1
|
Huang L, Zhang M, Bai D, Qu Y. Deciphering the impact of TERT/telomerase on immunosenescence and T cell revitalization. Front Immunol 2024; 15:1465006. [PMID: 39376566 PMCID: PMC11456497 DOI: 10.3389/fimmu.2024.1465006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/02/2024] [Indexed: 10/09/2024] Open
Abstract
Immunosenescence impacts both the innate and adaptive immune systems, predominantly affecting certain immune cell types. A notable manifestation of immunosenescence is the diminished efficacy of adaptive immunity. The excessive senescence of immune cells, particularly T cells, leads to marked immune deficiency, consequently escalating the risk of infections, tumors, and age-associated disorders. Lymphocytes, especially T cells, are subject to both replicative and premature senescence. Telomerase reverse transcriptase (TERT) and telomerase have multifaceted roles in regulating cellular behavior, possessing the ability to counteract both replicative and premature senescence in lymphocytes. This review encapsulates recent advancements in understanding immunosenescence, with a focus on T cell senescence, and the regulatory mechanisms involving TERT/telomerase. Additionally, it comprehensively discusses strategies aimed at inhibiting immunosenescence by augmenting TERT/telomerase activity.
Collapse
Affiliation(s)
- Lingyi Huang
- Department of Orthodontics, West China College of Stomatology/State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China
| | - Mingfu Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu, China
| | - Ding Bai
- Department of Orthodontics, West China College of Stomatology/State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China
| | - Yi Qu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Elbadry MI, Tawfeek A, Hirano T, El-Mokhtar MA, Kenawey M, Helmy AM, Ogawa S, Mughal MZ, Nannya Y. A rare homozygous variant in TERT gene causing variable bone marrow failure, fragility fractures, rib anomalies and extremely short telomere lengths with high serum IgE. Br J Haematol 2024; 204:1086-1095. [PMID: 37926112 DOI: 10.1111/bjh.19176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 11/07/2023]
Abstract
By whole exome sequencing, we identified a homozygous c.2086 C→T (p.R696C) TERT mutation in patients who present with a spectrum of variable bone marrow failure (BMF), raccoon eyes, dystrophic nails, rib anomalies, fragility fractures (FFs), high IgE level, extremely short telomere lengths (TLs), and skewed numbers of cytotoxic T cells with B and NK cytopenia. Haploinsufficiency in the other family members resulted in short TL and osteopenia. These patients also had the lowest bone mineral density Z-score compared to other BMF-patients. Danazol/zoledronic acid improved the outcomes of BMF and FFs. This causative TERT variant has been observed in one family afflicted with dyskeratosis congenita (DC), and thus, we also define a second report and new phenotype related to the variant which should be suspected in severe cases of DC with co-existent BMF, FFs, high IgE level and rib anomalies.
Collapse
Affiliation(s)
- Mahmoud I Elbadry
- Division of Haematology, Department of Internal Medicine, Faculty of Medicine, Sohag University, Sohag, Egypt
| | - Ahmed Tawfeek
- Department of Clinical and Chemical Pathology, Faculty of Medicine, Sohag University, Sohag, Egypt
| | - Tomonori Hirano
- Department of Pathology and Tumor Biology, Kyoto University, Kyoto, Japan
| | - Mohamed A El-Mokhtar
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Asyut, Egypt
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon
| | - Mohamed Kenawey
- Orthopedic Surgery Department, Faculty of Medicine, Sohag University, Sohag, Egypt
- Royal Manchester Children's Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Ahmed M Helmy
- Department of Internal Medicine, Faculty of Medicine, Sohag University, Sohag, Egypt
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Kyoto University, Kyoto, Japan
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, Japan
- Department of Medicine, Centre for Hematology and Regenerative Medicine, Karolinska Institute, Stockholm, Sweden
| | - M Zulf Mughal
- Pediatric Bone Disorders, Al Jalila Children's Speciality Hospital, Dubai, UAE
| | - Yasuhito Nannya
- Department of Pathology and Tumor Biology, Kyoto University, Kyoto, Japan
- Division of Hematopoietic Disease Control, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
3
|
Liu XY, Tan Q, Li LX. A pan-cancer analysis of Dyskeratosis congenita 1 (DKC1) as a prognostic biomarker. Hereditas 2023; 160:38. [PMID: 38082360 PMCID: PMC10712082 DOI: 10.1186/s41065-023-00302-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Dyskeratosis congenita 1 (DKC1), a critical component of telomerase complex, is highly expressed in a variety of human cancers. However, the association of DKC1 with cancer occurrence and development stages is not clear, making a pan-cancer analysis crucial. METHODS We conducted a study using various bioinformatic databases such as TIMER, GEPIA, UALCAN, and KM plotter Analysis to examine the different expressions of DKC1 in multiple tissues and its correlation with pathological stages. Through KEGG analysis, GO enrichment analysis and Venn analysis, we were able to reveal DKC1-associated genes and signaling pathways. In addition, we performed several tests including the CCK, wound healing assay, cell cycle arrest assay, transwell assay and Sa-β-gal staining on DKC1-deleted MDA-231 cells. RESULTS Our study demonstrates that DKC1 has relatively low expression specificity in different tissues. Furthermore, we found that in ACC, KICH, KIRP and LIHC, the expression level of DKC1 is positively correlated with pathological stages. Conversely, in NHSC, KIRP, LGG, LIHC, MESO and SARC, we observed a negative influence of DKC1 expression level on the overall survival rate. We also found a significant positive correlation between DKC1 expression and Tumor Mutational Burden in 14 tumors. Additionally, we observed a significantly negative impact of DKC1 DNA methylation on gene expression at the promoter region in BRCA. We also identified numerous phosphorylation sites concentrated at the C-terminus of the DKC1 protein. Our GO analysis revealed a correlation between DKC1 and ribosomal biosynthesis pathways, and the common element UTP14A was identified. We also observed decreased rates of cell proliferation, migration and invasion abilities in DKC1-knockout MDA-MB-231 cell lines. Furthermore, DKC1-knockout induced cell cycle arrest and caused cell senescence. CONCLUSIONS Our findings suggest that the precise expression of DKC1 is closely associated with the occurrence and developmental stages of cancer in multiple tissues. Depletion of DKC1 can inhibit the abilities of cancer cells to proliferate, migrate, and invade by arresting the cell cycle and inducing cell senescence. Therefore, DKC1 may be a valuable prognostic biomarker for the diagnosis and treatment of cancer in various tissues.
Collapse
Affiliation(s)
- Xin-Ying Liu
- School of Life and Health Sciences, Huzhou College, Huzhou, 313000, China
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Qing Tan
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Lin-Xiao Li
- School of Life and Health Sciences, Huzhou College, Huzhou, 313000, China.
| |
Collapse
|
4
|
Deng J, McReynolds LJ. Inherited bone marrow failure syndromes: a review of current practices and potential future research directions. Curr Opin Pediatr 2023; 35:75-83. [PMID: 36354296 PMCID: PMC9812861 DOI: 10.1097/mop.0000000000001196] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
PURPOSE OF REVIEW Recent advances in diagnosis and treatment of inherited bone marrow failure syndromes (IBMFS) have significantly improved disease understanding and patient outcomes. Still, IBMFS present clinical challenges that require further progress. This review aims to provide an overview of the current state of diagnosis and treatment modalities of the major IBMFS seen in paediatrics and present areas of prioritization for future research. RECENT FINDINGS Haematopoietic cell transplantation (HCT) for IBMFS has greatly improved in recent years, shifting the research and clinical focus towards cancer predispositions and adverse effects of treatment. Each year, additional novel genes and pathogenic variants are described, and genotype-phenotype mapping becomes more sophisticated. Moreover, novel therapeutics exploring disease-specific mechanisms show promise to complement HCT and treat patients who cannot undergo current treatment options. SUMMARY Research on IBMFS should have short-term and long-term goals. Immediate challenges include solidifying diagnostic and treatment guidelines, cancer detection and treatment, and continued optimization of HCT. Long-term goals should emphasize genotype-phenotype mapping, genetic screening tools and gene-targeted therapy.
Collapse
Affiliation(s)
- Joseph Deng
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Lisa J. McReynolds
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
5
|
Gong J, Yang J, He Y, Chen X, Yang G, Sun R. Construction of m7G subtype classification on heterogeneity of sepsis. Front Genet 2022; 13:1021770. [PMID: 36506322 PMCID: PMC9729242 DOI: 10.3389/fgene.2022.1021770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/31/2022] [Indexed: 11/27/2022] Open
Abstract
Sepsis is a highly heterogeneous disease and a major factor in increasing mortality from infection. N7-Methylguanosine (m7G) is a widely RNA modification in eukaryotes, which involved in regulation of different biological processes. Researchers have found that m7G methylation contributes to a variety of human diseases, but its research in sepsis is still limited. Here, we aim to establish the molecular classification of m7G gene-related sepsis, reveal its heterogeneity and explore the underlying mechanism. We first identified eight m7G related prognostic genes, and identified two different molecular subtypes of sepsis through Consensus Clustering. Among them, the prognosis of C2 subtype is worse than that of C1 subtype. The signal pathways enriched by the two subtypes were analyzed by ssGSEA, and the results showed that the amino acid metabolism activity of C2 subtype was more active than that of C1 subtype. In addition, the difference of immune microenvironment among different subtypes was explored through CIBERSORT algorithm, and the results showed that the contents of macrophages M0 and NK cells activated were significantly increased in C2 subtype, while the content of NK cells resting decreased significantly in C2 subtype. We further explored the relationship between immune regulatory genes and inflammation related genes between C2 subtype and C1 subtype, and found that C2 subtype showed higher expression of immune regulatory genes and inflammation related genes. Finally, we screened the key genes in sepsis by WGCNA analysis, namely NUDT4 and PARN, and verified their expression patterns in sepsis in the datasets GSE131761 and GSE65682. The RT-PCR test further confirmed the increased expression of NUDTA4 in sepsis patients. In conclusion, sepsis clustering based on eight m7G-related genes can well distinguish the heterogeneity of sepsis patients and help guide the personalized treatment of sepsis patients.
Collapse
Affiliation(s)
- Jinru Gong
- Department of Pulmonary and Critical Care Medicine, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Jiasheng Yang
- Department of Pulmonary and Critical Care Medicine, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Yaowei He
- Department of Pulmonary and Critical Care Medicine, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Xiaoxuan Chen
- Department of Pulmonary and Critical Care Medicine, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Guangyu Yang
- Department of Pulmonary and Critical Care Medicine, Guangdong Second Provincial General Hospital, Guangzhou, China,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Ruilin Sun
- Department of Pulmonary and Critical Care Medicine, Guangdong Second Provincial General Hospital, Guangzhou, China,*Correspondence: Ruilin Sun,
| |
Collapse
|
6
|
Wang L, Li J, Xiong Q, Zhou YA, Li P, Wu C. Case Report: A Missense Mutation in Dyskeratosis Congenita 1 Leads to a Benign Form of Dyskeratosis Congenita Syndrome With the Mucocutaneous Triad. Front Pediatr 2022; 10:834268. [PMID: 35463902 PMCID: PMC9019361 DOI: 10.3389/fped.2022.834268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/25/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Dyskeratosis congenita (DC) is a rare inheritable disorder characterized by bone marrow failure and mucocutaneous triad (reticular skin pigmentation, nail dystrophy, and oral leukoplakia). Dyskeratosis congenita 1 (DKC1) is responsible for 4.6% of the DC with an X-linked inheritance pattern. Almost 70 DKC1 variations causing DC have been reported in the Human Gene Mutation Database. RESULTS Here we described a 14-year-old boy in a Chinese family with a phenotype of abnormal skin pigmentation on the neck, oral leukoplakia, and nail dysplasia in his hands and feet. Genetic analysis and sequencing revealed hemizygosity for a recurrent missense mutation c.1156G > A (p.Ala386Thr) in DKC1 gene. The heterozygous mutation (c.1156G > A) from his mother and wild-type sequence from his father were obtained in the same site of DKC1. This mutation was determined as disease causing based on silico software, but the pathological phenotypes of the proband were milder than previously reported at this position (HGMDCM060959). Homology modeling revealed that the altered amino acid was located near the PUA domain, which might affect the affinity for RNA binding. CONCLUSION This DKC1 mutation (c.1156G > A, p.Ala386Thr) was first reported in a Chinese family with mucocutaneous triad phenotype. Our study reveals the pathogenesis of DKC1 c.1156G > A mutation to DC with a benign phenotype, which expands the disease variation database, the understanding of genotype-phenotype correlations, and facilitates the clinical diagnosis of DC in China.
Collapse
Affiliation(s)
- Liqing Wang
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education of China, Shanxi University, Taiyuan, China.,The Key Laboratory of Medical Molecular Cell Biology of Shanxi Province, Institute of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Jianwei Li
- Bluttransfusion, The Second Hospital, Shanxi Medical University, Taiyuan, China
| | - Qiuhong Xiong
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education of China, Shanxi University, Taiyuan, China.,The Key Laboratory of Medical Molecular Cell Biology of Shanxi Province, Institute of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Yong-An Zhou
- Bluttransfusion, The Second Hospital, Shanxi Medical University, Taiyuan, China
| | - Ping Li
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education of China, Shanxi University, Taiyuan, China.,The Key Laboratory of Medical Molecular Cell Biology of Shanxi Province, Institute of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Changxin Wu
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education of China, Shanxi University, Taiyuan, China.,The Key Laboratory of Medical Molecular Cell Biology of Shanxi Province, Institute of Biomedical Sciences, Shanxi University, Taiyuan, China
| |
Collapse
|
7
|
Zeng T, Lv G, Chen X, Yang L, Zhou L, Dou Y, Tang X, Yang J, An Y, Zhao X. CD8 + T-cell senescence and skewed lymphocyte subsets in young Dyskeratosis Congenita patients with PARN and DKC1 mutations. J Clin Lab Anal 2020; 34:e23375. [PMID: 32452087 PMCID: PMC7521304 DOI: 10.1002/jcla.23375] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/16/2020] [Accepted: 05/01/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Dyskeratosis congenita (DC) is a syndrome resulting from defective telomere maintenance. Immunodeficiency associated with DC can cause significant morbidity and lead to premature mortality, but the immunological characteristics and molecular hallmark of DC patients, especially young patients, have not been described in detail. METHODS We summarize the clinical data of two juvenile patients with DC. Gene mutations were identified by whole-exome and direct sequencing. Swiss-PdbViewer was used to predict the pathogenicity of identified mutations. The relative telomere length was determined by QPCR, and a comprehensive analysis of lymphocyte subsets and CD57 expression was performed by flow cytometry. RESULTS Both patients showed typical features of DC without severe infection. In addition, patient 1 (P1) was diagnosed with Hoyeraal-Hreidarsson syndrome due to cerebellar hypoplasia. Gene sequencing showed P1 had a compound heterozygous mutation (c.204G > T and c.178-245del) in PARN and P2 had a novel hemizygous mutation in DKC1 (c.1051A > G). Lymphocyte subset analysis showed B and NK cytopenia, an inverted CD4:CD8 ratio, and decreased naïve CD4 and CD8 cells. A significant increase in CD21low B cells and skewed numbers of helper T cells (Th), regulatory T cells (Treg), follicular regulatory T cells (Tfr), and follicular helper T cells (Tfh) were also detected. Short telomere lengths, increased CD57 expression, and an expansion of CD8 effector memory T cells re-expressing CD45RA (TEMRA) were also found in both patients. CONCLUSION Unique immunologic abnormalities, CD8 T-cell senescence, and shortened telomere together as a hallmark occur in young DC patients before progression to severe disease.
Collapse
Affiliation(s)
- Ting Zeng
- Pediatric Research InstituteMinistry of Education Key Laboratory of Child Development and DisordersNational Clinical Research Center for Child Health and Disorders (Chongqing)China International Science and Technology Cooperation base of Child Development and Critical DisordersChildren's Hospital of Chongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of Child Infection and ImmunityChildren's Hospital of Chongqing Medical UniversityChongqingChina
| | - Ge Lv
- Pediatric Research InstituteMinistry of Education Key Laboratory of Child Development and DisordersNational Clinical Research Center for Child Health and Disorders (Chongqing)China International Science and Technology Cooperation base of Child Development and Critical DisordersChildren's Hospital of Chongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of Child Infection and ImmunityChildren's Hospital of Chongqing Medical UniversityChongqingChina
| | - Xuemei Chen
- Pediatric Research InstituteMinistry of Education Key Laboratory of Child Development and DisordersNational Clinical Research Center for Child Health and Disorders (Chongqing)China International Science and Technology Cooperation base of Child Development and Critical DisordersChildren's Hospital of Chongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of Child Infection and ImmunityChildren's Hospital of Chongqing Medical UniversityChongqingChina
| | - Lu Yang
- Pediatric Research InstituteMinistry of Education Key Laboratory of Child Development and DisordersNational Clinical Research Center for Child Health and Disorders (Chongqing)China International Science and Technology Cooperation base of Child Development and Critical DisordersChildren's Hospital of Chongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of Child Infection and ImmunityChildren's Hospital of Chongqing Medical UniversityChongqingChina
| | - Lina Zhou
- Pediatric Research InstituteMinistry of Education Key Laboratory of Child Development and DisordersNational Clinical Research Center for Child Health and Disorders (Chongqing)China International Science and Technology Cooperation base of Child Development and Critical DisordersChildren's Hospital of Chongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of Child Infection and ImmunityChildren's Hospital of Chongqing Medical UniversityChongqingChina
| | - Ying Dou
- Pediatric Research InstituteMinistry of Education Key Laboratory of Child Development and DisordersNational Clinical Research Center for Child Health and Disorders (Chongqing)China International Science and Technology Cooperation base of Child Development and Critical DisordersChildren's Hospital of Chongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of Child Infection and ImmunityChildren's Hospital of Chongqing Medical UniversityChongqingChina
- Department of Hematology and OncologyChildren's Hospital of Chongqing Medical UniversityChongqingChina
| | - Xuemei Tang
- Pediatric Research InstituteMinistry of Education Key Laboratory of Child Development and DisordersNational Clinical Research Center for Child Health and Disorders (Chongqing)China International Science and Technology Cooperation base of Child Development and Critical DisordersChildren's Hospital of Chongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of Child Infection and ImmunityChildren's Hospital of Chongqing Medical UniversityChongqingChina
- Department of Rheumatology and ImmunologyChildren's Hospital of Chongqing Medical UniversityChongqingChina
| | - Jun Yang
- Pediatric Research InstituteMinistry of Education Key Laboratory of Child Development and DisordersNational Clinical Research Center for Child Health and Disorders (Chongqing)China International Science and Technology Cooperation base of Child Development and Critical DisordersChildren's Hospital of Chongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of Child Infection and ImmunityChildren's Hospital of Chongqing Medical UniversityChongqingChina
- Department of Rheumatology and ImmunologyShenzhen Children's HospitalShenzhenChina
| | - Yunfei An
- Pediatric Research InstituteMinistry of Education Key Laboratory of Child Development and DisordersNational Clinical Research Center for Child Health and Disorders (Chongqing)China International Science and Technology Cooperation base of Child Development and Critical DisordersChildren's Hospital of Chongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of Child Infection and ImmunityChildren's Hospital of Chongqing Medical UniversityChongqingChina
- Department of Rheumatology and ImmunologyChildren's Hospital of Chongqing Medical UniversityChongqingChina
| | - Xiaodong Zhao
- Pediatric Research InstituteMinistry of Education Key Laboratory of Child Development and DisordersNational Clinical Research Center for Child Health and Disorders (Chongqing)China International Science and Technology Cooperation base of Child Development and Critical DisordersChildren's Hospital of Chongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of Child Infection and ImmunityChildren's Hospital of Chongqing Medical UniversityChongqingChina
- Department of Rheumatology and ImmunologyChildren's Hospital of Chongqing Medical UniversityChongqingChina
| |
Collapse
|