1
|
Wei X, Cai L, Zhang L, Chen J, Zhang Y, Meng M, Yang Y, Zhou X, Zou G, Sun L. Prenatal Diagnosed Agenesis of the Corpus Callosum: Identifying the Underlying Genetic Etiologies. Prenat Diagn 2024. [PMID: 39117575 DOI: 10.1002/pd.6641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 07/17/2024] [Accepted: 07/20/2024] [Indexed: 08/10/2024]
Abstract
OBJECTIVE To assess the genetic etiologies underlying agenesis of the corpus callosum (ACC) and its pregnancy outcomes in the era of next-generation sequencing. METHODS A retrospective analysis was conducted on prospectively collected prenatal ACC cases in which amniocentesis was performed between January 2016 and December 2022. ACC was divided into non-isolated and isolated according to the presence or absence of ultrasound abnormalities. Chromosomal microarray analysis (CMA), karyotyping and exome sequencing (ES) were performed after genetic counseling. Pregnancy outcomes were assessed by pediatric neurosurgeons and were followed up by telephone through their parents. RESULTS Sixty-eight fetuses with ACC were enrolled in this study. CMA detected eight cases with pathogenic copy number variants (CNVs) and all were non-isolated ACC, with a detection rate of 11.8% (8/68). Among the CMA abnormalities, the majority (6/8) were detectable by karyotyping. ES was performed in 26 cases with normal CMA, revealing pathogenic or likely pathogenic gene variations in 12 cases (46.2%, 12/26), involving L1CMA, SMARCB1, PPP2R1A, ARID1B, USP34, CDC42, NFIA and DCC genes. The detection rates of ES in isolated and non-isolated ACC were 40% (6/15) and 54.5% (6/11), respectively. After excluding cases where pregnancy was terminated (56 cases), there were 12 live births, ranging in age from 15 months to 7 years. Of these, 91.7% (11 out of 12) demonstrated normal neurodevelopmental outcomes. Specifically, all five cases with isolated ACC and negative ES results exhibited normal neurodevelopment. The remaining six cases with favorable outcomes were all isolated ACC, among which ES identified variants of DCC and USP34 gene in one each case. The other four cases were CMA-negative and declined ES. CONCLUSIONS We highlight the efficacy of prenatal ES in determining the genetic etiology of ACC, whether isolated or not. Favorable neurodevelopmental outcomes were observed when ACC was isolated and with normal ES results.
Collapse
Affiliation(s)
- Xing Wei
- Department of Fetal Medicine and Prenatal Diagnosis Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Luyao Cai
- Department of Fetal Medicine and Prenatal Diagnosis Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Luye Zhang
- Department of Fetal Medicine and Prenatal Diagnosis Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jianping Chen
- Department of Fetal Medicine and Prenatal Diagnosis Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yun Zhang
- Department of Fetal Medicine and Prenatal Diagnosis Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Meng Meng
- Department of Fetal Medicine and Prenatal Diagnosis Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yingjun Yang
- Department of Fetal Medicine and Prenatal Diagnosis Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xinyao Zhou
- Department of Fetal Medicine and Prenatal Diagnosis Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Gang Zou
- Department of Fetal Medicine and Prenatal Diagnosis Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Luming Sun
- Department of Fetal Medicine and Prenatal Diagnosis Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Cai M, Lin N, Fu M, Que Y, Huang H, Xu L. Fetal agenesis of corpus callosum: chromosomal copy number abnormalities and postnatal follow-up. Mol Biol Rep 2024; 51:872. [PMID: 39080034 PMCID: PMC11289215 DOI: 10.1007/s11033-024-09821-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/23/2024] [Indexed: 08/02/2024]
Abstract
OBJECTIVE Agenesis of the corpus callosum (ACC) is an anomaly that can occur in fetuses during pregnancy. However, there is currently no treatment for fetal ACC. Therefore, we conducted a retrospective analysis of obstetric outcomes of fetal ACC to explore the relationship between fetal ACC phenotypes and chromosomal copy number abnormalities. METHODS AND RESULTS Amniotic fluid or umbilical cord blood were extracted from pregnant women with fetal ACC for karyotype analysis and chromosomal microarray analysis (CMA). Among the 48 fetuses with ACC, 22 (45.8%, 22/48) had isolated ACC, and 26 (54.2%, 26/48) had non-isolated ACC. Chromosomal abnormalities were detected via karyotype analysis in four cases. In addition to the four cases of pathogenic copy number variations (CNVs) detected using karyotype analysis, CMA revealed two cases of pathogenic CNVs with 17q12 microduplication and 16p12.2 microdeletion. The obstetric outcomes of 26 patients with non-isolated ACC were followed up, and 17 chose to terminate the pregnancy. In addition, seven of the nine cases with non-isolated ACC showed no obvious abnormality during postnatal follow-up, whereas only one case with normal CMA showed an abnormal phenotype at six months. Of the 22 patients with isolated ACC, six chose to terminate the pregnancy. Postnatal follow-up of 16 isolated ACC cases revealed only one with benign CNV, presenting with intellectual disability. CONCLUSION Pregnant women with fetal ACC should be offered prenatal CMA, particularly non-isolated ACC. Patients with ACC should undergo prolonged postnatal follow-up, and appropriate intervention should be provided if necessary.
Collapse
Affiliation(s)
- Meiying Cai
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Clinical Research Center for Maternal-Fetal Medicine, Fujian Medical University, National Key Obstetric Clinical Specialty Construction Institution of China, Fuzhou, China
| | - Na Lin
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Clinical Research Center for Maternal-Fetal Medicine, Fujian Medical University, National Key Obstetric Clinical Specialty Construction Institution of China, Fuzhou, China
| | - Meimei Fu
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Clinical Research Center for Maternal-Fetal Medicine, Fujian Medical University, National Key Obstetric Clinical Specialty Construction Institution of China, Fuzhou, China
| | - Yanting Que
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Clinical Research Center for Maternal-Fetal Medicine, Fujian Medical University, National Key Obstetric Clinical Specialty Construction Institution of China, Fuzhou, China
| | - Hailong Huang
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Clinical Research Center for Maternal-Fetal Medicine, Fujian Medical University, National Key Obstetric Clinical Specialty Construction Institution of China, Fuzhou, China.
| | - Liangpu Xu
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Clinical Research Center for Maternal-Fetal Medicine, Fujian Medical University, National Key Obstetric Clinical Specialty Construction Institution of China, Fuzhou, China.
| |
Collapse
|
3
|
Marchionni E, Guadagnolo D, Mastromoro G, Pizzuti A. Prenatal Genome-Wide Sequencing analysis (Exome or Genome) in detecting pathogenic Single Nucleotide Variants in fetal Central Nervous System Anomalies: systematic review and meta-analysis. Eur J Hum Genet 2024; 32:759-769. [PMID: 38486024 PMCID: PMC11219734 DOI: 10.1038/s41431-024-01590-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 02/04/2024] [Accepted: 03/05/2024] [Indexed: 03/20/2024] Open
Abstract
Prenatal Exome (pES) or Genome (pGS) Sequencing analysis showed a significant incremental diagnostic yield over karyotype and chromosomal microarray analysis (CMA) in fetal structural anomalies. Optimized indications and detection rates in different fetal anomalies are still under investigation. The aim of this study was to assess the incremental diagnostic yield in prenatally diagnosed Central Nervous System (CNS) anomalies. A systematic review on antenatal CNS anomalies was performed according to PRISMA guidelines, including n = 12 paper, accounting for 428 fetuses. Results were pooled in a meta-analysis fitting a logistic random mixed-effect model. The effect of interest was the incremental diagnostic rate of pES over karyotype/CMA in detecting likely pathogenic/pathogenic Single Nucleotide Variants (SNVs). A further meta-analysis adding the available pGS studies (including diagnostic coding SNVs only) and submeta-analysis on three CNS subcategories were also performed. The pooled incremental diagnostic yield estimate of pES studies was 38% (95% C.I.: [29%;47%]) and 36% (95% C.I.: [28%;45%]) when including diagnostic SNVs of pGS studies. The point estimate of the effect resulted 22% (95% C.I.: [15%;31%]) in apparently isolated anomalies, 33% (95% C.I.: [22%;46%]) in CNS-only related anomalies (≥1) and 46% (95% C.I.: [38%;55%]) in non-isolated anomalies (either ≥ 2 anomalies in CNS, or CNS and extra-CNS). Meta-analysis showed a substantial diagnostic improvement in performing Prenatal Genome-Wide Sequencing analysis (Exome or Genome) over karyotype and CMA in CNS anomalies.
Collapse
Affiliation(s)
- Enrica Marchionni
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy.
| | - Daniele Guadagnolo
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Gioia Mastromoro
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Antonio Pizzuti
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
4
|
Mustafa HJ, Barbera JP, Sambatur EV, Pagani G, Yaron Y, Baptiste CD, Wapner RJ, Brewer CJ, Khalil A. Diagnostic yield of exome sequencing in prenatal agenesis of corpus callosum: systematic review and meta-analysis. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2024; 63:312-320. [PMID: 37519216 DOI: 10.1002/uog.27440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/25/2023] [Accepted: 07/07/2023] [Indexed: 08/01/2023]
Abstract
OBJECTIVES To determine the incremental diagnostic yield of exome sequencing (ES) after negative chromosomal microarray analysis (CMA) in cases of prenatally diagnosed agenesis of the corpus callosum (ACC) and to identify the associated genes and variants. METHODS A systematic search was performed to identify relevant studies published up until June 2022 using four databases: PubMed, SCOPUS, Web of Science and The Cochrane Library. Studies in English reporting on the diagnostic yield of ES following negative CMA in prenatally diagnosed partial or complete ACC were included. Authors of cohort studies were contacted for individual participant data and extended cohorts were provided for two of them. The increase in diagnostic yield with ES for pathogenic/likely pathogenic (P/LP) variants was assessed in all cases of ACC, isolated ACC, ACC with other cranial anomalies and ACC with extracranial anomalies. To identify all reported genetic variants, the systematic review included all ACC cases; however, for the meta-analysis, only studies with ≥ three ACC cases were included. Meta-analysis of proportions was employed using a random-effects model. Quality assessment of the included studies was performed using modified Standards for Reporting of Diagnostic Accuracy criteria. RESULTS A total of 28 studies, encompassing 288 prenatally diagnosed ACC cases that underwent ES following negative CMA, met the inclusion criteria of the systematic review. We classified 116 genetic variants in 83 genes associated with prenatal ACC with a full phenotypic description. There were 15 studies, encompassing 268 cases, that reported on ≥ three ACC cases and were included in the meta-analysis. Of all the included cases, 43% had a P/LP variant on ES. The highest yield was for ACC with extracranial anomalies (55% (95% CI, 35-73%)), followed by ACC with other cranial anomalies (43% (95% CI, 30-57%)) and isolated ACC (32% (95% CI, 18-51%)). CONCLUSIONS ES demonstrated an incremental diagnostic yield in cases of prenatally diagnosed ACC following negative CMA. While the greatest diagnostic yield was observed in ACC with extracranial anomalies and ACC with other central nervous system anomalies, ES should also be considered in cases of isolated ACC. © 2023 The Authors. Ultrasound in Obstetrics & Gynecology published by John Wiley & Sons Ltd on behalf of International Society of Ultrasound in Obstetrics and Gynecology.
Collapse
Affiliation(s)
- H J Mustafa
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- Riley Children and Indiana University Health Fetal Center, Indianapolis, IN, USA
| | - J P Barbera
- Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, USA
| | - E V Sambatur
- Research Division, Houston Center for Maternal Fetal Medicine, Houston, TX, USA
| | - G Pagani
- Maternal Fetal Medicine Unit, Department of Obstetrics and Gynecology, ASST-Papa Giovanni XXIII, Bergamo, Italy
| | - Y Yaron
- Prenatal Genetic Diagnosis Unit, Genetics Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - C D Baptiste
- Obstetrics and Gynecology, Reproductive Genetics, Columbia University Medical Center, New York, NY, USA
| | - R J Wapner
- Obstetrics and Gynecology, Reproductive Genetics, Columbia University Medical Center, New York, NY, USA
| | - C J Brewer
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - A Khalil
- Fetal Medicine Unit, St George's University Hospitals NHS Foundation Trust, University of London, London, UK
- Vascular Biology Research Centre, Molecular and Clinical Sciences Research Institute, St George's University of London, London, UK
| |
Collapse
|
5
|
Boddupally K, Rani Thuraka E. Artificial intelligence for prenatal chromosome analysis. Clin Chim Acta 2024; 552:117669. [PMID: 38007058 DOI: 10.1016/j.cca.2023.117669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 11/27/2023]
Abstract
This review article delves into the rapidly advancing domain of prenatal diagnostics, with a primary focus on the detection and management of chromosomal abnormalities such as trisomy 13 ("Patau syndrome)", "trisomy 18 (Edwards syndrome)", and "trisomy 21 (Down syndrome)". The objective of the study is to examine the utilization and effectiveness of novel computational methodologies, such as "machine learning (ML)", "deep learning (DL)", and data analysis, in enhancing the detection rates and accuracy of these prenatal conditions. The contribution of the article lies in its comprehensive examination of advancements in "Non-Invasive Prenatal Testing (NIPT)", prenatal screening, genomics, and medical imaging. It highlights the potential of these techniques for prenatal diagnosis and the contributions of ML and DL to these advancements. It highlights the application of ensemble models and transfer learning to improving model performance, especially with limited datasets. This also delves into optimal feature selection and fusion of high-dimensional features, underscoring the need for future research in these areas. The review finds that ML and DL have substantially improved the detection and management of prenatal conditions, despite limitations such as small sample sizes and issues related to model generalizability. It recognizes the promising results achieved through the use of ensemble models and transfer learning in prenatal diagnostics. The review also notes the increased importance of feature selection and high-dimensional feature fusion in the development and training of predictive models. The findings underline the crucial role of AI and machine learning techniques in early detection and improved therapeutic strategies in prenatal diagnostics, highlighting a pressing need for further research in this area.
Collapse
Affiliation(s)
- Kavitha Boddupally
- JNTUH University, India; CVR College of Engineering, ECE, Hyderabad, India.
| | | |
Collapse
|
6
|
Luo H, Wang Q, Fu D, Gao J, Lu D. Additional diagnostic value of CNV-seq over conventional karyotyping in prenatal diagnosis: A systematic review and meta-analysis. J Obstet Gynaecol Res 2023. [PMID: 37037422 DOI: 10.1111/jog.15652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 03/25/2023] [Indexed: 04/12/2023]
Abstract
OBJECTIVE To identify the additional diagnostic value of CNV-seq over conventional karyotyping on the part of chromosomal abnormalities in prenatal diagnosis. METHOD This was a systematic review conducted in accordance with PRISMA criteria. In order to clarify related research, PubMed, Web of Science databases (including Core Collection, BIOSIS Previews, MEDLINE, and so on), The Cochrane Library and Wiley Online Library were searched with the terms: "prenatal diagnosis," "CNV-seq," "karyotyping," published from January 2010 to May 2022. No language restrictions. RenMan 5.4 was used for the meta-analysis. RESULTS Eight studies were included in this systemic review and meta-analysis, including 11 091 pregnant women with high-risk pregnancy factors or with structurally abnormal fetus under ultrasound. CNV-seq detected a 2% (95% CI, -0% to 4%) additional chromosomal anomalies over conventional karyotyping in the six series. A 4% (95% CI, 3%-6%) pooled mean incremental yield of pathogenic CNVs by CNV-seq over karyotyping was observed, with a 1%-16% range. CONCLUSION CNV-seq, applied in prenatal diagnosis, may detect more chromosomal abnormalities when compared with karyotyping. With the advantages of wide coverage, high throughput, high resolution, no culture, good compatibility, and adjustable sequencing depth, CNV-seq has high application value in prenatal diagnosis.
Collapse
Affiliation(s)
- Heng Luo
- Medical College of Yangzhou University, Yangzhou, China
| | - Qian Wang
- Department of Obstetrics, Clinical Medical School of Yangzhou University, Yangzhou, China
| | - Dan Fu
- Department of Prenatal Diagnosis, Clinical Medical School of Yangzhou University, Yangzhou, China
| | - Jun Gao
- Department of Obstetrics, Clinical Medical School of Yangzhou University, Yangzhou, China
| | - Dan Lu
- Department of Obstetrics, Clinical Medical School of Yangzhou University, Yangzhou, China
| |
Collapse
|
7
|
Pânzaru MC, Popa S, Lupu A, Gavrilovici C, Lupu VV, Gorduza EV. Genetic heterogeneity in corpus callosum agenesis. Front Genet 2022; 13:958570. [PMID: 36246626 PMCID: PMC9562966 DOI: 10.3389/fgene.2022.958570] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/05/2022] [Indexed: 11/18/2022] Open
Abstract
The corpus callosum is the largest white matter structure connecting the two cerebral hemispheres. Agenesis of the corpus callosum (ACC), complete or partial, is one of the most common cerebral malformations in humans with a reported incidence ranging between 1.8 per 10,000 livebirths to 230–600 per 10,000 in children and its presence is associated with neurodevelopmental disability. ACC may occur as an isolated anomaly or as a component of a complex disorder, caused by genetic changes, teratogenic exposures or vascular factors. Genetic causes are complex and include complete or partial chromosomal anomalies, autosomal dominant, autosomal recessive or X-linked monogenic disorders, which can be either de novo or inherited. The extreme genetic heterogeneity, illustrated by the large number of syndromes associated with ACC, highlight the underlying complexity of corpus callosum development. ACC is associated with a wide spectrum of clinical manifestations ranging from asymptomatic to neonatal death. The most common features are epilepsy, motor impairment and intellectual disability. The understanding of the genetic heterogeneity of ACC may be essential for the diagnosis, developing early intervention strategies, and informed family planning. This review summarizes our current understanding of the genetic heterogeneity in ACC and discusses latest discoveries.
Collapse
Affiliation(s)
- Monica-Cristina Pânzaru
- Department of Medical Genetics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Setalia Popa
- Department of Medical Genetics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
- *Correspondence: Setalia Popa, ; Vasile Valeriu Lupu,
| | - Ancuta Lupu
- Department of Pediatrics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Cristina Gavrilovici
- Department of Pediatrics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Vasile Valeriu Lupu
- Department of Pediatrics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
- *Correspondence: Setalia Popa, ; Vasile Valeriu Lupu,
| | - Eusebiu Vlad Gorduza
- Department of Medical Genetics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| |
Collapse
|
8
|
Yu QX, Jing XY, Lin XM, Zhen L, Li DZ. Prenatal diagnosis of Coffin-Siris syndrome: WHAT ARE THE FETAL FEATURES? Prenat Diagn 2022; 42:1488-1492. [PMID: 35801292 DOI: 10.1002/pd.6213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/28/2022] [Accepted: 07/05/2022] [Indexed: 11/05/2022]
Abstract
OBJECTIVE To present both our center's and previously reported experience of prenatal diagnosis of Coffin-Siris syndrome (CSS) with regard to the laboratory testing and fetal features of this syndrome. METHODS This was a retrospective study of eight pregnancies with fetal CSS identified by prenatal or postnatal genetic testing. Clinical and laboratory data were collected and reviewed for these cases, including maternal demographics, prenatal sonographic findings, chromosomal microarray and exome sequencing (ES) results, and pregnancy outcomes. RESULTS A total of eight cases of fetal CSS based on molecular testing were detected. Two cases presented with an increased nuchal translucency (NT) in the first trimester. The remaining six were identified at the second trimester scan. Agenesis of the corpus callosum (ACC) was the most common sonographic finding, accounting for 5/7 (71.4%) cases in which a second trimester sonogram was performed: four had ACC as an isolated finding, and one had additional features of cerebellar hypoplasia and left congenital diaphragmatic hernia. CONCLUSION CSS should be included in the differential diagnosis when ACC is found by prenatal ultrasound. Both chromosomal microarray and ES should be options when counseling patients with a structurally anomalous fetus. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Qiu-Xia Yu
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center affiliated to Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiang-Yi Jing
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center affiliated to Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiao-Mei Lin
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center affiliated to Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Li Zhen
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center affiliated to Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Dong-Zhi Li
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center affiliated to Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
9
|
Mastromoro G, Guadagnolo D, Khaleghi Hashemian N, Marchionni E, Traversa A, Pizzuti A. Molecular Approaches in Fetal Malformations, Dynamic Anomalies and Soft Markers: Diagnostic Rates and Challenges-Systematic Review of the Literature and Meta-Analysis. Diagnostics (Basel) 2022; 12:575. [PMID: 35328129 PMCID: PMC8947110 DOI: 10.3390/diagnostics12030575] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/11/2022] [Accepted: 02/21/2022] [Indexed: 02/06/2023] Open
Abstract
Fetal malformations occur in 2-3% of pregnancies. They require invasive procedures for cytogenetics and molecular testing. "Structural anomalies" include non-transient anatomic alterations. "Soft markers" are often transient minor ultrasound findings. Anomalies not fitting these definitions are categorized as "dynamic". This meta-analysis aims to evaluate the diagnostic yield and the rates of variants of uncertain significance (VUSs) in fetuses undergoing molecular testing (chromosomal microarray (CMA), exome sequencing (ES), genome sequencing (WGS)) due to ultrasound findings. The CMA diagnostic yield was 2.15% in single soft markers (vs. 0.79% baseline risk), 3.44% in multiple soft markers, 3.66% in single structural anomalies and 8.57% in multiple structural anomalies. Rates for specific subcategories vary significantly. ES showed a diagnostic rate of 19.47%, reaching 27.47% in multiple structural anomalies. WGS data did not allow meta-analysis. In fetal structural anomalies, CMA is a first-tier test, but should be integrated with karyotype and parental segregations. In this class of fetuses, ES presents a very high incremental yield, with a significant VUSs burden, so we encourage its use in selected cases. Soft markers present heterogeneous CMA results from each other, some of them with risks comparable to structural anomalies, and would benefit from molecular analysis. The diagnostic rate of multiple soft markers poses a solid indication to CMA.
Collapse
Affiliation(s)
- Gioia Mastromoro
- Department of Experimental Medicine, Policlinico Umberto I Hospital, Sapienza University of Rome, 00161 Rome, Italy; (D.G.); (N.K.H.); (E.M.); (A.T.); (A.P.)
| | | | | | | | | | | |
Collapse
|
10
|
She Q, Tang E, Peng C, Wang L, Wang D, Tan W. Prenatal genetic testing in 19 fetuses with corpus callosum abnormality. J Clin Lab Anal 2021; 35:e23971. [PMID: 34569664 PMCID: PMC8605137 DOI: 10.1002/jcla.23971] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/02/2021] [Accepted: 07/29/2021] [Indexed: 11/30/2022] Open
Abstract
Background Corpus callosum abnormality (CCA) can lead to epilepsy, moderate severe neurologic or mental retardation. The prognosis of CCA is closely related to genetic etiology. However, copy number variations (CNVs) associated with fetal CCA are still limited and need to be further identified. Only a few scattered cases have been reported to diagnose CCA by whole exome sequencing (WES). Methods Karyotyping analysis, copy number variation sequencing (CNV‐seq), chromosomal microarray analysis (CMA) and WES were parallelly performed for prenatal diagnosis of 19 CCA cases. Results The total detection rate of karyotyping analysis, CMA (or CNV‐seq) and WES were 15.79% (3/19), 21.05% (4/19) and 40.00% (2/5), respectively. Two cases (case 11 and case 15) were diagnosed as aneuploidy (47, XY, + 13 and 47, XX, + 21) by karyotyping analysis and CNV‐seq. Karyotyping analysis revealed an unknown origin fragment (46,XY,add(13)(p11.2)) in case 3, which was further confirmed to originate from p13.3p11.2 of chromosome 17 by CNV‐seq. CMA revealed arr1q43q44 (238923617–246964774) × 1(8.04 Mb) in case 8 with a negative result of chromosome karyotype. WES revealed that 2 of 5 cases with negative results of karyotyping and CNV‐seq or CMA carried pathogenic genes ALDH7A1 and ARID1B. Conclusion Parallel genetic tests showed that CNV‐seq and CMA are able to identify additional, clinically significant cytogenetic information of CCA compared to karyotyping; WES significantly improves the detection rate of genetic etiology of CCA. For the patients with a negative results of CNV‐seq or CMA, further WES test is recommended.
Collapse
Affiliation(s)
- Qin She
- Prenatal Diagnostic Center, The Six Affiliated Hospital, Guangzhou Medical University or Qingyuan People's Hospital, Qingyuan, China
| | - Erfang Tang
- Prenatal Diagnostic Center, The Six Affiliated Hospital, Guangzhou Medical University or Qingyuan People's Hospital, Qingyuan, China
| | - Cui Peng
- Prenatal Diagnostic Center, The Six Affiliated Hospital, Guangzhou Medical University or Qingyuan People's Hospital, Qingyuan, China
| | - Li Wang
- Prenatal Diagnostic Center, The Six Affiliated Hospital, Guangzhou Medical University or Qingyuan People's Hospital, Qingyuan, China
| | - Dandan Wang
- Prenatal Diagnostic Center, The Six Affiliated Hospital, Guangzhou Medical University or Qingyuan People's Hospital, Qingyuan, China
| | - Weihe Tan
- Prenatal Diagnostic Center, The Six Affiliated Hospital, Guangzhou Medical University or Qingyuan People's Hospital, Qingyuan, China
| |
Collapse
|