1
|
Panda CR, Kumari S, Mangaraj M, Nayak S. The Evaluation of the Quality Performance of Biochemical Analytes in Clinical Biochemistry Laboratory Using Six Sigma Matrices. Cureus 2023; 15:e51386. [PMID: 38292960 PMCID: PMC10826247 DOI: 10.7759/cureus.51386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/31/2023] [Indexed: 02/01/2024] Open
Abstract
Introduction This study was conducted to assess the analytical performance of biochemical tests using Six Sigma methodology and to assess the underlying causes of unsatisfied performance of analytes with a sigma value of less than 4 using quality goal index (QGI) and root cause analysis (RCA). Methodology Daily data for internal quality control (IQC) for both level 1 (L1) and level 2 (L2) and monthly data for external quality assessment for a period of six months were recorded. The coefficient of variation (CV), bias, and total allowable error (TEa) were calculated to analyze the sigma (σ) values for 19 biochemical analytes. Quality goal index (QGI) analysis was done to analyze impressions and inaccuracies in analyte performance having a sigma value of less than 4. Root cause analysis (RCA) was done to evaluate the possible causes that can improve quality performance. Results Creatinine and high-density lipoprotein (HDL) had sigma metrics of ≤2.0, and chloride, aspartate aminotransferase (AST), and alkaline phosphatase (ALP) had sigma values between 2 and 3. Glucose, total protein (TP), phosphate (Phos), and potassium had sigma values between 4 and 5 in level 1 QC. Sigma grading for level 2 quality control (QC) also gave similar results. For analytes with σ < 4, QGI analysis exposed inaccuracy or imprecision issues and identified errors such as the reconstitution of IQC, storage temperature, and air bubbles while processing the QC, being common causes of poor performance. Conclusion Six Sigma approach is helpful for quality assurance and identifying areas for improvement. Assessing Six Sigma metrics should be a routine practice to decide the frequency of QC run and to detect errors in analysis.
Collapse
Affiliation(s)
- Chhabi R Panda
- Biochemistry, All India Institute of Medical Sciences, Bhubaneswar, IND
| | - Suchitra Kumari
- Biochemistry, All India Institute of Medical Sciences, Bhubaneswar, IND
| | | | - Saurav Nayak
- Biochemistry, All India Institute of Medical Sciences, Bhubaneswar, IND
| |
Collapse
|
2
|
Application of a six sigma model to evaluate the analytical performance of cerebrospinal fluid biochemical analytes and the design of quality control strategies for these assays: A single-centre study. Clin Biochem 2023; 114:73-78. [PMID: 36796711 DOI: 10.1016/j.clinbiochem.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/05/2023] [Accepted: 02/11/2023] [Indexed: 02/16/2023]
Abstract
BACKGROUND In this study, we applied a six sigma model to examine cerebrospinal fluid (CSF) biochemical analytes for the first time. Our goal was to evaluate the analytical performance of various CSF biochemical analytes, design an optimized internal quality control (IQC) strategy, and formulate scientific and reasonable improvement plans. METHODS The sigma values of CSF total protein (CSF-TP), albumin (CSF-ALB), chloride (CSF-Cl), and glucose (CSF-GLU) were calculated using the following formula: sigma = [TEa(%)-|bias(%)|]/CV(%). The analytical performance of each analyte was shown using a normalized sigma method decision chart. Individualized IQC schemes and improvement protocols for CSF biochemical analytes were formulated using the Westgard sigma rule flow chart with batch size and quality goal index (QGI). RESULTS The distribution of sigma values for CSF biochemical analytes ranged from 5.0 to 9.9, and the sigma values varied for different concentrations of the same analyte. The analytical performance of the CSF assays at the two QC levels is displayed visually in normalized sigma method decision charts. Individualized IQC strategies for CSF biochemical analytes were as follows: for CSF-ALB, CSF-TP and CSF-Cl, use 13s with N = 2 and R = 1000; for CSF-GLU, use 13s/22s/R4s with N = 2 and R = 450. In addition, priority improvement measures for analytes with sigma values less than 6 (CSF-GLU) were formulated based on the QGI, and their analytical performance was improved after the corresponding improvement measures were taken. CONCLUSIONS The six sigma model has significant advantages in practical applications involving CSF biochemical analytes and is highly useful for quality assurance and quality improvement.
Collapse
|
3
|
Luo Y, Yan X, Xiao Q, Long Y, Pu J, Li Q, Cai Y, Chen Y, Zhang H, Chen C, Ou S. Application of Sigma metrics in the quality control strategies of immunology and protein analytes. J Clin Lab Anal 2021; 35:e24041. [PMID: 34606652 PMCID: PMC8605144 DOI: 10.1002/jcla.24041] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 12/19/2022] Open
Abstract
Background Six Sigma (6σ) is an efficient laboratory management method. We aimed to analyze the performance of immunology and protein analytes in terms of Six Sigma. Methods Assays were evaluated for these 10 immunology and protein analytes: Immunoglobulin G (IgG), Immunoglobulin A (IgA), Immunoglobulin M (IgM), Complement 3 (C3), Complement 4 (C4), Prealbumin (PA), Rheumatoid factor (RF), Anti streptolysin O (ASO), C‐reactive protein (CRP), and Cystatin C (Cys C). The Sigma values were evaluated based on bias, four different allowable total error (TEa) and coefficient of variation (CV) at QC materials levels 1 and 2 in 2020. Sigma Method Decision Charts were established. Improvement measures of analytes with poor performance were recommended according to the quality goal index (QGI), and appropriate quality control rules were given according to the Sigma values. Results While using the TEaNCCL, 90% analytes had a world‐class performance with σ>6, Cys C showed marginal performance with σ<4. While using minimum, desirable, and optimal biological variation of TEa, only three (IgG, IgM, and CRP), one (CRP), and one (CRP) analytes reached 6σ level, respectively. Based on σNCCL that is calculated from TEaNCCL, Sigma Method Decision Charts were constructed. For Cys C, five multi‐rules (13s/22s/R4s/41s/6X, N = 6, R = 1, Batch length: 45) were adopted for QC management. The remaining analytes required only one QC rule (13s, N = 2, R = 1, Batch length: 1000). Cys C need to improve precision (QGI = 0.12). Conclusions The laboratories should choose appropriate TEa goals and make judicious use of Sigma metrics as a quality improvement tool.
Collapse
Affiliation(s)
- Yanfen Luo
- Department of Medicine Laboratory, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Medicine Laboratory, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Xingxing Yan
- Department of Medicine Laboratory, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Medicine Laboratory, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Qian Xiao
- Department of Medicine Laboratory, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Medicine Laboratory, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Yifei Long
- Department of Medicine Laboratory, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Medicine Laboratory, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Jieying Pu
- Department of Medicine Laboratory, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Medicine Laboratory, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Qiwei Li
- Department of Medicine Laboratory, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Medicine Laboratory, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Yimei Cai
- Department of Medicine Laboratory, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Medicine Laboratory, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Yushun Chen
- Department of Medicine Laboratory, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Medicine Laboratory, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Hongyuan Zhang
- Department of Medicine Laboratory, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Medicine Laboratory, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Cha Chen
- Department of Medicine Laboratory, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Medicine Laboratory, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Songbang Ou
- Reproductive center, Department of Obstetrics and Gynecology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|