1
|
Wang X, Zhang Z, Cao X. Salidroside inhibited the proliferation of gastric cancer cells through up-regulating tumor suppressor miR-1343-3p and down-regulating MAP3K6/MMP24 signal molecules. Cancer Biol Ther 2024; 25:2322206. [PMID: 38436092 PMCID: PMC10913707 DOI: 10.1080/15384047.2024.2322206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 02/19/2024] [Indexed: 03/05/2024] Open
Abstract
Salidroside inhibited the proliferation of cancer cell. Nevertheless, the mechanism has not been completely clarified. The purpose of the study is to explore the mechanisms of salidroside against gastric cancer. To analyze the changes of microRNA (miRNA) in gastric cancer cells under the treatment of salidroside, the miRNA expression was analyzed by using RNA-seq in cancer cells for 24 h after salidroside treatment. The differentially expressed miRNAs were clustered and their target genes were analyzed. Selected miRNA and target mRNA genes were further verified by q-PCR. The expressions of target genes in cancer cells were detected by immunohistochemistry. Cancer cell apoptotic index was significantly increased after salidroside treatment. The proliferation of gastric cancer cells were blocked at S-phase cell cycle. The expression of 44 miRNAs changed differentially after salidroside treatment in cancer cells. Bioinformatic analysis showed that there were 1384 target mRNAs corresponding to the differentially expressed miRNAs. Surprisingly, salidroside significantly up-regulated the expression of tumor suppressor miR-1343-3p, and down-regulated the expression of MAP3K6, STAT3 and MMP24-related genes. Salidroside suppressed the growth of gastric cancer by inducing the cancer cell apoptosis, arresting the cancer cell cycle and down-regulating the related signal transduction pathways. miRNAs are expressed differentially in gastric cancer cells after salidroside treatment, playing important roles in regulating proliferation and metastasis. Salidroside may suppress the growth of gastric cancer by up-regulating the expression of the tumor suppressor miR-1343-3p and down-regulating the expression of MAP3K6 and MMP24 signal molecules.
Collapse
Affiliation(s)
- Xiaoping Wang
- Department of Medicine, KeyLaboratory of High Altitude Hypoxia Environment and Life Health, Xizang Minzu University, Xianyang, Shaanxi, P.R. China
| | - Zhendong Zhang
- Department of Medicine, KeyLaboratory of High Altitude Hypoxia Environment and Life Health, Xizang Minzu University, Xianyang, Shaanxi, P.R. China
| | - Xiaolan Cao
- Department of Medicine, KeyLaboratory of High Altitude Hypoxia Environment and Life Health, Xizang Minzu University, Xianyang, Shaanxi, P.R. China
| |
Collapse
|
2
|
Guo Y, Ding X, Dai C, Wang W, Chen J, Chen S, Yang L, Chen G. miR‑1343‑3p inhibits autophagy by directly targeting ATG7 in multiple myeloma cells. Biomed Rep 2024; 21:185. [PMID: 39420924 PMCID: PMC11484188 DOI: 10.3892/br.2024.1873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 08/23/2024] [Indexed: 10/19/2024] Open
Abstract
Multiple myeloma (MM) is the second most common type of hematological malignancy globally. Despite application of several new drugs, such as daratumumab, bortezomib/lenalidomide/dexamethasone, in combination with hematopoietic stem cell transplantation, overall prognosis remains poor and the pathological mechanism of MM is still unknown. The present study used TargetScan to predict autophagy-related 7 (ATG7) as a candidate target gene of microRNA (miR)-1343-3p and confirmed the interaction between miR-1343-3p and the ATG7 3' untranslated region (3'UTR) using a dual-luciferase reporter assay. In U266 and RPMI-8226 MM cell lines, miR-1343-3p mimic transfection decreased mRNA and protein levels of ATG7, while miR-1343-3p inhibition increased ATG7 expression levels using reverse transcription-qPCR and western blot analysis. miR-1343-3p mimic transfection inhibited U266 and RPMI-8226 cell survival. Finally, miR-1343-3p regulated ATG7 and autophagy in MM cells using western blot analysis. The present findings suggested that miR-1343-3p may regulate ATG7 and autophagy by directly targeting the 3'UTR of ATG7. To the best of our knowledge, there are no direct data showing the roles of miR-1343-3p in development of MM; however, miR-1343-3p may be considered a potential target for MM treatment.
Collapse
Affiliation(s)
- Yanrong Guo
- Department of Hematology, Taizhou Central Hospital (Taizhou University Affiliated Hospital), Taizhou University, Taizhou, Zhejiang 318008, P.R. China
| | - Xiaoxiao Ding
- Department of Hematology, Taizhou Central Hospital (Taizhou University Affiliated Hospital), Taizhou University, Taizhou, Zhejiang 318008, P.R. China
| | - Changling Dai
- Department of Hematology, Taizhou Central Hospital (Taizhou University Affiliated Hospital), Taizhou University, Taizhou, Zhejiang 318008, P.R. China
| | - Wenwen Wang
- Department of Hematology, Taizhou Central Hospital (Taizhou University Affiliated Hospital), Taizhou University, Taizhou, Zhejiang 318008, P.R. China
| | - Jianlin Chen
- Department of Hematology, Taizhou Central Hospital (Taizhou University Affiliated Hospital), Taizhou University, Taizhou, Zhejiang 318008, P.R. China
| | - Sai Chen
- Department of Hematology, Taizhou Central Hospital (Taizhou University Affiliated Hospital), Taizhou University, Taizhou, Zhejiang 318008, P.R. China
| | - Linjun Yang
- Department of Oncology, Municipal Hospital Affiliated to Medical School of Taizhou University, Taizhou, Zhejiang 318002, P.R. China
| | - Guang Chen
- Department of Hematology, Taizhou Central Hospital (Taizhou University Affiliated Hospital), Taizhou University, Taizhou, Zhejiang 318008, P.R. China
- Department of Pharmacology, School of Medicine, Taizhou University, Taizhou, Zhejiang 318000, P.R. China
| |
Collapse
|
3
|
Chen Z, Zhang X, Li Z, Zhang H, Wang Z. lncRNA LINC02323 predicts adverse neoadjuvant chemotherapy outcomes of gastric cancer patients and regulates cell sensitivity to 5-fluorouracil by negatively modulating miR-139-3p. Ann Med 2024; 56:2424513. [PMID: 39506605 PMCID: PMC11544739 DOI: 10.1080/07853890.2024.2424513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/13/2024] [Accepted: 10/18/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND/OBJECTIVE Drug resistance is a challenging problem in the clinical chemotherapy of gastric cancer. Identification of predictive biomarkers for chemotherapy outcomes could improve therapeutic efficacy and patient prognosis. This study aimed to assess the significance of long non-coding RNA (lncRNA) LINC02323 in gastric cancer progression and neoadjuvant chemotherapy and to explore its potential regulatory mechanism. MATERIALS AND METHODS This study enrolled 117 patients with gastric cancer who received neoadjuvant chemotherapy combined with surgical treatment and 35 patients with benign gastroscopic results. The expression of LINC02323 in gastric mucosal tissues of study subjects was analyzed by PCR, and its association with chemotherapy efficacy and cancer development was evaluated. Gastric cancer cells were treated with 5-FU, and the effect of LINC02323 on cell growth and motility under 5-FU treatments was evaluated using CCK8 and transwell assays. RESULTS LINC02323 was upregulated in gastric cancer patients, which was related to advanced T stage, occurrence of lymph node metastasis, and less pathological response to chemotherapy. LINC02323 serves as a prognostic biomarker for predicting poor overall survival of gastric cancer patients receiving neoadjuvant chemotherapy. Silencing LINC02323 suppressed the proliferation and motility of gastric cancer cells treated with 5-FU and induced cell apoptosis, indicating the enhanced sensitivity of gastric cancer cells to 5-FU. miR-139-3p was negatively regulated by LINC02323 and could reverse the function of LINC02323 in 5-FU-treated gastric cancer cells. CONCLUSION Upregulated LINC02323 expression in gastric cancer is associated with malignant progression, adverse prognosis, and chemotherapy resistance. Silencing LINC02323 could enhance the sensitivity of gastric cancer cells to 5-FU by negatively modulating miR-139-3p expression.
Collapse
Affiliation(s)
- Zexu Chen
- Department of General Surgery, Shanghai Pudong New Area People’s Hospital, Shanghai, China
| | - Xiaodong Zhang
- Department of Gastroenterology, Nanjing LuHe People’s Hospital, Nanjing, Jiangsu, China
| | - Zhentao Li
- Department of Gastroenterology, Xuzhou Municipal Hospital Affiliated to XuZhou Medical University, Xuzhou, Jiangsu, China
| | - Haihan Zhang
- Department of Gastroenterology, Xuzhou Municipal Hospital Affiliated to XuZhou Medical University, Xuzhou, Jiangsu, China
| | - Zhuangmei Wang
- Department of Gastroenterology, Xuzhou Municipal Hospital Affiliated to XuZhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
4
|
Lin C, Lin K, Lin X, Yuan H, Zhang Y, Xie Z, Dai Y, Liu L, Shimada Y, Goto T, Okuda K, Liu T, Wei C. Necroptosis-related lncRNAs: biomarkers for predicting prognosis and immune response in lung adenocarcinoma. Transl Lung Cancer Res 2024; 13:2713-2728. [PMID: 39507021 PMCID: PMC11535849 DOI: 10.21037/tlcr-24-627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/25/2024] [Indexed: 11/08/2024]
Abstract
Background Lung adenocarcinoma (LUAD) is one of the most prevalent types of lung cancer (LC), accounting for 50% of all LC cases. Despite therapeutic advancements, patients suffer from adverse drug reactions. Furthermore, the prognosis of LC patients remains poor. Necroptosis is a novel mode of cell death and is critically involved in regulating immunotherapy in patients. However, the correlation between the necroptosis-related long non-coding RNA (lncRNA) (necro-related lnc) signature (NecroLncSig) and the response of patients with LUAD to immunotherapy is unclear. This study developed a model using lncRNAs to predict the prognosis of patients with LUAD. Methods We obtained the transcriptomic and clinical data of LUAD patients from The Cancer Genome Atlas (TCGA) database. Next, we conducted a co-expression analysis to identify the necro-related lnc. In addition, we constructed the NecroLncSig using univariate and least absolute shrinkage and selection operator (LASSO) Cox regression analyses. Then we evaluated and validated the NecroLncSig using a Kaplan-Meier (KM) survival analysis, receiver operating characteristic (ROC) curves, principal component analysis (PCA), Gene Ontology (GO) enrichment analysis, a nomogram, and calibration curves. Finally, we used the NecroLncSig to predict the responses of patients to immunotherapy. Results We constructed the NecroLncSig based on seven necro-related lnc. The patients were classified into a high-risk group (HRG) and a low-risk group (LRG). The overall survival (OS) of patients in the HRG was significantly poorer in the training, testing, and entire sets (P<0.05) than that of the patients in the LRG. Univariate and multivariate Cox regression analyses demonstrated that the risk score could predict the OS of patients in an independent manner (P<0.001). Time-dependent ROC analysis demonstrated that the area under the curve values of the NecroLncSig for 1-, 2-, and 3-year OS were 0.689, 0.700, and 0.685, respectively, for the entire set. Furthermore, the Tumor Immune Dysfunction and Exclusion (TIDE) algorithm showed that the response of patients in the HRG to immunotherapy was better than that of patients in the LRG. Conclusions Necro-related lnc can affect disease progression and patient prognosis. In addition, these lncRNAs can be used to design therapeutic strategies, such as immunotherapy, to treat patients with LUAD.
Collapse
Affiliation(s)
- Chunxuan Lin
- Department of Respiratory Medicine, Guangdong Provincial Hospital of Integrated Traditional Chinese and Western Medicine, Foshan, China
| | - Kunpeng Lin
- Department of Abdominal Oncosurgery, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xiaochun Lin
- Department of Medical Examination Center, Guangzhou First People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Hai Yuan
- Department of Cardio-Thoracic Surgery, Guangzhou Hospital of Integrated Chinese and Western Medicine, Guangzhou, China
| | - Yingying Zhang
- Department of Thoracic Surgery, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, China
| | - Zhijun Xie
- Departtment of Radiology, The Second People’s Hospital of Jiangmen, Jiangmen, China
| | - Yong Dai
- Department of Respiratory Medicine, Guangdong Provincial Hospital of Integrated Traditional Chinese and Western Medicine, Foshan, China
| | - Luhao Liu
- Department of Organ Transplantation, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yoshihisa Shimada
- Department of Thoracic Surgery, Tokyo Medical University, Tokyo, Japan
| | - Taichiro Goto
- Lung Cancer and Respiratory Disease Center, Yamanashi Central Hospital, Yamanashi, Japan
| | - Katsuhiro Okuda
- Department of Thoracic and Pediatric Surgery, Nagoya City University Graduated School of Medical Sciences, Nagoya, Japan
| | - Taisheng Liu
- Department of Thoracic Surgery, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, China
- Department of Thoracic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chenggong Wei
- Department of Respiratory Medicine, Guangdong Provincial Hospital of Integrated Traditional Chinese and Western Medicine, Foshan, China
| |
Collapse
|
5
|
Zhang R, Zhou Z, Wang P, He X, Liu Y, Chu M. The SLC19A1-AS/miR-1343/WNT11 axis is a novel positive regulatory ceRNA network governing goat granulosa cell proliferation. Int J Biol Macromol 2024; 264:130658. [PMID: 38484817 DOI: 10.1016/j.ijbiomac.2024.130658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/18/2024] [Accepted: 03/04/2024] [Indexed: 03/18/2024]
Abstract
Long noncoding RNAs (lncRNAs), as competitive endogenous RNAs (ceRNAs), can directly or indirectly affect the proliferation and apoptosis of granulosa cells by regulating microRNA (miRNA) pathways. A ceRNA network of the SLC19A1-AS-miR-1343-WNT11 axis was constructed via comprehensive transcriptome sequencing of ovaries from goats with various fertility levels to further elucidate the function and regulatory mechanism of SLC19A1-AS in modulating miR-1343 and WNT11 during granulosa cell proliferation and apoptosis. Subsequent validation experiments were conducted in vitro using granulosa cells. In these experiments, we performed RNA immunoprecipitation (RIP) and identified SLC19A1-AS as a ceRNA in goat granulosa cells that promoted proliferation. Through bioinformatics prediction, luciferase reporter gene assays, and RNA pulldown assays, we confirmed that SLC19A1-AS acts as a sponge for miR-1343, preventing its binding to WNT11 mRNA and thereby increasing the expression of WNT11. This interaction also influenced the proliferation and apoptosis of granulosa cells. Our study systematically validated the biological function of the lncRNA-miRNA-mRNA ceRNA network in goat ovaries and revealed the potential regulatory mechanism by which SLC19A1-AS functions as a ceRNA in granulosa cells. These findings are expected to provide an important experimental foundation for further elucidating the physiological regulatory network of the ovary and contributing to reproductive health in goats.
Collapse
Affiliation(s)
- Runan Zhang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Zuyang Zhou
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Peng Wang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Xiaoyun He
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Yufang Liu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China.
| | - Mingxing Chu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China.
| |
Collapse
|
6
|
Rodrigues-Junior DM, Moustakas A. Unboxing the network among long non-coding RNAs and TGF-β signaling in cancer. Ups J Med Sci 2024; 129:10614. [PMID: 38571882 PMCID: PMC10989219 DOI: 10.48101/ujms.v129.10614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 02/24/2024] [Accepted: 02/24/2024] [Indexed: 04/05/2024] Open
Abstract
Deeper analysis of molecular mechanisms arising in tumor cells is an unmet need to provide new diagnostic and therapeutic strategies to prevent and treat tumors. The transforming growth factor β (TGF-β) signaling has been steadily featured in tumor biology and linked to poor prognosis of cancer patients. One pro-tumorigenic mechanism induced by TGF-β is the epithelial-to-mesenchymal transition (EMT), which can initiate cancer dissemination, enrich the tumor stem cell population, and increase chemoresistance. TGF-β signals via SMAD proteins, ubiquitin ligases, and protein kinases and modulates the expression of protein-coding and non-coding RNA genes, including those encoding larger than 500 nt transcripts, defined as long non-coding RNAs (lncRNAs). Several reports have shown lncRNAs regulating malignant phenotypes by directly affecting epigenetic processes, transcription, and post-transcriptional regulation. Thus, this review aims to update and summarize the impact of TGF-β signaling on the expression of lncRNAs and the function of such lncRNAs as regulators of TGF-β signaling, and how these networks might impact specific hallmarks of cancer.
Collapse
Affiliation(s)
| | - Aristidis Moustakas
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
7
|
Lin W, Mo CQ, Kong LJ, Chen L, Wu KL, Wu X. FTO-mediated epigenetic upregulation of LINC01559 confers cell resistance to docetaxel in breast carcinoma by suppressing miR-1343-3p. Kaohsiung J Med Sci 2023; 39:873-882. [PMID: 37584416 DOI: 10.1002/kjm2.12728] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/27/2023] [Accepted: 06/04/2023] [Indexed: 08/17/2023] Open
Abstract
This study was to explore the regulatory effect of long non-coding RNA LINC01559 on Docetaxel resistance in breast carcinoma (BCa) and its underlying mechanism. In the present study, we found that LINC01559 expression was elevated and LINC01559 overexpression facilitated docetaxel resistance in BCa cells. Moreover, it was revealed that the upregulation of LINC01559 in BCa cells was induced by FTO-mediated demethylation in an m6A-YTHDF2-dependent manner. Additionally, Dual-luciferase reporter assay confirmed the binding ability between LINC01559 and miR-1343-3p, and Pearson correlation analysis showed a negative correlation between them. Particularly, miR-1343-3p inhibition partly abolished the suppression on docetaxel resistance in BCa cells caused by LINC01559 knockdown. To sum up, FTO-mediated epigenetic upregulation of LINC01559 promoted cell resistance to Docetaxel in BCa by negatively regulating miR-1343-3p.
Collapse
Affiliation(s)
- Wei Lin
- Department of Thyroid and Breast Surgery, First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Cai-Qin Mo
- Department of Thyroid and Breast Surgery, First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Ling-Jun Kong
- Department of Thyroid and Breast Surgery, First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Ling Chen
- Department of Thyroid and Breast Surgery, First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Kun-Lin Wu
- Department of Thyroid and Breast Surgery, First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Xian Wu
- Department of Thyroid and Breast Surgery, First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| |
Collapse
|
8
|
Wu K, Tsai Y, Huang Y, Wu Y, Chang C, Liu Y, Hsu Y, Hung J. LINC02323 facilitates development of lung squamous cell carcinoma by miRNA sponge and RBP dysregulation and links to poor prognosis. Thorac Cancer 2022; 14:407-418. [PMID: 36516959 PMCID: PMC9891863 DOI: 10.1111/1759-7714.14760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 11/23/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The poor outcome of patients with lung squamous cell carcinoma (LUSC) highlights the importance of the identification of novel effective prognostic markers and therapeutic targets. Long noncoding RNAs (lncRNAs) have generally been considered to serve important roles in tumorigenesis and the development of various types of cancer, including LUSC. METHODS Here, we aimed to investigate the role of LINC02323 in LUSC and its potential mechanisms by performing comprehensive bioinformatic analyses. RESULTS LINC02323 was elevated and positively associated with unfavorable prognosis of LUSC patients. LINC02323 exerted oncogenic function by competitively binding to miR-1343-3p and miR-6783-3p, thereby upregulating L1CAM expression. Indeed, we also determined that LINC02323 could interact with the RNA-binding protein DDX3X, which regulates various stages of RNA expression and processing. CONCLUSION Taken together, we identified that LINC02323 and its indirect target L1CAM can act as novel biomarkers for determining the prognosis of patients with LUSC and thus deserves further study.
Collapse
Affiliation(s)
- Kuan‐Li Wu
- Graduate Institute of Medicine, College of MedicineKaohsiung Medical UniversityKaohsiungTaiwan,Division of Pulmonary and Critical Care MedicineKaohsiung Medical University Hospital, Kaohsiung Medical UniversityKaohsiungTaiwan,Drug Development and Value Creation Research CenterKaohsiung Medical UniversityKaohsiungTaiwan
| | - Ying‐Ming Tsai
- Graduate Institute of Medicine, College of MedicineKaohsiung Medical UniversityKaohsiungTaiwan,Division of Pulmonary and Critical Care MedicineKaohsiung Medical University Hospital, Kaohsiung Medical UniversityKaohsiungTaiwan,Drug Development and Value Creation Research CenterKaohsiung Medical UniversityKaohsiungTaiwan
| | - Yung‐Chi Huang
- Graduate Institute of Medicine, College of MedicineKaohsiung Medical UniversityKaohsiungTaiwan,Drug Development and Value Creation Research CenterKaohsiung Medical UniversityKaohsiungTaiwan
| | - Yu‐Yuan Wu
- School of Medicine, College of MedicineKaohsiung Medical UniversityKaohsiungTaiwan
| | - Chao‐Yuan Chang
- Graduate Institute of Medicine, College of MedicineKaohsiung Medical UniversityKaohsiungTaiwan,Department of AnatomyKaohsiung Medical UniversityKaohsiungTaiwan
| | - Yu‐Wei Liu
- Division of Thoracic Surgery, Department of Surgery, Kaohsiung Medical University HospitalKaohsiung Medical UniversityKaohsiungTaiwan
| | - Ya‐Ling Hsu
- Graduate Institute of Medicine, College of MedicineKaohsiung Medical UniversityKaohsiungTaiwan,Drug Development and Value Creation Research CenterKaohsiung Medical UniversityKaohsiungTaiwan
| | - Jen‐Yu Hung
- Graduate Institute of Medicine, College of MedicineKaohsiung Medical UniversityKaohsiungTaiwan,Division of Pulmonary and Critical Care MedicineKaohsiung Medical University Hospital, Kaohsiung Medical UniversityKaohsiungTaiwan,Drug Development and Value Creation Research CenterKaohsiung Medical UniversityKaohsiungTaiwan,Department of Internal MedicineKaohsiung Municipal Ta‐Tung HospitalKaohsiungTaiwan
| |
Collapse
|
9
|
Human Umbilical Cord Mesenchymal Stem Cells Improve Premature Ovarian Failure through Cell Apoptosis of miR-100-5p/NOX4/NLRP3. BIOMED RESEARCH INTERNATIONAL 2022; 2022:3862122. [PMID: 35845923 PMCID: PMC9283025 DOI: 10.1155/2022/3862122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/02/2022] [Accepted: 06/07/2022] [Indexed: 11/17/2022]
Abstract
Premature ovarian failure refers to a series of symptoms of perimenopausal hot flashes, night sweats, decreased libido, vaginal dryness, insomnia, reduced menstruation, sparse hair, even amenorrhea, and even infertility before the age of 40 due to the decline of ovarian function. Premature ovarian failure is a common and difficult disease in gynecology. Its prevalence is increasing gradually, and the trend is younger. The aim of this experiment was to elucidate the role of human umbilical cord mesenchymal stem cells (HUCMSCs) in premature ovarian failure and its mechanism. HUCMSCs, KGN cells, and HEK293T cells were used in this experiment. Quantitative PCR and microarray analysis, ELISA inflammation and oxidative stress kits, RNA pull-down assay, luciferase reporter assay, proliferation assay, EDU staining, and Western blot analysis were used. In an in vitro model of premature ovarian failure, HUCMSCs attenuated inflammatory response, oxidative stress, and apoptosis. HUCMSCs ameliorated the premature ovarian failure model. The miR-100-5p expression was induced by HUCMSCs through methylation. miR-100-5p regulation influenced the role of HUCMSCs in an in vitro model of premature ovarian failure. HUCMSCs inhibited the in vitro expression of NOX4, NLRP3, and GSDMD proteins in the model. NOX4/NLRP3 signaling pathway affects the role of HUCMSCs in an in vitro model of premature ovarian failure through miR-100-5p. This experiment elucidated the role of HUCMSCs in premature ovarian failure and its mechanism, with a view to providing a clinical reference.
Collapse
|
10
|
A diagnostic and prognostic value of blood-based circulating long non-coding RNAs in Thyroid, Pancreatic and Ovarian Cancer. Crit Rev Oncol Hematol 2022; 171:103598. [PMID: 35033662 DOI: 10.1016/j.critrevonc.2022.103598] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 01/12/2022] [Accepted: 01/12/2022] [Indexed: 12/12/2022] Open
Abstract
Several studies have demonstrated the potential of circulating long non-coding RNAs (lncRNAs) as promising cancer biomarkers. Herein, we addressed the regulatory role of circulating lncRNAs and their potential value as diagnostic/prognostic markers for thyroid, pancreatic and ovarian cancers. Furthermore, we analyzed and measured the clinical implications and association of lncRNAs with sensitivity, specificity, and area under the ROC curve (AUC). Based on our meta-analysis, we found that GAS8-AS1 could discriminate thyroid cancer from non-cancer and other cancers with higher accuracy (AUC = 0.746; sensitivity = 61.70%, and specificity = 90.00%). Similarly, for ovarian cancer, lncRNA RP5-837J1.2 was found to have ideal diagnostic potential with critical clinical specifications of AUC = 0.996; sensitivity = 97.30% and specificity = 94.60%. Whereas we could not find any lncRNA having high diagnostic/prognostic efficiency in pancreatic cancer. We believe that lncRNAs mentioned above may explore clinical settings for the diagnosis and prognosis of cancer patients.
Collapse
|
11
|
The Effect of RBP4 on microRNA Expression Profiles in Porcine Granulosa Cells. Animals (Basel) 2021; 11:ani11051391. [PMID: 34068244 PMCID: PMC8153112 DOI: 10.3390/ani11051391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/08/2021] [Accepted: 05/10/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary Retinol binding protein 4 (RBP4), mainly secreted by the liver and adipocytes, is a transporter of vitamin A. RBP4 has been shown to be involved in several pathophysiological processes, such as polycystic ovary syndrome (PCOS), obesity, insulin resistance, and cardiovascular risk. However, the role of RBP4 in mammalian follicular granulosa cells (GCs) remains largely unknown. To characterize the molecular pathways associated with the effects of RBP4 on GCs, we used sRNA deep sequencing to detect differential microRNA (miRNA) expression in GCs overexpressing RBP4. A total of 17 miRNAs were significantly different between the experimental and control groups. Our results support the notion that several miRNAs are involved in important biological processes associated with folliculogenesis and pathogenesis. These results will be useful for further studies investigating the role of RBP4 in porcine GCs. Abstract Retinol binding protein 4 (RBP4) is a transporter of vitamin A that is secreted mainly by hepatocytes and adipocytes. It affects diverse pathophysiological processes, such as obesity, insulin resistance, and cardiovascular diseases. MicroRNAs (miRNAs) have been reported to play indispensable roles in regulating various developmental processes via the post-transcriptional repression of target genes in mammals. However, the functional link between RBP4 and changes in miRNA expression in porcine granulosa cells (GCs) remains to be investigated. To examine how increased expression of RBP4 affects miRNA expression, porcine GCs were infected with RBP4-targeted lentivirus for 72 h, and whole-genome miRNA profiling (miRNA sequencing) was performed. The sequencing data were validated using real-time quantitative polymerase chain reaction (RT-qPCR) analysis. As a result, we obtained 2783 known and 776 novel miRNAs. In the experimental group, 10 and seven miRNAs were significantly downregulated and upregulated, respectively, compared with the control group. Ontology analysis of the biological processes of these miRNAs indicated their involvement in a variety of biological functions. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses indicated that these miRNAs were involved mainly in the chemokine signaling pathway, peroxisome proliferators-activated receptors (PPAR) signaling pathway, insulin resistance pathway, nuclear factor-kappa B(NF-kappa B) signaling pathway, and steroid hormone biosynthesis. Our results indicate that RBP4 can regulate the expression of miRNAs in porcine GCs, with consequent physiological effects. In summary, this study profiling miRNA expression in RBP4-overexpressing porcine GCs provides an important reference point for future studies on the regulatory roles of miRNAs in the porcine reproductive system.
Collapse
|
12
|
Li Y, Zhao Z, Sun D, Li Y. Novel long noncoding RNA LINC02323 promotes cell growth and migration of ovarian cancer via TGF-β receptor 1 by miR-1343-3p. J Clin Lab Anal 2020; 35:e23651. [PMID: 33247856 PMCID: PMC7891524 DOI: 10.1002/jcla.23651] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/14/2020] [Accepted: 10/20/2020] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND This study was aimed at investigating the effects of long noncoding RNA (lncRNA) LINC02323 in ovarian cancer and its possible mechanism. METHODS Microarray analysis and QPCR were utilized to identify lncRNA LINC02323 expression in patients with ovarian cancer. MTT assay was used for analysis of ovarian cancer cell proliferation. Western blot was utilized to investigate its possible mechanism. RESULTS In patients with ovarian cancer, lncRNA LINC02323 expression was up-regulated and miR-1343-3p expression was down-regulated. Over-expression of lncRNA LINC02323 promoted cell growth and reduced LDH activity levels in vitro model by suppression of miR-1343-3p expression. Down-regulation of lncRNA LINC02323 reduced cell growth and increased LDH activity levels in vitro model by induction of miR-1343-3p expression. Over-expression of miR-1343-3p reduced cell growth and reduced LDH activity levels in vitro model by suppression of TGF-β receptor. Down-regulation of miR-1343-3p promoted cell growth and reduced LDH activity levels in vitro model by induced of TGF-β receptor. CONCLUSION Our findings show that Novel long noncoding RNA LINC02323 promotes cell growth of ovarian cancer via TGF-β receptor 1 by miR-1343-3p.
Collapse
Affiliation(s)
- Yingchun Li
- Department of Gynaecology, CangZhou Central Hospital, Cangzhou City, China
| | - Zheng Zhao
- Department of Cardiology, CangZhou Central Hospital, Cangzhou City, China
| | - Dan Sun
- Department of Gynaecology, CangZhou Central Hospital, Cangzhou City, China
| | - Yanfei Li
- Department of Gynaecology, CangZhou Central Hospital, Cangzhou City, China
| |
Collapse
|