1
|
Dash MK, Samal S, Rout S, Behera CK, Sahu MC, Das B. Immunomodulation in dengue: towards deciphering dengue severity markers. Cell Commun Signal 2024; 22:451. [PMID: 39327552 PMCID: PMC11425918 DOI: 10.1186/s12964-024-01779-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 08/06/2024] [Indexed: 09/28/2024] Open
Abstract
BACKGROUND Dengue is a vector-borne debilitating disease that is manifested as mild dengue fever, dengue with warning signs, and severe dengue. Dengue infection provokes a collective immune response; in particular, the innate immune response plays a key role in primary infection and adaptive immunity during secondary infection. In this review, we comprehensively walk through the various markers of immune response against dengue pathogenesis and outcome. MAIN BODY Innate immune response against dengue involves a collective response through the expression of proinflammatory cytokines, such as tumor necrosis factors (TNFs), interferons (IFNs), and interleukins (ILs), in addition to anti-inflammatory cytokines and toll-like receptors (TLRs) in modulating viral pathogenesis. Monocytes, dendritic cells (DCs), and mast cells are the primary innate immune cells initially infected by DENV. Such immune cells modulate the expression of various markers, which can influence disease severity by aiding virus entry and proinflammatory responses. Adaptive immune response is mainly aided by B and T lymphocytes, which stimulate the formation of germinal centers for plasmablast development and antibody production. Such antibodies are serotype-dependent and can aid in virus entry during secondary infection, mediated through a different serotype, such as in antibody-dependent enhancement (ADE), leading to DENV severity. The entire immunological repertoire is exhibited differently depending on the immune status of the individual. SHORT CONCLUSION Dengue fever through severe dengue proceeds along with the modulated expression of several immune markers. In particular, TLR2, TNF-α, IFN-I, IL-6, IL-8, IL-17 and IL-10, in addition to intermediate monocytes (CD14+CD16+) and Th17 (CD4+IL-17+) cells are highly expressed during severe dengue. Such markers could assist greatly in severity assessment, prompt diagnosis, and treatment.
Collapse
Affiliation(s)
- Manoj Kumar Dash
- School of Biotechnology, Kalinga Institute of Industrial Technology, Deemed to Be University, Bhubaneswar, Odisha, 751024, India
| | - Sagnika Samal
- School of Biotechnology, Kalinga Institute of Industrial Technology, Deemed to Be University, Bhubaneswar, Odisha, 751024, India
| | - Shailesh Rout
- School of Biotechnology, Kalinga Institute of Industrial Technology, Deemed to Be University, Bhubaneswar, Odisha, 751024, India
| | - Chinmay Kumar Behera
- Department of Pediatrics, Kalinga Institute of Medical Sciences, Deemed to Be University, Bhubaneswar, Odisha, 751024, India
| | | | - Biswadeep Das
- School of Biotechnology, Kalinga Institute of Industrial Technology, Deemed to Be University, Bhubaneswar, Odisha, 751024, India.
| |
Collapse
|
2
|
Silveira CGT, Magnani DM, Costa PR, Avelino-Silva VI, Ricciardi MJ, Timenetsky MDCST, Goulart R, Correia CA, Marmorato MP, Ferrari L, Nakagawa ZB, Tomiyama C, Tomiyama H, Kalil J, Palacios R, Precioso AR, Watkins DI, Kallás EG. Plasmablast Expansion Following the Tetravalent, Live-Attenuated Dengue Vaccine Butantan-DV in DENV-Naïve and DENV-Exposed Individuals in a Brazilian Cohort. Front Immunol 2022; 13:908398. [PMID: 35837409 PMCID: PMC9274664 DOI: 10.3389/fimmu.2022.908398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/31/2022] [Indexed: 11/30/2022] Open
Abstract
An effective vaccine against the dengue virus (DENV) should induce a balanced, long-lasting antibody (Ab) response against all four viral serotypes. The burst of plasmablasts in the peripheral blood after vaccination may reflect enriched vaccine-specific Ab secreting cells. Here we characterize the acute plasmablast responses from naïve and DENV-exposed individuals following immunization with the live attenuated tetravalent (LAT) Butantan DENV vaccine (Butantan-DV). The frequency of circulating plasmablasts was determined by flow cytometric analysis of fresh whole blood specimens collected from 40 participants enrolled in the Phase II Butantan-DV clinical trial (NCT01696422) before and after (days 6, 12, 15 and 22) vaccination. We observed a peak in the number of circulating plasmablast at day 15 after vaccination in both the DENV naïve and the DENV-exposed vaccinees. DENV-exposed vaccinees experienced a significantly higher plasmablast expansion. In the DENV-naïve vaccinees, plasmablasts persisted for approximately three weeks longer than among DENV-exposed volunteers. Our findings indicate that the Butantan-DV can induce plasmablast responses in both DENV-naïve and DENV-exposed individuals and demonstrate the influence of pre-existing DENV immunity on Butantan DV-induced B-cell responses.
Collapse
Affiliation(s)
- Cássia G. T. Silveira
- Division of Clinical Immunology and Allergy, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Diogo M. Magnani
- Department of Pathology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Priscilla R. Costa
- Division of Clinical Immunology and Allergy, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Vivian I. Avelino-Silva
- Department of Infectious and Parasitic Diseases, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Michael J. Ricciardi
- Department of Pathology, University of Miami Miller School of Medicine, Miami, FL, United States
| | | | - Raphaella Goulart
- Division of Clinical Immunology and Allergy, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Carolina A. Correia
- Division of Clinical Immunology and Allergy, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Mariana P. Marmorato
- Division of Clinical Immunology and Allergy, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Lilian Ferrari
- Division of Clinical Immunology and Allergy, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Zelinda B. Nakagawa
- Division of Clinical Immunology and Allergy, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Claudia Tomiyama
- Division of Clinical Immunology and Allergy, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Helena Tomiyama
- Division of Clinical Immunology and Allergy, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Jorge Kalil
- Division of Clinical Immunology and Allergy, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Ricardo Palacios
- Division of Clinical Trials and Pharmacovigilance, Instituto Butantan, São Paulo, Brazil
| | - Alexander R. Precioso
- Division of Clinical Trials and Pharmacovigilance, Instituto Butantan, São Paulo, Brazil
- Pediatrics Department, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - David I. Watkins
- Department of Pathology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Esper G. Kallás
- Division of Clinical Immunology and Allergy, School of Medicine, University of São Paulo, São Paulo, Brazil
- Department of Infectious and Parasitic Diseases, School of Medicine, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
3
|
Lei C, Yu Q, Wang H, Liu J, Chen S, Zhao Z, Qiu L. Responses of CD27 + CD38 + plasmablasts, and CD24 hi CD27 hi and CD24 hi CD38 hi regulatory B cells during primary dengue virus 2 infection. J Clin Lab Anal 2021; 35:e24035. [PMID: 34606646 PMCID: PMC8605120 DOI: 10.1002/jcla.24035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/14/2021] [Accepted: 09/20/2021] [Indexed: 11/11/2022] Open
Abstract
Background Humoral immunity is thought to play a central role in mediating the immunopathogenesis of dengue virus (DENV) infection; however, the B‐cell responses elicited by primary DENV2 infection are incompletely understood. Follicular helper T cells (Tfh) are important to promote B‐cell activation and differentiation. Methods The present study analyzed the detailed dynamic changes of circulating B‐cell subsets and Tfh (cTfh) using flow cytometry to explore their responses to DENV2 infection. Results Thirty‐six patients with DENV2 and 21 healthy individuals were included. The results showed that CD27+CD38+ plasmablasts emerged after DENV2 infection, and correlated with CXCR5+PD‐1+ or CXCR5+ICOS+PD‐1+ cTfh, which increased after DENV2 infection, and correlated with DENV2 RNA viral loads. Significantly low levels of CD27− naïve B cells, and CD24hiCD27hi and CD24hiCD38hi regulatory B cells (Breg) were observed after DENV2 infection, which correlated negatively with CXCR5+PD‐1+ or CXCR5+ICOS+PD‐1+ cTfh cells. Conclusion Overall, these results provide insights into the DENV2‐elicited B‐cell response and revealed previously unidentified CD24hiCD27hi and CD24hiCD38hi Breg responses to DENV2 infection.
Collapse
Affiliation(s)
- Chenshuang Lei
- Department of Clinical Laboratory, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qinhua Yu
- Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Hong Wang
- Department of infection, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - JieJing Liu
- Department of Clinical Laboratory, Wenzhou Medical University, Wenzhou, China
| | - Sufeng Chen
- Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Zhao Zhao
- Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Liannv Qiu
- Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| |
Collapse
|