDR1as biology, however, remain largely unknown. Methods We performed CDR1as knockdown in order to explore its function in cell proliferation, migration, the cell cycle, and tumorigenesis. We further employed quantitative proteomic analyses and associated bioinformatics strategies to globally assess CDR1as-regulated proteins (CRPs). Western blotting and immunofluorescence staining were used to validate the proteomic results. We additionally investigated a specific link between TMED2, TMED10, and miR-7 via a dual-luciferase reporter system, and generated CDR1as knockout cell lines via CRISPR/Cas9 editing. Results We identified 353 proteins dysregulated upon CDR1as knockdown in 293 T cells. These CRPs were found to interact with one another and to play key roles in certain cellular pathways. Two such proteins, TMED2 and TMED10, were found to specifically contribute to the influence of CDR1as on cell proliferation. CDR1as may regulate these two TMED proteins through miR-7 sponging. We were able to further confirm these results using both CRISPRi cell lines and nude mouse models. Conclusion This study suggested that CDR1as may regulate cell proliferation via serving as a miR-7 sponge, thereby regulating TMED2 and TMED10 expression. These results are an invaluable template for future streamlined studies of circRNAs.
Collapse
Affiliation(s)
- Xue Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.,Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.,Graduate University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Siting Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.,Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.,Graduate University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ying Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.,Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.,Graduate University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Feng Ge
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.,Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.,Graduate University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ying Chen
- College of Life Science, Yangtze University, Jingzhou, 434025, China
| | - Qian Xiong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China. .,Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China. .,Graduate University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
22
|
Cheng Y, Sun H, Wang H, Jiang W, Tang W, Lu C, Zhang W, Chen Z, Lv C. Star Circular RNAs In Human Cancer: Progress And Perspectives. Onco Targets Ther 2019; 12:8249-8261. [PMID: 31632075 PMCID: PMC6789430 DOI: 10.2147/ott.s215390] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 09/20/2019] [Indexed: 12/14/2022] Open
Abstract
Circular RNAs (circRNAs) are a recently discovered subclass of non-coding RNAs (ncRNAs) characterized by a covalently closed loop structure created by reverse splicing. Because they do not have a 5' cap structure and a 3' poly A tail, circRNAs have higher stability, abundance and evolutionary conservation than linear RNA between species. These features produce various potential biological functions of circRNAs, such as miRNA sponges, RNA-binding proteins that form RNA protein complexes. In recent years, more and more studies have shown that circRNAs play a vital role in the occurrence and development of human diseases. At the same time, their enormous potential as a biomarker and therapeutic target is also evolving. The purpose of this review is to summarize existing cancer-associated circRNAs and to try to find circRNAs that are abnormally expressed in many cancers. Therefore, we reviewed previous circRNAs studies related to cancer and selected them by statistics. The eight circRNAs that have the highest frequency in different cancers or involve key pathways are called star circRNAs. Here, we review the classification, features, and functions of emerging star circRNAs, with particular attention to the role of circRNAs in various cancers.
Collapse
Affiliation(s)
- Ye Cheng
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Hanzhi Sun
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Hanjin Wang
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Wei Jiang
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Weiwei Tang
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Chen Lu
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Wenling Zhang
- Department of Gastroenterology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Ziyi Chen
- Department of General Surgery, Zhongda Hospital, Medical School, Southeast University, Nanjing, Jiangsu, People’s Republic of China
| | - Chengyu Lv
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| |
Collapse
|
23
|
MiR-1261/circ-PTPRZ1/PAK1 pathway regulates glioma cell growth and invasion. Hum Cell 2019; 32:540-547. [DOI: 10.1007/s13577-019-00271-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 07/19/2019] [Indexed: 12/21/2022]
|
24
|
Liu L, Qi X, Gui Y, Huo H, Yang X, Yang L. Overexpression of circ_0021093 circular RNA forecasts an unfavorable prognosis and facilitates cell progression by targeting the miR-766-3p/MTA3 pathway in hepatocellular carcinoma. Gene 2019; 714:143992. [PMID: 31330234 DOI: 10.1016/j.gene.2019.143992] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/18/2019] [Accepted: 07/18/2019] [Indexed: 10/26/2022]
Abstract
Increasing studies have demonstrated the important roles of circular RNAs (circRNAs) in human malignancies. Nevertheless, the molecular mechanisms and functions of circRNAs in hepatocellular carcinoma (HCC) are still not fully understood. In the present study, we evaluated circ_0021093 expression in 82 pairs of HCC tissues and 5 cell lines by qRT-PCR. The clinical implications of circ_0021093 were evaluated. In addition, the viability, apoptosis, migration and invasion capacities of different HCC cells were evaluated by gain-/loss-of-function experiments. Target prediction and dual-luciferase reporter experiments were performed to identify the molecular mechanisms of circ_0021093. Upregulation of circ_0021093 was found in HCC tumor samples and cells. Additionally, upregulated circ_0021093 was related to adverse clinical characteristics and an unfavorable prognosis. Furthermore, downregulated circ_0021093 attenuated cell growth, migration and invasion but increased cell apoptosis. By contrast, ectopically expressed circ_0021093 enhanced the abovementioned malignant biological behaviors. For mechanism exploration, circ_0021093 sponges of miR-766-3p were used in HCC cells. In addition, we found that metastasis-associated protein 3 (MTA3) was a direct target of miR-766-3p and that the oncogenic function of circ_0021093 was partly dependent on the miR-766-3p/MTA3 axis according to rescue assays. In conclusion, the circ_0021093/miR-766-3p/MTA3 regulatory axis may be an effective therapeutic target for HCC.
Collapse
Affiliation(s)
- Liyun Liu
- Department of Clinical Medicine Teaching Reform Grade 2015, Class 1, Qiqihar Medical University, Qiqihar 161000, China
| | - Xiaodan Qi
- Department of Clinical Biochemistry, Qiqihar Medical University, Qiqihar 161000, China
| | - Yuanyuan Gui
- Department of Basic Nursing, Qiqihar Medical University, Qiqihar 161000, China
| | - Hongliang Huo
- Department of Female Ward, the Fourth Affiliated Hospital of Qiqihar Medical University, Qiqihar 161000, China
| | - Xuewen Yang
- Department of Internal Medicine, the Third Affiliated Hospital of Qiqihar Medical University, Qiqihar 161000, China
| | - Liqun Yang
- Department of Nursing Laboratory, Qiqihar Medical University, Qiqihar 161000, China.
| |
Collapse
|
25
|
Paulmurugan R, Malhotra M, Massoud TF. The protean world of non-coding RNAs in glioblastoma. J Mol Med (Berl) 2019; 97:909-925. [PMID: 31129756 DOI: 10.1007/s00109-019-01798-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 05/05/2019] [Accepted: 05/13/2019] [Indexed: 12/12/2022]
Abstract
Non-coding ribonucleic acids (ncRNAs) are a diverse group of RNA molecules that are mostly not translated into proteins following transcription. We review the role of ncRNAs in the pathobiology of glioblastoma (GBM), and their potential applications for GBM therapy. Significant advances in our understanding of the protean manifestations of ncRNAs have been made, allowing us to better decipher the molecular complexity of GBM. A large number of regulatory ncRNAs appear to have a greater influence on the molecular pathology of GBM than thought previously. Importantly, also, a range of therapeutic approaches are emerging whereby ncRNA-based systems may be used to molecularly target GBM. The most successful of these is RNA interference, and some of these strategies are being evaluated in ongoing clinical trials. However, a number of limitations exist in the clinical translation of ncRNA-based therapeutic systems, such as delivery mechanisms and cytotoxicity; concerted research endeavors are currently underway in an attempt to overcome these. Ongoing and future studies will determine the potential practical role for ncRNA-based therapeutic systems in the clinical management of GBM. These applications may be especially promising, given that current treatment options are limited and prognosis remains poor for this challenging malignancy.
Collapse
Affiliation(s)
- Ramasamy Paulmurugan
- Cellular Pathway Imaging Laboratory (CPIL), Molecular Imaging Program at Stanford, Stanford University School of Medicine, 3155 Porter Drive, Palo Alto, CA, 94305, USA.
| | - Meenakshi Malhotra
- Laboratory of Experimental and Molecular Neuroimaging (LEMNI), Molecular Imaging Program at Stanford, Stanford University School of Medicine, 300 Pasteur Drive, Grant S-031, Stanford, CA, 94305-5105, USA
| | - Tarik F Massoud
- Laboratory of Experimental and Molecular Neuroimaging (LEMNI), Molecular Imaging Program at Stanford, Stanford University School of Medicine, 300 Pasteur Drive, Grant S-031, Stanford, CA, 94305-5105, USA.
| |
Collapse
|
26
|
Circ-ZNF264 Promotes the Growth of Glioma Cells by Upregulating the Expression of miR-4493 Target Gene Apelin. J Mol Neurosci 2019; 69:75-82. [PMID: 31114952 DOI: 10.1007/s12031-019-01334-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 05/07/2019] [Indexed: 12/18/2022]
Abstract
Glioma is the most common malignant tumor in the brain and nervous system, with high recurrence and high mortality rate. Recent researches have shown that circular RNAs (circRNAs) play key roles in the genesis and progress of glioma. Detection of circRNAs in glioma cells revealed that the expression of circ-ZNF264 was upregulated. At the same time, the expression of miR-4493 was downregulated in glioma cells and had multiple binding sites on the circ-ZNF264 sequence. Dual luciferase reporter gene assay confirmed that miR-4493 could bind to circ-ZNF264 and apelin specifically. MiR-4493 expression was not changed, but its target gene apelin expression could be significantly upregulated by circ-ZNF264. MiR-4493 could inhibit the expression of circ-ZNF264 and apelin. Biological behaviors of glioma cells were detected; circ-ZNF264 promoted cell proliferation and invasion and inhibited apoptosis. MiR-4493 had the opposite effects and could terminate the above effects of circ-ZNF264. When the expression of apelin was downregulated and that of circ-ZNF264 was upregulated, the changes of the above biological behaviors were not obvious. Therefore, in glioma cells, circ-ZNF264 can inhibit the function of miR-4493 and then upregulate its target gene apelin expression, thus regulating glioma cell proliferation, apoptosis, and invasion. This finding provides more evidence for the role of circRNAs in glioma.
Collapse
|
27
|
Circular RNA Profiling by Illumina Sequencing via Template-Dependent Multiple Displacement Amplification. BIOMED RESEARCH INTERNATIONAL 2019; 2019:2756516. [PMID: 30834258 PMCID: PMC6369502 DOI: 10.1155/2019/2756516] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/10/2018] [Accepted: 12/31/2018] [Indexed: 12/12/2022]
Abstract
Circular RNAs (circRNAs) are newly discovered incipient non-coding RNAs with potential roles in disease progression in living organisms. Significant reports, since their inception, highlight the abundance and putative functional roles of circRNAs in every organism checked for, like O. sativa, Arabidopsis, human, and mouse. CircRNA expression is generally less than their linear mRNA counterparts which fairly explains the competitive edge of canonical splicing over non-canonical splicing. However, existing methods may not be sensitive enough for the discovery of low-level expressed circRNAs. By combining template-dependent multiple displacement amplification (tdMDA), Illumina sequencing, and bioinformatics tools, we have developed an experimental protocol that is able to detect 1,875 novel and known circRNAs from O. sativa. The same method also revealed 9,242 putative circRNAs in less than 40 million reads for the first time from the Nicotiana benthamiana whose genome has not been fully annotated. Supported by the PCR-based validation and Sanger sequencing of selective circRNAs, our method represents a valuable tool in profiling circRNAs from the organisms with or without genome annotation.
Collapse
|
28
|
Zhang G, Sun W, Zhu L, Feng Y, Wu L, Li T. Overexpressed circ_0029426 in glioblastoma forecasts unfavorable prognosis and promotes cell progression by sponging miR‐197. J Cell Biochem 2018; 120:10295-10302. [PMID: 30548670 DOI: 10.1002/jcb.28313] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 11/28/2018] [Indexed: 12/25/2022]
Affiliation(s)
- Guifang Zhang
- Department of Cerebrovascular Disease Henan Provincial People's Hospital Zhengzhou China
| | - Weibo Sun
- Department of Radiotherapy Henan Provincial People's Hospital Zhengzhou China
| | - Liangfu Zhu
- Department of Cerebrovascular Disease Henan Provincial People's Hospital Zhengzhou China
| | - Yingpu Feng
- Department of Cerebrovascular Disease Henan Provincial People's Hospital Zhengzhou China
| | - Liheng Wu
- Department of Cerebrovascular Disease Henan Provincial People's Hospital Zhengzhou China
| | - Tianxiao Li
- Department of Cerebrovascular Disease Henan Provincial People's Hospital Zhengzhou China
| |
Collapse
|
29
|
Hao Z, Hu S, Liu Z, Song W, Zhao Y, Li M. Circular RNAs: Functions and Prospects in Glioma. J Mol Neurosci 2018; 67:72-81. [PMID: 30460608 DOI: 10.1007/s12031-018-1211-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 11/08/2018] [Indexed: 12/28/2022]
Abstract
Improving the survival rate of patients with glioma, a malignant tumor of the human brain has become increasingly important. In recent years, the function of circular RNAs (circRNAs) in different diseases and the pathophysiological mechanisms involved have been elucidated. In the pathophysiological mechanism, the primary function of circRNAs is to act as microRNA sponges. An increasing number of studies have found that circRNAs are differentially expressed in gliomas and regulate the occurrence, proliferation, and invasion of glioma and thus may be potential markers for the diagnosis of gliomas. Additionally, some circRNAs have been associated with glioma staging and may be useful in determining prognosis. Based on the stability and high conservation of circRNAs, we believe that circRNAs may have molecular targets that are useful for the treatment of glioma. In this review, we summarize the current research regarding the role of circRNAs in gliomas, discuss the potential value and role of circRNAs in gliomas, and provide new perspectives for future research.
Collapse
Affiliation(s)
- Zheng Hao
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, No. 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi, China
| | - Si Hu
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, No. 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi, China
| | - Zheng Liu
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, No. 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi, China
| | - Weixin Song
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, No. 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi, China
| | - Yeyu Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, No. 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi, China
| | - Meihua Li
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, No. 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
30
|
Wang Y, Lu T, Wang Q, Liu J, Jiao W. Circular RNAs: Crucial regulators in the human body (Review). Oncol Rep 2018; 40:3119-3135. [PMID: 30272328 PMCID: PMC6196641 DOI: 10.3892/or.2018.6733] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Accepted: 09/07/2018] [Indexed: 12/14/2022] Open
Abstract
Circular RNAs (circRNAs) belong to a new type of endogenous non‑coding RNAs (ncRNAs) that are derived from exons and/or introns, and are widely distributed in mammals. The majority of circRNAs have a specific expression profile in cells or tissues, as well as during different stages of development. CircRNAs were originally thought to be the products of mis‑splicing. However, with the assistance of bioinformatics tools and the rapid development of high‑throughput sequencing, an increasing body of evidence has suggested that circRNAs bind micro(mi)RNAs, and have a role as miRNA sponges, thereby regulating target mRNA splicing and transcription. Human diseases are closely associated with circRNAs, especially in cancer as their expression is typically altered during the progression of cancer; this may provide a novel type of biomarker for cancer diagnosis and prognosis. CircRNAs are becoming a key area of interest within the field of cancer research. In the present review, we summarize the known molecular mechanisms and biological origin of circRNAs, as well as their functions, especially those related to human tumors.
Collapse
Affiliation(s)
- Yuanyong Wang
- Department of Thoracic Surgery, Affiliated Hospital of Qingdao University, Qingdao 266003, P.R. China
| | - Tong Lu
- Department of Thoracic Surgery, Affiliated Hospital of Qingdao University, Qingdao 266003, P.R. China
| | - Qian Wang
- College of Nursing, Weifang Medical University, Weifang 261053, P.R. China
| | - Jia Liu
- School of Pharmacy, Qingdao University, Qingdao 266003, P.R. China
| | - Wenjie Jiao
- Department of Thoracic Surgery, Affiliated Hospital of Qingdao University, Qingdao 266003, P.R. China
| |
Collapse
|
31
|
Zhou J, Wang H, Chu J, Huang Q, Li G, Yan Y, Xu T, Chen J, Wang Y. Circular RNA hsa_circ_0008344 regulates glioblastoma cell proliferation, migration, invasion, and apoptosis. J Clin Lab Anal 2018; 32:e22454. [PMID: 29687495 DOI: 10.1002/jcla.22454] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 03/23/2018] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Recent studies have found circular RNAs (circRNAs) involved in the biological process of cancers. However, little is known about their functional roles in glioblastoma. METHODS Human circRNA microarray analysis was performed to screen the expression profile of circRNAs in IDH1 wild-type glioblastoma tissue. The expression of hsa_circ_0008344 in glioblastoma and normal brain samples was quantified by qRT-PCR. Functional experiments were performed to investigate the biological functions of hsa_circ_0008344, including MTT assay, colony formation assay, transwell assay, and cell apoptosis assay. RESULTS CircRNA microarray revealed a total of 417 abnormally expressed circRNAs (>1.5-fold, P < .05) in glioblastoma tissue compared with the adjacent normal brain. Hsa_circ_0008344, among the top differentially expressed circRNAs, was significantly upregulated in IDH1 wild-type glioblastoma. Further in vitro studies showed that knockdown of hsa_circ_0008344 suppressed glioblastoma cell proliferation, colony formation, migration, and invasion, but increased cell apoptotic rate. CONCLUSIONS Hsa_circ_0008344 is upregulated in glioblastoma and may contribute to the progression of this malignancy.
Collapse
Affiliation(s)
- Jinxu Zhou
- Wuxi Clinical College of Anhui Medical University, Wuxi, China.,Department of Neurosurgery, Wuxi PLA 101 Hospital, Wuxi, China
| | - Hongxiang Wang
- Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Junsheng Chu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Qilin Huang
- Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Guangxu Li
- Wuxi Clinical College of Anhui Medical University, Wuxi, China.,Department of Neurosurgery, Wuxi PLA 101 Hospital, Wuxi, China
| | - Yong Yan
- Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Tao Xu
- Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Juxiang Chen
- Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Yuhai Wang
- Wuxi Clinical College of Anhui Medical University, Wuxi, China.,Department of Neurosurgery, Wuxi PLA 101 Hospital, Wuxi, China
| |
Collapse
|