1
|
Zhang XW, Yang CH, Xia XH, Pan XT, Jin ZY, Yu H, Zhang HW. A triple WAP domain containing protein acts in antibacterial immunity of weather loach, Misgurnus anguillicaudatus. FISH & SHELLFISH IMMUNOLOGY 2020; 103:277-284. [PMID: 32439510 DOI: 10.1016/j.fsi.2020.05.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/06/2020] [Accepted: 05/12/2020] [Indexed: 06/11/2023]
Abstract
Whey acidic protein domain (WAPD) occurs in a variety of proteins in animals and many of WAPD-containing proteins are involved in immunity. In the present study, a novel protein containing three WAPDs was identified from the weather loach, Misgurnus anguillicaudatus, designated as MaTWD. MaTWD share high identity with TWDs from fish but low identity with TWDs from other animal phyla. MaTWD transcripts mainly distributed in gills and head kidney responded to bacterial challenge with significant upregulation. In vitro assay with recombinant MaTWD protein revealed that MaTWD had antiprotease activity against bacterial proteases. Moreover, MaTWD exhibited bacterial binding capacity and antimicrobial activity. Most importantly, exogenous MaTWD protected loach against bacterial infection by reducing loach mortality. We infer that MaTWD participates in the antibacterial immunity of loach via its antiprotease and antimicrobial activities.
Collapse
Affiliation(s)
- Xiao-Wen Zhang
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Cong-Hui Yang
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Xiao-Hua Xia
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Xin-Tong Pan
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Ze-Yu Jin
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Hao Yu
- Department of Nature Resources, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, China
| | - Hong-Wei Zhang
- Department of Nature Resources, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, China.
| |
Collapse
|
2
|
Rubanov LI, Zaraisky AG, Shilovsky GA, Seliverstov AV, Zverkov OA, Lyubetsky VA. Screening for mouse genes lost in mammals with long lifespans. BioData Min 2019; 12:20. [PMID: 31728160 PMCID: PMC6842137 DOI: 10.1186/s13040-019-0208-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 10/25/2019] [Indexed: 12/23/2022] Open
Abstract
Background Gerontogenes include those that modulate life expectancy in various species and may be the actual longevity genes. We believe that a long (relative to body weight) lifespan in individual rodent and primate species can be due, among other things, to the loss of particular genes that are present in short-lived species of the same orders. These genes can also explain the widely different rates of aging among diverse species as well as why similarly sized rodents or primates sometimes have anomalous life expectancies (e.g., naked mole-rats and humans). Here, we consider the gene loss in the context of the prediction of Williams’ theory that concerns the reallocation of physiological resources of an organism between active reproduction (r-strategy) and self-maintenance (K-strategy). We have identified such lost genes using an original computer-aided approach; the software considers the loss of a gene as disruptions in gene orthology, local gene synteny or both. Results A method and software identifying the genes that are absent from a predefined set of species but present in another predefined set of species are suggested. Examples of such pairs of sets include long-lived vs short-lived, homeothermic vs poikilothermic, amniotic vs anamniotic, aquatic vs terrestrial, and neotenic vs nonneotenic species, among others. Species are included in one of two sets according to the property of interest, such as longevity or homeothermy. The program is universal towards these pairs, i.e., towards the underlying property, although the sets should include species with quality genome assemblies. Here, the proposed method was applied to study the longevity of Euarchontoglires species. It largely predicted genes that are highly expressed in the testis, epididymis, uterus, mammary glands, and the vomeronasal and other reproduction-related organs. This agrees with Williams’ theory that hypothesizes a species transition from r-strategy to K-strategy. For instance, the method predicts the mouse gene Smpd5, which has an expression level 20 times greater in the testis than in organs unrelated to reproduction as experimentally demonstrated elsewhere. At the same time, its paralog Smpd3 is not predicted by the program and is widely expressed in many organs not specifically related to reproduction. Conclusions The method and program, which were applied here to screen for gene losses that can accompany increased lifespan, were also applied to study reduced regenerative capacity and development of the telencephalon, neoteny, etc. Some of these results have been carefully tested experimentally. Therefore, we assume that the method is widely applicable.
Collapse
Affiliation(s)
- Lev I Rubanov
- 1Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute) IITP RAS, 19 build. 1 Bolshoy Karetny per., Moscow, 127051 Russia
| | - Andrey G Zaraisky
- 2Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences (IBCH RAS) 16/10, Miklukho-Maklaya str., Moscow, 117997 Russia
| | - Gregory A Shilovsky
- 1Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute) IITP RAS, 19 build. 1 Bolshoy Karetny per., Moscow, 127051 Russia
| | - Alexandr V Seliverstov
- 1Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute) IITP RAS, 19 build. 1 Bolshoy Karetny per., Moscow, 127051 Russia
| | - Oleg A Zverkov
- 1Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute) IITP RAS, 19 build. 1 Bolshoy Karetny per., Moscow, 127051 Russia
| | - Vassily A Lyubetsky
- 1Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute) IITP RAS, 19 build. 1 Bolshoy Karetny per., Moscow, 127051 Russia
| |
Collapse
|
3
|
Ryskaliyeva A, Henry C, Miranda G, Faye B, Konuspayeva G, Martin P. The main WAP isoform usually found in camel milk arises from the usage of an improbable intron cryptic splice site in the precursor to mRNA in which a GC-AG intron occurs. BMC Genet 2019; 20:14. [PMID: 30696406 PMCID: PMC6350295 DOI: 10.1186/s12863-018-0704-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 11/30/2018] [Indexed: 01/10/2023] Open
Abstract
Background Whey acidic protein (WAP) is a major protein identified in the milk of several mammalian species with cysteine-rich domains known as four-disulfide cores (4-DSC). The organization of the eutherian WAP genes is highly conserved through evolution. It has been proposed that WAP could play an important role in regulating the proliferation of mammary epithelial cells. A bacteriostatic activity was also reported. Conversely to the other mammalian species expressing WAP in their milk, camel WAP contains 4 additional amino acid residues at the beginning of the second 4-DSC domain, introducing a phosphorylation site. The aim of this study was to elucidate the origin of this specificity, which possibly impacts its physiological functions. Results Using LC-ESI-MS, we identified in Camelus bactrianus from Kazakhstan a phosphorylated whey protein, exhibiting a molecular mass (12,596 Da), 32 Da higher than the original WAP (12,564 Da) and co-eluting with WAP. cDNA sequencing revealed a transition G/A, which modifies an amino acid residue of the mature protein (V12 M), accounting for the mass difference observed between WAP genetic variants. We also report the existence of two splicing variants of camel WAP precursors to mRNA, arising from an alternative usage of the canonical splice site recognized as such in the other mammalian species. However, the major camel WAP isoform results from the usage of an unlikely intron cryptic splice site, extending camel exon 3 upstream by 12-nucleotides encoding the 4 additional amino acid residues (VSSP) in which a potentially phosphorylable Serine residue occurs. Combining protein and cDNA sequences with genome data available (NCBI database), we report another feature of the camel WAP gene which displays a very rare GC-AG type intron. This result was confirmed by sequencing a genomic DNA fragment encompassing exon 3 to exon 4, suggesting for the GC donor site a compensatory effect in terms of consensus at the acceptor exon position. Conclusions Combining proteomic and molecular biology approaches we report: the characterization of a new genetic variant of camel WAP, the usage of an unlikely intron cryptic splice site, and the occurrence of an extremely rare GC-AG type of intron.
Collapse
Affiliation(s)
- Alma Ryskaliyeva
- INRA, UMR GABI, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Céline Henry
- Plateforme d'Analyse Protéomique Paris Sud-Ouest (PAPPSO), INRA, MICALIS Institute, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Guy Miranda
- INRA, UMR GABI, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Bernard Faye
- CIRAD, UMR SELMET, 34398, Montpellier Cedex 5, France
| | - Gaukhar Konuspayeva
- Biological Technology Department, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Patrice Martin
- INRA, UMR GABI, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France.
| |
Collapse
|
4
|
Vargas-Albores F, Martínez-Porchas M. Crustins are distinctive members of the WAP-containing protein superfamily: An improved classification approach. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 76:9-17. [PMID: 28512012 DOI: 10.1016/j.dci.2017.05.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 05/10/2017] [Accepted: 05/12/2017] [Indexed: 06/07/2023]
Abstract
Crustins are considered effector molecules of innate immunity in arthropods, and classification schemes have been proposed over the last 10 years. However, classification problems have emerged: for example, proteins that have been well identified as members of a particular category have also been classified as crustins. Therefore, the objective of this manuscript was to analyze and, based on solid arguments, improve the original proposed nomenclature to make crustins a distinctive group of antibacterial proteins. The presence of WAP or 4DSC domain has been considered a distinctive feature of crustins; however, several antibacterial proteins containing WAP domains have been detected in diverse taxonomic groups (including mammals). Here, we present evidence supporting the idea that the Cys-rich region and the 4DSC domain can be considered a signature of crustins and, together with some distance arrangements occurring within this 12-Cys region, yield enough information for the classification of these proteins. Herein, the core characteristics to be considered for classification purposes are the length of the Gly-rich region and the repetitive tetrapeptides occurring within this region; these characteristics are then hierarchically followed by the F and A distances located within the 4DSC domain. Finally, the proposed system considers the crustin signature as the common structure in all members, which is a differentiator from other proteins containing WAP domains, separating crustins as a well-distinguished member of the superfamily of WAP-domain containing proteins.
Collapse
Affiliation(s)
- Francisco Vargas-Albores
- Centro de Investigación en Alimentación y Desarrollo, A. C. Km 0.6 Carretera a La Victoria, Hermosillo, Sonora, Mexico.
| | - Marcel Martínez-Porchas
- Centro de Investigación en Alimentación y Desarrollo, A. C. Km 0.6 Carretera a La Victoria, Hermosillo, Sonora, Mexico
| |
Collapse
|
5
|
Gerdol M, Fujii Y, Hasan I, Koike T, Shimojo S, Spazzali F, Yamamoto K, Ozeki Y, Pallavicini A, Fujita H. The purplish bifurcate mussel Mytilisepta virgata gene expression atlas reveals a remarkable tissue functional specialization. BMC Genomics 2017; 18:590. [PMID: 28789640 PMCID: PMC5549309 DOI: 10.1186/s12864-017-4012-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 08/02/2017] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Mytilisepta virgata is a marine mussel commonly found along the coasts of Japan. Although this species has been the subject of occasional studies concerning its ecological role, growth and reproduction, it has been so far almost completely neglected from a genetic and molecular point of view. In the present study we present a high quality de novo assembled transcriptome of the Japanese purplish mussel, which represents the first publicly available collection of expressed sequences for this species. RESULTS The assembled transcriptome comprises almost 50,000 contigs, with a N50 statistics of ~1 kilobase and a high estimated completeness based on the rate of BUSCOs identified, standing as one of the most exhaustive sequence resources available for mytiloid bivalves to date. Overall this data, accompanied by gene expression profiles from gills, digestive gland, mantle rim, foot and posterior adductor muscle, presents an accurate snapshot of the great functional specialization of these five tissues in adult mussels. CONCLUSIONS We highlight that one of the most striking features of the M. virgata transcriptome is the high abundance and diversification of lectin-like transcripts, which pertain to different gene families and appear to be expressed in particular in the digestive gland and in the gills. Therefore, these two tissues might be selected as preferential targets for the isolation of molecules with interesting carbohydrate-binding properties. In addition, by molecular phylogenomics, we provide solid evidence in support of the classification of M. virgata within the Brachidontinae subfamily. This result is in agreement with the previously proposed hypothesis that the morphological features traditionally used to group Mytilisepta spp. and Septifer spp. within the same clade are inappropriate due to homoplasy.
Collapse
Affiliation(s)
- Marco Gerdol
- Department of Life Sciences, University of Trieste, Via Giorgieri 5, 34126 Trieste, Italy
| | - Yuki Fujii
- Department of Pharmacy, Faculty of Pharmaceutical Science, Nagasaki International University, 2825-7 Huis Ten Bosch, Sasebo, Nagasaki, 859-3298 Japan
| | - Imtiaj Hasan
- Department of Life and Environmental System Science, Graduate School of NanoBio Sciences, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, 236-0027 Japan
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Rajshahi, Rajshahi, 6205 Bangladesh
| | - Toru Koike
- Department of Pharmacy, Faculty of Pharmaceutical Science, Nagasaki International University, 2825-7 Huis Ten Bosch, Sasebo, Nagasaki, 859-3298 Japan
| | - Shunsuke Shimojo
- Department of Pharmacy, Faculty of Pharmaceutical Science, Nagasaki International University, 2825-7 Huis Ten Bosch, Sasebo, Nagasaki, 859-3298 Japan
| | - Francesca Spazzali
- Department of Life Sciences, University of Trieste, Via Giorgieri 5, 34126 Trieste, Italy
| | - Kaname Yamamoto
- Department of Pharmacy, Faculty of Pharmaceutical Science, Nagasaki International University, 2825-7 Huis Ten Bosch, Sasebo, Nagasaki, 859-3298 Japan
| | - Yasuhiro Ozeki
- Department of Life and Environmental System Science, Graduate School of NanoBio Sciences, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, 236-0027 Japan
| | - Alberto Pallavicini
- Department of Life Sciences, University of Trieste, Via Giorgieri 5, 34126 Trieste, Italy
| | - Hideaki Fujita
- Department of Pharmacy, Faculty of Pharmaceutical Science, Nagasaki International University, 2825-7 Huis Ten Bosch, Sasebo, Nagasaki, 859-3298 Japan
| |
Collapse
|
6
|
Sharp JA, Wanyonyi S, Modepalli V, Watt A, Kuruppath S, Hinds LA, Kumar A, Abud HE, Lefevre C, Nicholas KR. The tammar wallaby: A marsupial model to examine the timed delivery and role of bioactives in milk. Gen Comp Endocrinol 2017; 244:164-177. [PMID: 27528357 PMCID: PMC6408724 DOI: 10.1016/j.ygcen.2016.08.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 07/29/2016] [Accepted: 08/11/2016] [Indexed: 12/12/2022]
Abstract
It is now clear that milk has multiple functions; it provides the most appropriate nutrition for growth of the newborn, it delivers a range of bioactives with the potential to stimulate development of the young, it has the capacity to remodel the mammary gland (stimulate growth or signal cell death) and finally milk can provide protection from infection and inflammation when the mammary gland is susceptible to these challenges. There is increasing evidence to support studies using an Australian marsupial, the tammar wallaby (Macropus eugenii), as an interesting and unique model to study milk bioactives. Reproduction in the tammar wallaby is characterized by a short gestation, birth of immature young and a long lactation. All the major milk constituents change substantially and progressively during lactation and these changes have been shown to regulate growth and development of the tammar pouch young and to have roles in mammary gland biology. This review will focus on recent reports examining the control of lactation in the tammar wallaby and the timed delivery of milk bioactivity.
Collapse
Affiliation(s)
- Julie A Sharp
- Institute for Frontier Materials, Deakin University, Geelong 3216, Australia; Cancer Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Clayton 3800, Victoria, Australia.
| | - Stephen Wanyonyi
- School of Medicine, Deakin University, Geelong 3216, Australia; Institute for Agriculture and the Environment, University of Southern Queensland, Toowoomba, QLD 4350, Australia
| | | | - Ashalyn Watt
- Institute for Frontier Materials, Deakin University, Geelong 3216, Australia
| | | | - Lyn A Hinds
- CSIRO Health and Biosecurity, Canberra, ACT 2601, Australia
| | - Amit Kumar
- School of Medicine, Deakin University, Geelong 3216, Australia; PeterMac Callum Cancer Research Institute, East Melbourne 3002, Victoria, Australia
| | - Helen E Abud
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Clayton 3800, Victoria, Australia
| | - Christophe Lefevre
- School of Medicine, Deakin University, Geelong 3216, Australia; Division of Bioinformatics, Walter and Eliza Hall Medical Research Institute, Melbourne, Victoria 3000, Australia; PeterMac Callum Cancer Research Institute, East Melbourne 3002, Victoria, Australia; Department of Medical Biology (WEHI), The University of Melbourne, Melbourne 3000, Victoria, Australia
| | - Kevin R Nicholas
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Clayton 3800, Victoria, Australia
| |
Collapse
|
7
|
Farmer C, Palin MF, Martel-Kennes Y. Impact of diet deprivation and subsequent overallowance during gestation on mammary gland development and lactation performance. J Anim Sci 2013; 92:141-51. [PMID: 24352961 DOI: 10.2527/jas.2013-6558] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The impacts of diet deprivation and subsequent overallowance during gestation on mammary gene expression and development and lactation performance were determined. Gilts were reared under a conventional (control, CTL; n = 59) or an experimental (treatment, TRT; n = 56) dietary regimen during gestation. The experimental regimen provided 70% (restriction diet, RES) and 115% (overallowance diet, OVER) of the protein and DE contents provided by the CTL diet. The RES diet was given during the first 10 wk of gestation followed by the OVER diet until farrowing. Some gilts (14 CTL and 14 TRT) were slaughtered on d 110 of gestation, and the others were allowed to farrow. Of these remaining sows, 28 (14 CTL and 14 TRT) were slaughtered on d 21 of lactation, and the rest underwent a second lactation. At each slaughter, mammary tissue was collected for compositional analyses and assessment of gene expression. Milk samples were collected on d 17 of the first lactation. Litter size was standardized to 11 ± 1, and piglets were weighed weekly until d 18 in both parities. The BW and back fat thickness of TRT first-parity sows were less than those of CTL sows in gestation (P < 0.05), and their BW was also less in lactation (P < 0.05). The BW of TRT second-parity sows was still less at mating (P < 0.05) and tended to be less on d 1 of lactation (P < 0.10) compared with CTL sows. There were no differences in piglet growth between CTL and TRT litters in either parity, yet mammary development and mammary gene expression were affected by treatment. There was less parenchymal tissue (P < 0.01) at the end of the first gestation in TRT than in CTL sows, but parenchymal tissue composition was not altered by treatment. Relative abundance of IGF-1 (P < 0.05), ornithine decarboxylase (P < 0.05), signal transducer and activator of transcription 5B (P < 0.05), and whey acidic protein (WAP, P < 0.01) genes in parenchyma at the end of the first gestation was lower in TRT than in CTL sows, and the effect on WAP genes was still present at the end of the first lactation (P < 0.01). Mammary composition at the end of the first lactation and milk composition were unaffected by treatment. In conclusion, feed deprivation and subsequent overallowance in gestation had unfavorable effects on sow BW, back fat, mammary development, and mammary gene expression at the end of gestation, but piglet growth rate over the 2 parities was not affected.
Collapse
Affiliation(s)
- C Farmer
- Agriculture and Agri-Food Canada, Dairy and Swine R and D Centre, Sherbrooke, QC J1M 1C8, Canada
| | | | | |
Collapse
|
8
|
Seki M, Matsura R, Iwamori T, Nukumi N, Yamanouchi K, Kano K, Naito K, Tojo H. Identification of whey acidic protein (WAP) in dog milk. Exp Anim 2012; 61:67-70. [PMID: 22293674 DOI: 10.1538/expanim.61.67] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Whey acidic protein (WAP) has been identified as a major whey protein in milk of a wide range of species and reportedly plays important roles in regulating the proliferation of mammary epithelial cells. However, in some species including humans, WAP is not synthesized in the mammary gland. The presence of WAP in carnivore species has not been reported. We searched the National Center for Biotechnology Information (NCBI) database for the dog WAP gene and tried biochemically to identify WAP in dog milk. The nucleotide sequence of the examined dog genomic DNA was completely identical to that in the NCBI database and showed that the dog WAP gene, like other known functional WAP genes, has four exons. Biochemical analysis of milk protein by reverse-phase HPLC and Western blotting demonstrated the presence of WAP in dog milk.
Collapse
Affiliation(s)
- Mami Seki
- Laboratory of Applied Genetics, The University of Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Dempsey C, McCormick NH, Croxford TP, Seo YA, Grider A, Kelleher SL. Marginal maternal zinc deficiency in lactating mice reduces secretory capacity and alters milk composition. J Nutr 2012; 142:655-60. [PMID: 22357740 PMCID: PMC3301987 DOI: 10.3945/jn.111.150623] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Revised: 09/16/2011] [Accepted: 12/27/2011] [Indexed: 11/14/2022] Open
Abstract
Dietary analysis predicts that marginal Zn deficiency is common in women of reproductive age. The lack of reliable biomarkers limits the capacity to assess Zn status and consequently understand effects of maternal Zn deficiency. We determined effects of marginal maternal Zn deficiency on mammary gland function, milk secretion, and milk composition in mice. Mice (n = 12/diet) were fed marginal (ZD; 15 mg Zn/kg diet) or adequate (ZA; 30 mg Zn/kg diet) Zn diets for 30 d prior to conception through mid-lactation. Mice fed the ZD had a higher plasma Zn concentration (~20%; P < 0.05) but lower milk Zn concentration (~15%; P < 0.05) compared with mice fed the ZA. ZnT2 abundance was higher (P < 0.05) in mice fed the ZD compared with mice fed the ZA; no effect on ZnT4 abundance was detected. The Zn concentration of mammary gland mitochondria tended to be ~40% greater in mice fed ZD (P = 0.07); this was associated with apoptosis and lower milk secretion (~80%; P < 0.01). Total milk protein was ~25% higher (P < 0.05), although the abundance of the major milk proteins (caseins and whey acidic protein) was lower (P < 0.05) in mice fed the ZD. Proteomic analysis of milk proteins revealed an increase (P < 0.05) in four proteins in mice fed the ZD. These findings illustrate that marginal maternal Zn deficiency compromises mammary gland function and milk secretion and alters milk composition. This suggests that lactating women who consume inadequate Zn may not produce and/or secrete an adequate amount of high quality milk to provide optimal nutrition to their developing infant.
Collapse
Affiliation(s)
| | | | | | | | - Arthur Grider
- Department of Foods and Nutrition, University of Georgia, Athens, GA
| | - Shannon L. Kelleher
- Department of Nutritional Sciences
- Department of Surgery, and
- Department of Cell and Molecular Physiology, The Pennsylvania State University, University Park, PA; and
| |
Collapse
|
10
|
Sathler PC, Craik CS, Takeuchi T, Zingali RB, Castro HC. Engineering ecotin for identifying proteins with a trypsin fold. Appl Biochem Biotechnol 2009; 160:2355-65. [PMID: 19728173 DOI: 10.1007/s12010-009-8711-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2009] [Accepted: 07/05/2009] [Indexed: 11/29/2022]
Abstract
Ecotin is a bidentate, fold-specific inhibitor of mammalian serine-proteases produced by Escherichia coli. This molecule may be engineered to increase and/or change its affinity and specificity providing significant biotechnological potential. Since ecotin binds tightly to serine proteases of the trypsin fold, it may help to identify the role of these enzymes in different biological processes. In this work, we tested ecotin variants as an affinity purification reagent for identifying enzymes in samples of tumor progression and mammary gland involution. Initially, we used a commercial source of urokinase-type plasminogen activator (u-PA) that remained fully active after elution from an affinity column of the ecotin variant (M84R, M85R). We then successfully identified u-PA from more complex mixtures including lysates from a prostate cancer cell line and involuting mouse mammary glands. Interestingly, a membrane-type serine protease 1 was isolated from the Triton X-100-solubilized PC-3 cell lysates, and surprisingly, haptoglobin, a serine-protease homolog protein, was also identified in mammary gland lysates and in blood. Haptoglobin does not prevent ecotin inhibition of u-PA, but it may act as a carrier within blood when ecotin is used in vivo. Finally, this affinity purification matrix was also able to identify a thrombin-like enzyme from snake venom using an ecotin variant directed against thrombin. Overall, the ecotin variants acted as robust tools for the isolation and characterization of proteins with a trypsin fold. Thus, they may assist in the understanding of the role of these serine proteases and homologous proteins in different biological processes.
Collapse
Affiliation(s)
- Plínio C Sathler
- LaBioMol, Departamento de Biologia Celular e Molecular, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, 24001-970, Brazil
| | | | | | | | | |
Collapse
|
11
|
Topcic D, Auguste A, De Leo AA, Lefevre C, Digby MR, Nicholas KR. Characterization of the tammar wallaby (Macropus eugenii) whey acidic protein gene: new insights into the function of the protein. Evol Dev 2009; 11:363-75. [PMID: 19601970 DOI: 10.1111/j.1525-142x.2009.00343.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Whey acidic protein (WAP) belongs to a family of four disulfide core (4-DSC) proteins rich in cysteine residues and is the principal whey protein found in milk of a number of mammalian species. Eutherian WAPs have two 4-DSC domains, whereas marsupial WAPs are characterized by the presence of an additional domain at the amino terminus. Structural and expression differences between marsupial and eutherian WAPs have presented challenges to identifying physiological functions of the WAP protein. We have characterized the genomic structure of tammar WAP (tWAP) gene, identified its chromosomal localization and investigated the potential function of tWAP. We have demonstrated that tWAP and domain III (DIII) of the protein alone stimulate proliferation of a mouse mammary epithelial cell line (HC11) and primary cultures of tammar mammary epithelial cells (Wall-MEC), whereas deletion of DIII from tWAP abolishes this proliferative effect. However, tWAP does not induce proliferation of human embryonic kidney (HEK293) cells. DNA synthesis and expression of cyclin D1 and cyclin-dependent kinase-4 genes were significantly up-regulated when Wall-MEC and HC11 cells were grown in the presence of either tWAP or DIII. These data suggest that DIII is the functional domain of the tWAP protein and that evolutionary pressure has led to the loss of this domain in eutherians, most likely as a consequence of adopting a reproductive strategy that relies on greater investment in development of the newborn during pregnancy.
Collapse
Affiliation(s)
- Denijal Topcic
- CRC for Innovative Dairy Products, Department of Zoology, The University of Melbourne, Melbourne, Vic. 3010, Australia.
| | | | | | | | | | | |
Collapse
|
12
|
Sotgia F, Casimiro MC, Bonuccelli G, Liu M, Whitaker-Menezes D, Er O, Daumer KM, Mercier I, Witkiewicz AK, Minetti C, Capozza F, Gormley M, Quong AA, Rui H, Frank PG, Milliman JN, Knudsen ES, Zhou J, Wang C, Pestell RG, Lisanti MP. Loss of caveolin-3 induces a lactogenic microenvironment that is protective against mammary tumor formation. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 174:613-29. [PMID: 19164602 DOI: 10.2353/ajpath.2009.080653] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Here, we show that functional loss of a single gene is sufficient to confer constitutive milk protein production and protection against mammary tumor formation. Caveolin-3 (Cav-3), a muscle-specific caveolin-related gene, is highly expressed in muscle cells. We demonstrate that Cav-3 is also expressed in myoepithelial cells within the mammary gland. To determine whether genetic ablation of Cav-3 expression affects adult mammary gland development, we studied the phenotype(s) of Cav-3(-/-)-null mice. Interestingly, Cav-3(-/-) virgin mammary glands developed lobulo-alveolar hyperplasia, akin to the changes normally observed during pregnancy and lactation. Genome-wide expression profiling revealed up-regulation of gene transcripts associated with pregnancy/lactation, mammary stem cells, and human breast cancers, consistent with a constitutive lactogenic phenotype. Expression levels of three key transcriptional regulators of lactation, namely Elf5, Stat5a, and c-Myc, were also significantly elevated. Experiments with pregnant mice directly showed that Cav-3(-/-) mice underwent precocious lactation. Finally, using orthotopic tumor cell implantation, we demonstrated that virgin Cav-3(-/-) mice were dramatically protected against mammary tumor formation. Thus, Cav-3(-/-) mice are a novel preclinical model to study the protective effects of a lactogenic microenvironment on mammary tumor onset and progression. Our current studies have broad implications for using the lactogenic microenvironment as a paradigm to discover new therapies for the prevention and/or treatment of human breast cancers.
Collapse
Affiliation(s)
- Federica Sotgia
- Department of Cancer Biology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|