1
|
Albrecht CJ, Stumpf FM, Krüger L, Niedermeier ML, Stengel F, Marx A. Chemical proteomics reveals interactors of the alarmone diadenosine triphosphate in the cancer cell line H1299. J Pept Sci 2023; 29:e3458. [PMID: 36264037 DOI: 10.1002/psc.3458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/16/2022] [Indexed: 11/11/2022]
Abstract
Intracellular dinucleoside polyphosphates (Npn Ns) have been known for decades but the functional role remains enigmatic. Diadenosine triphosphate (Ap3 A) is one of the most prominent examples, and its intercellular concentration was shown to increase upon cellular stress. By employment of previously reported Ap3 A-based photoaffinity-labeling probes (PALPs) in chemical proteomics, we investigated the Ap3 A interactome in the human lung carcinoma cell line H1299. The cell line is deficient of the fragile histidine triade (Fhit) protein, a hydrolase of Ap3 A and tumor suppressor. Overall, the number of identified potential interaction partners was significantly lower than in the previously investigated HEK293T cell line. Gene ontology term analysis revealed that the identified proteins participate in similar pathways as for HEK293T, but the percentage of proteins involved in RNA-related processes is higher for H1299. The obtained results highlight similarities and differences of the Ap3 A interaction network in different cell lines and give further indications regarding the importance of the presence of Fhit.
Collapse
Affiliation(s)
- Christoph J Albrecht
- Department of Chemistry, University of Konstanz, Konstanz, Germany.,Konstanz Research School-Chemical Biology, University of Konstanz, Konstanz, Germany
| | - Florian M Stumpf
- Department of Chemistry, University of Konstanz, Konstanz, Germany.,Konstanz Research School-Chemical Biology, University of Konstanz, Konstanz, Germany
| | - Lena Krüger
- Department of Chemistry, University of Konstanz, Konstanz, Germany.,Konstanz Research School-Chemical Biology, University of Konstanz, Konstanz, Germany
| | - Marie L Niedermeier
- Konstanz Research School-Chemical Biology, University of Konstanz, Konstanz, Germany.,Department of Biology, University of Konstanz, Konstanz, Germany
| | - Florian Stengel
- Konstanz Research School-Chemical Biology, University of Konstanz, Konstanz, Germany.,Department of Biology, University of Konstanz, Konstanz, Germany
| | - Andreas Marx
- Department of Chemistry, University of Konstanz, Konstanz, Germany.,Konstanz Research School-Chemical Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
2
|
Herzog D, Jansen J, Mißun M, Diederichs K, Stengel F, Marx A. Chemical Proteomics of the Tumor Suppressor Fhit Covalently Bound to the Cofactor Ap 3A Elucidates Its Inhibitory Action on Translation. J Am Chem Soc 2022; 144:8613-8623. [PMID: 35522782 PMCID: PMC9121386 DOI: 10.1021/jacs.2c00815] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The tumor suppressor protein fragile histidine triad (Fhit) is known to be associated with genomic instability and apoptosis. The tumor-suppressive function of Fhit depends on the interaction with the alarmone diadenosine triphosphate (Ap3A), a noncanonical nucleotide whose concentration increases upon cellular stress. How the Fhit-Ap3A complex exerts its signaling function is unknown. Here, guided by a chemical proteomics approach employing a synthetic stable Fhit-Ap3A complex, we found that the Fhit-Ap3A complex, but not Fhit or Ap3A alone, impedes translation. Our findings provide a mechanistic model in which Fhit translocates from the nucleolus into the cytosol upon stress to form an Fhit-Ap3A complex. The Fhit-Ap3A complex impedes translation both in vitro and in vivo, resulting in reduced cell viability. Overall, our findings provide a mechanistic model by which the tumor suppressor Fhit collaborates with the alarmone Ap3A to regulate cellular proliferation.
Collapse
|
3
|
Formation of the Alarmones Diadenosine Triphosphate and Tetraphosphate by Ubiquitin- and Ubiquitin-like-Activating Enzymes. Cell Chem Biol 2019; 26:1535-1543.e5. [PMID: 31492597 DOI: 10.1016/j.chembiol.2019.08.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/19/2019] [Accepted: 08/08/2019] [Indexed: 01/14/2023]
Abstract
Diadenosine polyphosphates (ApnAs) such as diadenosine tri- and tetraphosphates are formed in prokaryotic as well as eukaryotic cells. Since upon stress intracellular ApnA concentrations increase, it was postulated that ApnAs are alarmones triggering stress-adaptive processes. The major synthesis pathway of ApnAs is assumed to be a side reaction of amino acid activation. How this process is linked to stress adaptation remains enigmatic. The first step of one of the most prominent eukaryotic post-translational modification systems-the conjugation of ubiquitin (Ub) and ubiquitin-like proteins (Ubl) to target proteins-involves the formation of an adenylate as intermediate. Like ApnA formation, Ub and Ubl conjugation is significantly enhanced during stress conditions. Here, we demonstrate that diadenosine tri- and tetraphosphates are indeed synthesized during activation of Ub and Ubls. This links one of the most prevalent eukaryotic protein-modification systems to ApnA formation for the first time.
Collapse
|
4
|
Boylston JA, Brenner C. A knockdown with smoke model reveals FHIT as a repressor of Heme oxygenase 1. Cell Cycle 2015; 13:2913-30. [PMID: 25486479 DOI: 10.4161/15384101.2014.946858] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Fragile histidine triad (FHIT) gene deletions are among the earliest and most frequent events in carcinogenesis, particularly in carcinogen-exposed tissues. Though FHIT has been established as an authentic tumor suppressor, the mechanism underlying tumor suppression remains opaque. Most experiments designed to clarify FHIT function have analyzed the consequence of re-expressing FHIT in FHIT-negative cells. However, carcinogenesis occurs in cells that transition from FHIT-positive to FHIT-negative. To better understand cancer development, we induced FHIT loss in human bronchial epithelial cells with RNA interference. Because FHIT is a demonstrated target of carcinogens in cigarette smoke, we combined FHIT silencing with cigarette smoke extract (CSE) exposure and measured gene expression consequences by RNA microarray. The data indicate that FHIT loss enhances the expression of a set of oxidative stress response genes after exposure to CSE, including the cytoprotective enzyme heme oxygenase 1 (HMOX1) at the RNA and protein levels. Data are consistent with a mechanism in which Fhit protein is required for accumulation of the transcriptional repressor of HMOX1, Bach1 protein. We posit that by allowing superinduction of oxidative stress response genes, loss of FHIT creates a survival advantage that promotes carcinogenesis.
Collapse
Key Words
- ARE, antioxidant response element
- ApppA, diadenosine triphosphate
- BACH1
- BACH1, BTB and CNC homology 1 gene
- BMC, bone marrow cell
- CPT, camptothecin
- CSE, cigarette smoke extract
- Cigarette smoke
- FHIT
- FHIT, fragile histidine triad gene
- HMOX1
- HMOX1, heme oxygenase 1 gene
- MMC, mitomycin C
- NRF2
- Nrf2, nuclear factor erythroid derived 2-like 2 protein
- Oxidative Stress
- RNAi, RNA interference
- ROS, reactive oxygen species
- qRT-PCR, quantitative real time PCR
- siRNA, short interfering RNA
Collapse
Affiliation(s)
- Jennifer A Boylston
- a Department of Biochemistry and Program in Molecular and Cellular Biology; Carver College of Medicine ; University of Iowa ; Iowa City , IA USA
| | | |
Collapse
|
5
|
Inactivation of both FHIT and p53 cooperate in deregulating proliferation-related pathways in lung cancer. J Thorac Oncol 2012; 7:631-42. [PMID: 22425911 DOI: 10.1097/jto.0b013e318244aed0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
INTRODUCTION FHIT and p53 are the two most commonly altered tumor suppressor genes in lung cancer, and their molecular status regulates sensitivity to anticancer drugs. Although their functions are independent, there is evidence that their pathways might be interconnected, but little is known at the molecular level. METHODS Microarray profiling of FHIT-transduced lung cancer cells and modulation of FHIT levels by RNA interference in human bronchial cells were used to generate a signature of FHIT-regulated transcripts. Expression of these genes was evaluated by real-time polymerase chain reaction in 55 primary lung cancer samples characterized for FHIT and p53 expression by immunehistochemistry. RESULTS A signature of FHIT-transcripts, particularly enriched in genes involved in cell cycle control, was identified. This signature showed overlap with p53-regulated genes, indicating possible crosstalk between these proteins. Consistently, transcriptional deregulation after FHIT modulation was higher in p53-negative cells. In primary lung cancers, inactivation of either gene was detected in 48 of 55 cases (87%) and both genes in 23 of 55 (42%) cases, confirming the central role of these pathways. Primary tumors with inactivation of both FHIT and p53 displayed the strongest deregulation of growth-related pathways with high levels of expression of CCNB1, BUB1, CDC6, TOP2A, MCM6, and CENPF. CONCLUSIONS FHIT and p53 seem to rely on common mediators, and inactivation of both genes results in prominent deregulation of growth-related pathways in lung cancer cell lines and primary tumors. This reveals crosstalk between these proteins and suggests a possible distinctive phenotype for tumors with inactivation of both genes.
Collapse
|
6
|
Romero I, Martinez M, Garrido C, Collado A, Algarra I, Garrido F, Garcia-Lora AM. The tumour suppressor Fhit positively regulates MHC class I expression on cancer cells. J Pathol 2012; 227:367-79. [PMID: 22451343 DOI: 10.1002/path.4029] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2011] [Revised: 03/12/2012] [Accepted: 03/20/2012] [Indexed: 12/12/2022]
Abstract
MHC class I (MHC-I) molecules are ubiquitously expressed on the cells of an organism. Study of the regulation of these molecules in normal and disease conditions is important. In tumour cells, the expression of MHC-I molecules is very frequently lost, allowing these cells to evade the immune response. Cancers of different histology have shown total loss of MHC-I molecule expression, due to a coordinated transcriptional down-regulation of various antigen-processing machinery (APM) components and/or MHC-I heavy chains. The mechanisms responsible for these alterations remain unclear. We determined the possible genes involved by comparing MHC-I-positive with MHC-I-negative murine metastases derived from the same fibrosarcoma tumour clone. MHC-I-negative metastases showed transcriptional down-regulation of APM and MHC-I heavy chains. The use of microarrays and subtraction cDNA libraries revealed four candidate genes responsible for this alteration, but two of them were ruled out by real-time RT-PCR analyses. The other two genes, AP-2α and Fhit tumour suppressors, were studied by using siRNA to silence their expression in a MHC-I-positive metastatic cell line. AP-2α inhibition did not modify transcriptional expression of APM components or MHC-I heavy chains or surface expression of MHC-I. In contrast, silencing of the Fhit gene produced the transcriptional down-regulation of APM components and MHC-I heavy chains and decreased MHC-I surface expression. Moreover, transfection of Fhit in MHC-I-negative tumour cell lines restored MHC-I cell surface expression. These data indicate that defects in Fhit expression may promote MHC-I down-regulation in cancer cells and allow escape from immunosurveillance(#).
Collapse
Affiliation(s)
- Irene Romero
- Servicio de Análisis Clínicos & Inmunología, Hospital Universitario Virgen de las Nieves, Granada, Spain
| | | | | | | | | | | | | |
Collapse
|
7
|
Abstract
In many types of cancers, the fragile histidine triad (Fhit) gene is frequently targeted by genomic alterations leading to a decrease or loss of gene and protein expression. Fhit has been described as a tumor suppressor gene because of its ability to induce apoptosis and to inhibit proliferation of tumor cells. Moreover, several studies have shown a correlation between the lack of Fhit expression and tumor aggressiveness, thus suggesting that Fhit could be involved in tumor progression. In this study, we explored the potential role of Fhit during tumor cell invasion. We first showed that a low Fhit expression is associated with in vivo and in vitro invasiveness of tumor cells. Then, we showed that Fhit overexpression in Fhit-negative highly invasive NCI-H1299 cells by transfection of Fhit cDNA and Fhit inhibition in Fhit-positive poorly invasive HBE4-E6/E7 cells by transfection of Fhit small interfering RNA induce, respectively, a decrease and an increase in migratory/invasive capacities. These changes in cell behavior were associated with a reorganization of tight and adherens junction molecules and a regulation of matrix metalloproteinase and vimentin expression. These results show that Fhit controls the invasive phenotype of lung tumor cells by regulating the expression of genes associated with epithelial-mesenchymal transition.
Collapse
|
8
|
Stec-Michalska K, Peczek L, Michalski B, Wisniewska-Jarosinska M, Krakowiak A, Nawrot B. Helicobacter pylori infection and family history of gastric cancer decrease expression of FHIT tumor suppressor gene in gastric mucosa of dyspeptic patients. Helicobacter 2009; 14:126-34. [PMID: 19751438 DOI: 10.1111/j.1523-5378.2009.00715.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND The expression of a fragile histidine triad (FHIT) protein is lost in stomach tumors. The study aimed at determining whether FHIT expression is affected by Helicobacter pylori infection, strain virulence (vacA and cagA genes) and histopathological changes in the gastric mucosa of patients with functional dyspepsia having first-degree relatives with gastric cancer. MATERIALS AND METHODS Eighty-eight never-smoking patients with functional dyspepsia were selected for the study, and 48 of them had first-degree relatives with gastric cancer. Bacterial DNA amplification was used to identify H. pylori colonization. The level of FHIT gene expression was determined by qRT-PCR (mRNA) and Western blot (FHIT protein) analyses. RESULTS For patients having first-degree relatives with gastric cancer FHIT expression was lower (mRNA by ca. 40-45% and protein by 30%) compared with the control patients (p < .05). H. pylori infection decreased the FHIT mRNA level by 10-35% and the protein level by 10-20%. Bacterial strain vacA(+)cagA(+) lowered FHIT mRNA by ca. 30-35% in the antrum samples of both groups and in corpus samples of patients with first-degree relatives with gastric cancer (p < .05). The FHIT mRNA level was twice as high in control H. pylori-negative patients with intestinal metaplasia, compared with those with non-atrophic gastritis. CONCLUSIONS The decreased FHIT gene expression associated with hereditary factors and with H. pylori infection, especially with vacA(+)cagA(+)-positive strains, may be related to gastric carcinoma development.
Collapse
Affiliation(s)
- Krystyna Stec-Michalska
- Department of Gastroenterology and Internal Diseases, Medical University of Lodz, Hallera 1, 90-647 Lodz, Poland.
| | | | | | | | | | | |
Collapse
|
9
|
Ferens B, Kawiak A, Banecki B, Bielawski KP, Zawacka-Pankau J. Aberration of the enzymatic activity of Fhit tumor suppressor protein enhances cancer cell death upon photodynamic therapy similarly to that driven by wild-type Fhit. Cancer Lett 2009; 280:101-9. [DOI: 10.1016/j.canlet.2009.02.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Revised: 02/05/2009] [Accepted: 02/09/2009] [Indexed: 11/29/2022]
|
10
|
Pichiorri F, Palumbo T, Suh SS, Okamura H, Trapasso F, Ishii H, Huebner K, Croce CM. Fhit tumor suppressor: guardian of the preneoplastic genome. Future Oncol 2009; 4:815-24. [PMID: 19086848 DOI: 10.2217/14796694.4.6.815] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Environmental agents induce intragenic alterations in the FRA3B/FHIT chromosome fragile site, resulting in fragile FHIT allele loss early in cancer development. Fhit knockout mice are predisposed to tumor development and Fhit gene therapy reduces tumor burden. Repair-deficient cancers are likely to be Fhit-deficient and Fhit-deficient cells show enhanced resistance to ultraviolet C, mitomycin C, camptothecin and oxidative stress-induced cell killing. Loss of Fhit leads to alterations in the DNA damage response checkpoint and contributes to DNA instability. Hsp60/Hsp10 are Fhit interactors, suggesting a direct role for Fhit in stress responses. Fhit also interacts with and stabilizes ferrodoxin reductase (Fdxr), a mitochondrial flavoprotein that transfers electrons from NADPH to cytochrome P450, suggesting a role for Fhit in the modulation of reactive oxygen species production and of genomic damage.
Collapse
Affiliation(s)
- Flavia Pichiorri
- Ohio State University Comprehensive Cancer Center, Department of Molecular Virology, Molecular Virology and Medical Genetics. 460 W 12th Avenue, 43210 Columbus, OH, USA
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Fisher DI, McLennan AG. Correlation of intracellular diadenosine triphosphate (Ap3A) with apoptosis in Fhit-positive HEK293 cells. Cancer Lett 2007; 259:186-91. [PMID: 18006149 DOI: 10.1016/j.canlet.2007.10.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2007] [Revised: 10/08/2007] [Accepted: 10/08/2007] [Indexed: 11/24/2022]
Abstract
The pro-apoptotic Fhit tumor suppressor protein binds and hydrolyses diadenosine triphosphate (Ap3A) and diadenosine tetraphosphate (Ap4A) in vitro. We have measured the level of both these nucleotides in Fhit-positive HEK293 cells exposed to various apoptosis inducers. Cold shock, anti-Fas, cadmium ions and etoposide all increased the basal level of Ap4A of 0.500pmol/10(6)cells by about 50%. However, the corresponding increases in Ap3A from a basal 0.079pmol/10(6)cells correlated closely with the degree of apoptosis produced, up to a maximum of 0.510pmol/10(6)cells with etoposide. These results support the view that Ap3A is the in vivo Fhit ligand and that an inhibition of Fhit activity is a key element in Fhit-mediated apoptosis.
Collapse
Affiliation(s)
- David I Fisher
- Cell Regulation and Signalling Group, School of Biological Sciences, University of Liverpool, Liverpool L69 7ZB, UK
| | | |
Collapse
|
12
|
Kujan O, Oliver R, Roz L, Sozzi G, Ribeiro N, Woodwards R, Thakker N, Sloan P. Fragile Histidine Triad Expression in Oral Squamous Cell Carcinoma and Precursor Lesions. Clin Cancer Res 2006; 12:6723-9. [PMID: 17121892 DOI: 10.1158/1078-0432.ccr-06-1475] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Fragile histidine triad (FHIT) expression in precursor oral lesions (POL) and oral squamous cell carcinomas (OSCC) was studied with regard to (a) the frequency of loss of FHIT expression, (b) whether loss of FHIT expression correlates with degree of dysplasia in POLs, (c) whether FHIT loss predicts high-risk POLs that are more likely to transform, and (d) whether FHIT loss in OSCCs correlates with survival. EXPERIMENTAL DESIGN Ninety-four POLs and 86 OSCCs were immunostained for FHIT. Survival analysis was done for cases with validated clinical outcomes. RESULTS By optimizing the immunostaining protocol, we found that FHIT is expressed in a distinctive strong nuclear and weak cytoplasmic pattern in oral tissues. Loss of FHIT expression was found in 42 of 94 (45%) POLs and in 66 of 86 (77%) OSCCs. We observed a statistically significant positive correlation between frequency of FHIT loss and increasing grade of dysplasia (chi2=13.8; degrees of freedom=4; P=0.008). Loss of FHIT expression in POLs that progressed to malignancy was more frequent than in those that did not [17 of 25 (68%) versus 12 of 29 (41.4%), respectively]. This difference was statistically significant (chi2=3.8; degrees of freedom=1; P=0.046). In OSCCs, loss of FHIT staining indicated a worse prognosis (survival rate, 36.2%) than when positive FHIT staining was observed (survival rate, 50%), but the difference was not statistically significant (P=0.546, Kaplan-Meier, log-rank). CONCLUSIONS FHIT seems to localize to both nuclear and cytoplasmic domains. FHIT inactivation occurs early in oral carcinogenesis and may be useful molecular marker for progressive dysplastic oral lesions.
Collapse
Affiliation(s)
- Omar Kujan
- School of Dentistry, The University of Manchester, North Manchester General Hospital, UK
| | | | | | | | | | | | | | | |
Collapse
|