1
|
Masrour M, Khanmohammadi S, Fallahtafti P, Rezaei N. Long non-coding RNA as a potential diagnostic biomarker in head and neck squamous cell carcinoma: A systematic review and meta-analysis. PLoS One 2023; 18:e0291921. [PMID: 37733767 PMCID: PMC10513217 DOI: 10.1371/journal.pone.0291921] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/09/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND Head and neck squamous cell carcinoma (HNSCC) is a group of malignancies arising from the epithelium of the head and neck. Despite efforts in treatment, results have remained unsatisfactory, and the death rate is high. Early diagnosis of HNSCC has clinical importance due to its high rates of invasion and metastasis. This systematic review and meta-analysis evaluated the diagnostic accuracy of lncRNAs in HNSCC patients. METHODS PubMed, ISI, SCOPUS, and EMBASE were searched for original publications published till April 2023 using MeSH terms and free keywords "long non-coding RNA" and "head and neck squamous cell carcinoma" and their expansions. The Reitsma bivariate random effect model pooled diagnostic test performance for studies that reported specificity and sensitivity; diagnostic AUC values from all trials were meta-analyzed using the random effects model with the inverse variance method. RESULTS The initial database search yielded 3209 articles, and 25 studies met our criteria. The cumulative sensitivity and specificity for lncRNAs in the diagnosis of HNSCC were 0.74 (95%CI: 0.68-0.7 (and 0.79 (95%CI: 0.74-0.83), respectively. The pooled AUC value for all specimen types was found to be 0.83. Using the inverse variance method, 71 individual lncRNAs yielded a pooled AUC of 0.77 (95%CI: 0.74-0.79). Five studies reported on the diagnostic accuracy of the MALAT1 lncRNA with a pooled AUC value of 0.83 (95%CI: 0.73-0.94). CONCLUSIONS LncRNAs could be used as diagnostic biomarkers for HNSCC, but further investigation is needed to validate clinical efficacy and elucidate mechanisms. High-throughput sequencing and bioinformatics should be used to ascertain expression profiles.
Collapse
Affiliation(s)
- Mahdi Masrour
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shaghayegh Khanmohammadi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | | | - Nima Rezaei
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Kulkarni A, Gayathrinathan S, Nair S, Basu A, Al-Hilal TA, Roy S. Regulatory Roles of Noncoding RNAs in the Progression of Gastrointestinal Cancers and Health Disparities. Cells 2022; 11:cells11152448. [PMID: 35954293 PMCID: PMC9367924 DOI: 10.3390/cells11152448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/31/2022] [Accepted: 08/03/2022] [Indexed: 01/17/2023] Open
Abstract
Annually, more than a million individuals are diagnosed with gastrointestinal (GI) cancers worldwide. With the advancements in radio- and chemotherapy and surgery, the survival rates for GI cancer patients have improved in recent years. However, the prognosis for advanced-stage GI cancers remains poor. Site-specific GI cancers share a few common risk factors; however, they are largely distinct in their etiologies and descriptive epidemiologic profiles. A large number of mutations or copy number changes associated with carcinogenesis are commonly found in noncoding DNA regions, which transcribe several noncoding RNAs (ncRNAs) that are implicated to regulate cancer initiation, metastasis, and drug resistance. In this review, we summarize the regulatory functions of ncRNAs in GI cancer development, progression, chemoresistance, and health disparities. We also highlight the potential roles of ncRNAs as therapeutic targets and biomarkers, mainly focusing on their ethnicity-/race-specific prognostic value, and discuss the prospects of genome-wide association studies (GWAS) to investigate the contribution of ncRNAs in GI tumorigenesis.
Collapse
Affiliation(s)
- Aditi Kulkarni
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968, USA
- Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Sharan Gayathrinathan
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Soumya Nair
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Anamika Basu
- Copper Mountain College, Joshua Tree, CA 92252, USA
- Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Taslim A. Al-Hilal
- Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968, USA
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Sourav Roy
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968, USA
- Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968, USA
- Correspondence:
| |
Collapse
|
3
|
Li J, Shen Z, Luo L, Ye D, Deng H, Gu S, Zhou C. tRNA Ini CAT inhibits proliferation and promotes apoptosis of laryngeal squamous cell carcinoma cells. J Clin Lab Anal 2021; 35:e23821. [PMID: 34048096 PMCID: PMC8274982 DOI: 10.1002/jcla.23821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Laryngeal squamous cell carcinoma (LSCC) brings a heavy blow to the patient's voice. Transfer RNA (tRNA) is a common RNA, the roles of tRNAs in LSCC are largely unknown. METHODS The tRNA expression profile in LSCC tissues and adjacent normal tissues was measured by a tRNA qRT-PCR array. The expression level of tRNAIni CAT in LSCC tissues and plasmas was detected by qRT-PCR. The receiver operating characteristic (ROC) curve was established. tRNAIni CAT was upregulated by a lentivirus vector in the LSCC cell line. Moreover, tRNAIni CAT was upregulated in LSCC xenograft nude mouse model and the xenografts were used for pathological analysis and transmission electron microscope (TEM) observation. RESULTS The top 10 upregulated tRNAs were tRNALys CTT -1, tRNALeu TAA , tRNAPhe GAA , tRNALeu CAG , tRNATyr ATA , tRNAMet CAT , tRNATyr GTA -1, tRNAThr CGT , tRNATyr GTA -2, tRNAAla AGC ; and the top 10 downregulated tRNAs were tRNAIni CAT , mt-tRNAGlu TTC , tRNAVal CAC -3, mt-tRNATrp TCA , mt-tRNATyr GTA , mt-tRNALys TTT , mt-tRNAThr TGT , mt-tRNAAsp GTC , mt-tRNAAsn GTT , mt-tRNAPro TGG . tRNAIni CAT was downregulated in LSCC tissues and plasma. The area under the ROC curve (AUC) in LSCC tissues and the plasma of patients with LSCC was 0.717 and 0.808, respectively. tRNAIni CAT inhibited LSCC cell proliferation and promoted apoptosis. The in vivo results showed that tRNAIni CAT inhibited the growth of the xenografts and promoted apoptosis. CONCLUSIONS This is the first study to provide tRNA expression profiles for LSCC tissues. tRNAIni CAT may be used as a new biomarker for the early diagnosis of LSCC. tRNAIni CAT inhibits cell proliferation and promotes apoptosis in vitro and in vivo.
Collapse
MESH Headings
- Animals
- Apoptosis/genetics
- Carcinoma, Squamous Cell/blood
- Carcinoma, Squamous Cell/diagnosis
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/pathology
- Cell Line, Tumor
- Cell Proliferation/genetics
- Female
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic
- Green Fluorescent Proteins/metabolism
- Humans
- Laryngeal Neoplasms/blood
- Laryngeal Neoplasms/diagnosis
- Laryngeal Neoplasms/genetics
- Laryngeal Neoplasms/pathology
- Mice, Inbred BALB C
- Mice, Nude
- RNA, Transfer/blood
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- ROC Curve
- Up-Regulation/genetics
- Xenograft Model Antitumor Assays
- Mice
Collapse
Affiliation(s)
- Jun Li
- Department of Otorhinolaryngology, Head and Neck SurgeryThe Affiliated LiHuili HospitalNingbo UniversityNingboChina
- Department of Biochemistry and Molecular BiologyZhejiang Key Laboratory of PathophysiologyNingbo University School of MedicalNingboChina
| | - Zhisen Shen
- Department of Otorhinolaryngology, Head and Neck SurgeryThe Affiliated LiHuili HospitalNingbo UniversityNingboChina
| | - Lin Luo
- Department of Biochemistry and Molecular BiologyZhejiang Key Laboratory of PathophysiologyNingbo University School of MedicalNingboChina
| | - Dong Ye
- Department of Otorhinolaryngology, Head and Neck SurgeryThe Affiliated LiHuili HospitalNingbo UniversityNingboChina
| | - Hongxia Deng
- Department of Otorhinolaryngology, Head and Neck SurgeryThe Affiliated LiHuili HospitalNingbo UniversityNingboChina
| | - Shanshan Gu
- Department of Otorhinolaryngology, Head and Neck SurgeryThe Affiliated LiHuili HospitalNingbo UniversityNingboChina
| | - Chongchang Zhou
- Department of Otorhinolaryngology, Head and Neck SurgeryThe Affiliated LiHuili HospitalNingbo UniversityNingboChina
| |
Collapse
|
4
|
Akbari Dilmaghani N, Khoshsirat S, Shanaki-Bavarsad M, Pourbagheri-Sigaroodi A, Bashash D. The contributory role of long non-coding RNAs (lncRNAs) in head and neck cancers: Possible biomarkers and therapeutic targets? Eur J Pharmacol 2021; 900:174053. [PMID: 33766619 DOI: 10.1016/j.ejphar.2021.174053] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/12/2021] [Accepted: 03/17/2021] [Indexed: 12/12/2022]
Abstract
Along with the developments in techniques for genome study, our understanding of its sequences has completely changed. The non-coding sequences of the human genome are no longer considered as "junk" but are rather known to be the source of high-functioning molecules. Some of the most fascinating transcripts in this regard are long non-coding RNAs (lncRNAs) ___RNA molecules that exceed 200 nucleotides and are not transcribed from protein-coding regions of the genome. These transcripts are capable of gene regulation by various mechanisms, from epigenetic changes and chromosomal arrangements to post-transcription modulation of messenger RNAs. Furthermore, lncRNAs interact with other non-coding transcripts such as microRNAs that further affects gene expression. Considering the fact that cancer is a disease of deregulated expression, recent studies have identified lncRNAs acting as either oncogene or tumor suppressor in a wide range of human malignancies. Head and neck cancer (HNC), with a high incidence rate and unfavorable survival, is no exception in this matter and many investigations have introduced lncRNAs involved in its tumor progression and drug response, as well as those acting as promising diagnostic or prognostic markers. The present study reviews the vital regulatory roles of lncRNAs and further introduces their role in progression of HNC subtypes.
Collapse
Affiliation(s)
- Nader Akbari Dilmaghani
- Hearing Disorders Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Otolaryngology, Head and Neck Surgery, Loghman Hakim Educational Hospital, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahrokh Khoshsirat
- Hearing Disorders Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Otolaryngology, Head and Neck Surgery, Loghman Hakim Educational Hospital, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mahsa Shanaki-Bavarsad
- Institute of Neuroscience. Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain; Department of Cell Biology, Physiology and Immunology. Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
| | - Atieh Pourbagheri-Sigaroodi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Chen J, Shen Y, Shen Z, Cheng L, Zhou S. Tissue engineering of the larynx: A contemporary review. J Clin Lab Anal 2020; 35:e23646. [PMID: 33320365 PMCID: PMC7891509 DOI: 10.1002/jcla.23646] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 12/17/2022] Open
Abstract
Objective Tissue engineering has been a topic of extensive research in recent years and has been applied to the regeneration and restoration of many organs including the larynx. Currently, research investigating tissue engineering of the larynx is either ongoing or in the preclinical trial stage. Methods A literature search was performed on the Advanced search field of PubMed using the keywords: “(laryncheal tissue engineering) AND (cartilage regeneration OR scaffolds OR stem cells OR biomolecules).” After applying the selection criteria, 65 articles were included in the study. Results The present review focuses on the rapidly expanding field of tissue‐engineered larynx, which aims to provide stem cell–based scaffolds combined with biological active factors such as growth factors for larynx reconstruction and regeneration. The trend in recent studies is to use new techniques for scaffold construction, such as 3D printing, are developed. All of these strategies have been instrumental in guiding optimization of the tissue‐engineered larynx, leading to a level of clinical induction beyond the in vivo animal experimental phase. Conclusions This review summarizes the current progress and outlines the necessary basic components of regenerative laryngeal medicine in preclinical fields. Finally, it considers the design of scaffolds, support of growth factors, and cell therapies toward potential clinical application.
Collapse
Affiliation(s)
- Jingjing Chen
- Department of Otorhinolaryngology-Head and Neck Surgery, Lihuili Hospital, Ningbo University, Ningbo, 315040, China.,Department of Otorhinolaryngology- Head and Neck Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Yi Shen
- Department of Otorhinolaryngology-Head and Neck Surgery, Lihuili Hospital, Ningbo University, Ningbo, 315040, China
| | - Zhisen Shen
- Department of Otorhinolaryngology-Head and Neck Surgery, Lihuili Hospital, Ningbo University, Ningbo, 315040, China
| | - Lixin Cheng
- Department of Otorhinolaryngology-Head and Neck Surgery, Lihuili Hospital, Ningbo University, Ningbo, 315040, China
| | - Shuihong Zhou
- Department of Otorhinolaryngology- Head and Neck Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| |
Collapse
|
6
|
Han J, Shen X. Long noncoding RNAs in osteosarcoma via various signaling pathways. J Clin Lab Anal 2020; 34:e23317. [PMID: 32249459 PMCID: PMC7307344 DOI: 10.1002/jcla.23317] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 12/14/2022] Open
Abstract
Osteosarcoma is one of the most commonly seen bone malignancies with high incidence rate in both children and adults. Although the regulatory network of osteosarcoma has been greatly concerned for years, the mechanisms regarding its oncogenesis and development are still not clear. Recent discoveries have revealed that long noncoding RNAs (lncRNAs) play a crucial role in the development, progression, and invasion of osteosarcoma. Deregulated expression of lncRNAs has been found to participate in the regulation of various signaling transduction pathways in osteosarcoma. This review summarized roles of lncRNAs in the pathogenesis, development, and potential therapeutic of osteosarcoma via different signaling pathways. For examples, MALAT1, CCAT2, FER1L4, LOXL1‐AS1, OIP5‐AS1, PVT1, DBH‐AS1, and AWPPH regulate PI3K/Akt signaling; AWPPH and BE503655 regulate Wnt/β‐catenin signaling; NKILA and XIST regulate NF‐κB signaling; MEG3 and SNHG12 regulate Notch signaling; FOXD2‐AS1 and LINK‐A regulate HIF‐1α signaling; GClnc1 and HOTAIR regulate P53 signaling; ZFAS1, H19, and MALAT1 regulate MAPK, Hedgehog and Rac1/JNK signaling, respectively.
Collapse
Affiliation(s)
| | - Xiaohan Shen
- Ningbo Diagnostic Pathology Center (Shanghai Cancer Center Ningbo Pathology Center), Ningbo, China.,Ningbo Medical Center Lihuili Hospital, Ningbo, China
| |
Collapse
|
7
|
Shen Z, Wu L, Hao W, Li Q, Zhou C. Expression of the long noncoding RNA RP11-169D4.1-001 in Hypopharyngeal Squamous cell carcinoma tissue and its clinical significance. J Clin Lab Anal 2019; 34:e23019. [PMID: 31512299 PMCID: PMC6977134 DOI: 10.1002/jcla.23019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/16/2019] [Accepted: 07/17/2019] [Indexed: 12/16/2022] Open
Abstract
Background Increased research efforts have demonstrated that lncRNAs are associated with multiple head and neck tumors and play important roles in cancer. We previously found that RP11‐169D4.1‐001 plays a tumor‐suppressive role in laryngeal cancer, but its function in human hypopharyngeal squamous cell carcinoma (HSCC) remains unknown. Thus, this research aimed to analyze the relationship between RP11‐169D4.1‐001 expression and HSCC clinicopathological features. Methods Real‐time quantitative reverse transcription‐polymerase chain reaction (qRT‐PCR) was used to detect the expression of RP11‐169D4.1‐001 in 70 pairs of HSCC and adjacent normal tissues. Results The expression level of RP11‐169D4.1‐001 in HSCC tissues was significantly lower than that in adjacent normal tissues (P = .001). The expression of RP11‐169D4.1‐001 had no significant relationship with tumor differentiation, stage, smoking, drinking, age, tumor location, or treatment. RP11‐169D4.1‐001 expression was associated with T category (P = .008) and lymph node metastasis (P = .001). Survival data were assessed by Kaplan‐Meier curves. Patients with high RP11‐169D4.1‐001 expression were found to have a shorter overall survival than patients with low RP11‐169D4.1‐001 expression. Multivariate analysis also indicated that target RNA was an independent factor for prognosis. The ROC curve was constructed to clarify the diagnostic value of RP11‐169D4.1‐001. Conclusions RP11‐169D4.1‐001 may serve as a new biomarker and potential drug target and can be used as a new biomarker and a potential drug target for the detection and treatment of hypopharyngeal cancer, respectively. Furthermore, RP11‐169D4.1‐001 expression may be an independent prognostic factor affecting the survival of hypopharyngeal cancer patients.
Collapse
Affiliation(s)
- Zhisen Shen
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, China.,Laboratory of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, China
| | - Linrong Wu
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, China.,Laboratory of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, China
| | - Wenjuan Hao
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, China.,Laboratory of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, China
| | - Qun Li
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, China.,Laboratory of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, China
| | - Chongchang Zhou
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, China.,Laboratory of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, China
| |
Collapse
|