1
|
Karkache IY, Damodaran JR, Molstad DHH, Mansky KC, Bradley EW. Myeloid Lineage Ablation of Phlpp1 Regulates M-CSF Signaling and Tempers Bone Resorption in Female Mice. Int J Mol Sci 2021; 22:9702. [PMID: 34575866 PMCID: PMC8468863 DOI: 10.3390/ijms22189702] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/03/2021] [Accepted: 09/05/2021] [Indexed: 12/15/2022] Open
Abstract
Prior work demonstrated that Phlpp1 deficiency alters trabecular bone mass and enhances M-CSF responsiveness, but the cell types and requirement of Phlpp1 for this effect were unclear. To understand the function of Phlpp1 within myeloid lineage cells, we crossed Phlpp1 floxed mice with mice harboring LysM-Cre. Micro-computed tomography of the distal femur of 12-week-old mice revealed a 30% increase in bone volume per total volume of Phlpp1 female conditional knockouts, but we did not observe significant changes within male Phlpp1 cKOLysM mice. Bone histomorphmetry of the proximal tibia further revealed that Phlpp1 cKOLysM females exhibited elevated osteoclast numbers, but conversely had reduced levels of serum markers of bone resorption as compared to littermate controls. Osteoblast number and serum markers of bone formation were unchanged. In vitro assays confirmed that Phlpp1 ablation enhanced osteoclast number and area, but limited bone resorption. Additionally, reconstitution with exogenous Phlpp1 suppressed osteoclast numbers. Dose response assays demonstrated that Phlpp1-/- cells are more responsive to M-CSF, but reconstitution with Phlpp1 abrogated this effect. Furthermore, small molecule-mediated Phlpp inhibition enhanced osteoclast numbers and size. Enhanced phosphorylation of Phlpp substrates-including Akt, ERK1/2, and PKCζ-accompanied these observations. In contrast, actin cytoskeleton disruption occurred within Phlpp inhibitor treated osteoclasts. Moreover, Phlpp inhibition reduced resorption of cells cultured on bovine bone slices in vitro. Our results demonstrate that Phlpp1 deficiency within myeloid lineage cells enhances bone mass by limiting bone resorption while leaving osteoclast numbers intact; moreover, we show that Phlpp1 represses osteoclastogenesis and controls responses to M-CSF.
Collapse
Affiliation(s)
- Ismael Y. Karkache
- Department of Orthopedics, School of Medicine, University of Minnesota, Minneapolis, MN 55455, USA; (I.Y.K.); (J.R.D.); (D.H.H.M.)
| | - Jeyaram R. Damodaran
- Department of Orthopedics, School of Medicine, University of Minnesota, Minneapolis, MN 55455, USA; (I.Y.K.); (J.R.D.); (D.H.H.M.)
| | - David H. H. Molstad
- Department of Orthopedics, School of Medicine, University of Minnesota, Minneapolis, MN 55455, USA; (I.Y.K.); (J.R.D.); (D.H.H.M.)
| | - Kim C. Mansky
- Division of Orthodontics, Department of Developmental and Surgical Services, Institute for Virology, School of Dentistry, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Elizabeth W. Bradley
- Department of Orthopedics, School of Medicine, University of Minnesota, Minneapolis, MN 55455, USA; (I.Y.K.); (J.R.D.); (D.H.H.M.)
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
2
|
Moura MF, Silva TA, Cota LOM, Oliveira SR, Cunha FQ, Ferreira GA, Cortelli JR, Cortelli SC, Costa FO. Nonsurgical periodontal therapy decreases the severity of rheumatoid arthritis and the plasmatic and salivary levels of RANKL and Survivin: a short-term clinical study. Clin Oral Investig 2021; 25:6643-6652. [PMID: 33954850 DOI: 10.1007/s00784-021-03950-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/16/2021] [Indexed: 01/02/2023]
Abstract
AIM To investigate the influence of nonsurgical periodontal treatment (NSPT) on clinical periodontal status, rheumatoid arthritis (RA) activity, and plasmatic and salivary levels of biomarkers through a controlled clinical trial on individuals with RA and periodontitis (PE). METHODS Sixty-six individuals from a convenience sample were considered eligible and consecutively allocated in 3 groups: (1) individuals without PE and RA (-PE-RA, n = 19); (2) individuals without PE and with RA (-PE+RA, n = 23), and (3) individuals with PE and RA (+PE+RA, n = 24). Full-mouth periodontal clinical examinations, Disease Activity Score (DAS-28) evaluations, and analysis in plasma and saliva of RANKL, OPG, RANKL/OPG, and Survivin were performed at baseline (T1) and 45 days after NSPT (T2). RESULTS NSPT in the +PE+RA group was very effective to improve periodontal condition. At T2, significant reductions in DAS-28 were observed in +PE+RA (p = 0.011). Significantly higher levels of Survivin and RANKL were observed in saliva and plasma from RA individuals (with and without PE) compared to controls. Additionally, Survivin e RANKL demonstrated positive correlations with DAS-28 and an expressively significant reduction in +PE+RA at T2 (p < 0.001). CONCLUSIONS NSPT was effective on improving both the periodontal and the RA clinical status and reducing the concentration of Survivin and RANKL in saliva and plasma. PRACTICAL IMPLICATIONS Nonsurgical periodontal treatment was effective on reducing the concentration of Survivin and RANKL and on improving both the periodontal and the RA clinical status of affected individuals. TRIAL REGISTRATION Brazilian Registry of Clinical Trials (ReBEC) protocol #RBR-8g2bc8 ( http://www.ensaiosclinicos.gov.br/rg/RBR-8g2bc8/ ).
Collapse
Affiliation(s)
- Marcela Faria Moura
- Department of Dental Clinics, Oral Pathology, and Oral Surgery, School of Dentistry, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Tarcília Aparecida Silva
- Department of Dental Clinics, Oral Pathology, and Oral Surgery, School of Dentistry, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Luís Otávio Miranda Cota
- Department of Dental Clinics, Oral Pathology, and Oral Surgery, School of Dentistry, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Sicilia Rezende Oliveira
- Department of Dental Clinics, Oral Pathology, and Oral Surgery, School of Dentistry, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | | | - Gilda Aparecida Ferreira
- School of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - José Roberto Cortelli
- Departament of Dentistry, Periodontics Research Division, University of Taubaté, São Paulo, Brazil
| | - Sheila Cavalca Cortelli
- Departament of Dentistry, Periodontics Research Division, University of Taubaté, São Paulo, Brazil
| | - Fernando Oliveira Costa
- Department of Dental Clinics, Oral Pathology, and Oral Surgery, School of Dentistry, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil. .,Faculty of Dentistry, Department of Periodontology, Federal University of Minas Gerais, Antônio Carlos Avenue, 6627, Pampulha, PO Box 359, Belo Horizonte, Minas Gerais, Zip Code 31270-901, Brazil.
| |
Collapse
|
3
|
Molstad DHH, Mattson AM, Begun DL, Westendorf JJ, Bradley EW. Hdac3 regulates bone modeling by suppressing osteoclast responsiveness to RANKL. J Biol Chem 2021; 295:17713-17723. [PMID: 33454009 DOI: 10.1074/jbc.ra120.013573] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 09/30/2020] [Indexed: 11/06/2022] Open
Abstract
Hdac3 is a lysine deacetylase that removes acetyl groups from histones and additional proteins. Although Hdac3 functions within mesenchymal lineage skeletal cells are defined, little is known about Hdac3 activities in bone-resorbing osteoclasts. In this study we conditionally deleted Hdac3 within Ctsk-expressing cells and examined the effects on bone modeling and osteoclast differentiation in mice. Hdac3 deficiency reduced femur and tibia periosteal circumference and increased cortical periosteal osteoclast number. Trabecular bone was likewise reduced and was accompanied by increased osteoclast number per trabecular bone surface. We previously showed that Hdac3 deacetylates the p65 subunit of the NF-κB transcriptional complex to decrease DNA-binding and transcriptional activity. Hdac3-deficient osteoclasts demonstrate increased K310 NF-κB acetylation and NF-κB transcriptional activity. Hdac3-deficient osteoclast lineage cells were hyper-responsive to RANKL and showed elevated ex vivo osteoclast number and size and enhanced bone resorption in pit formation assays. Osteoclast-directed Hdac3 deficiency decreased cortical and trabecular bone mass parameters, suggesting that Hdac3 regulates coupling of bone resorption and bone formation. We surveyed a panel of osteoclast-derived coupling factors and found that Hdac3 suppression diminished sphingosine-1-phosphate production. Osteoclast-derived sphingosine-1-phosphate acts in paracrine to promote bone mineralization. Mineralization of WT bone marrow stromal cells cultured with conditioned medium from Hdac3-deficient osteoclasts was markedly reduced. Expression of alkaline phosphatase, type 1a1 collagen, and osteocalcin was also suppressed, but no change in Runx2 expression was observed. Our results demonstrate that Hdac3 controls bone modeling by suppressing osteoclast lineage cell responsiveness to RANKL and coupling to bone formation.
Collapse
Affiliation(s)
- David H H Molstad
- Department of Orthopedics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Anna M Mattson
- Departments of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Dana L Begun
- Departments of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Jennifer J Westendorf
- Departments of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA; Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| | - Elizabeth W Bradley
- Department of Orthopedics, University of Minnesota, Minneapolis, Minnesota, USA; Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, USA.
| |
Collapse
|
4
|
Kuo CH, Chen JY, Chen CM, Huang CW, Liou YM. Effects of varying gelatin coating concentrations on RANKL induced osteoclastogenesis. Exp Cell Res 2021; 400:112509. [PMID: 33529711 DOI: 10.1016/j.yexcr.2021.112509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 01/23/2021] [Accepted: 01/26/2021] [Indexed: 01/21/2023]
Abstract
Here, we assessed the effects of varying concentrations of gelatin coating on Receptor Activator of Nuclear Factor κ-B Ligand (RANKL)-induced RAW264.7 murine macrophage differentiation into osteoclast (OC) via osteoclastogenesis. The microstructures of coating surfaces with different concentrations of gelatin were examined by scanning electron microscopy and atomic force microscopy. Increased gelatin coating concentrations led to decreased gel rigidity but increased surface adhesion force attenuated OC differentiation and the decreased actin ring formation in RANKL-induced osteoclastogenesis. The decreased actin ring formation is associated with decreased lysosomal-associated membrane protein 1 (LAMP1) activity and bone resorption in the differentiated OCs with different gelatin coating concentrations as compared to the cells differentiated without gelatin coatings. In addition, increasing concentrations of gelatin coating attenuated the medium TGF-β1 protein levels and the expression levels of TGF-β and type-I (R1) and type-II (R2) TGF-β receptors in OCs, suggesting the gelatin-induced suppression of TGF-β signaling for the regulation of RNAKL-induced OC differentiation. Taken together, these findings showed that changes in gelatin coating concentrations, which were associated with altered gel thickness and substrate rigidity, might attenuate TGF-β signaling events to modulate OC differentiation and concomitant actin ring formation and bone matrix resorption in RANKL-induced osteoclastogenesis.
Collapse
Affiliation(s)
- Chia-Hsiao Kuo
- Department of Orthopedics, Tungs' Taichung MetroHarbor Hospital, Taichung, 435, Taiwan
| | - Jiann-Yeu Chen
- Research Center for Sustainable Energy and Nanotechnology, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Chuan-Mu Chen
- Department of Life Sciences, National Chung Hsing University, Taichung, 40227, Taiwan; Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, 40227, Taiwan; The IEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Cian Wei Huang
- Department of Life Sciences, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Ying-Ming Liou
- Department of Life Sciences, National Chung Hsing University, Taichung, 40227, Taiwan; Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, 40227, Taiwan; The IEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, 40227, Taiwan.
| |
Collapse
|
5
|
Li CH, Ma ZZ, Jian LL, Wang XY, Sun L, Liu XY, Yao ZQ, Zhao JX. Iguratimod inhibits osteoclastogenesis by modulating the RANKL and TNF-α signaling pathways. Int Immunopharmacol 2021; 90:107219. [PMID: 33307512 DOI: 10.1016/j.intimp.2020.107219] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/09/2020] [Accepted: 11/16/2020] [Indexed: 12/29/2022]
Abstract
BACKGROUND Iguratimod, a small molecular drug, has been proven to have effective bone protection for treatment of patients with bone loss-related diseases, such as rheumatoid arthritis (RA). However, the exact bone protective mechanism of iguratimod remains to be determined. The purpose of this study was to better explore the underlying mechanism of bone protection of iguratimod. METHODS Bone marrow monocytes from C57/BL6 mice were stimulated with either RANKL or TNF-α plus M-CSF. The effects of iguratimod on morphology and function of osteoclasts were confirmed by TRAP staining and bone resorption assay, respectively. The expression of osteoclast related genes was detected by RT-PCR and the activation of signal pathway was detected by Western blotting. We used rodent models of osteoporosis (ovariectomy) and of arthritis (modified TNF-α-induced osteoclastogenesis) to evaluate the osteoprotective effect of iguratimod in vivo. RESULTS Iguratimod potently inhibited osteoclast formation in a dose-dependent manner at the early stage of RANKL-induced osteoclastogenesis, whereas iguratimod had no effect on M-CSF-induced proliferation and RANK expression in bone marrow monocytes. Bone resorption was significantly reduced by both early and late addition of iguratimod. Administration of iguratimod prevented bone loss in ovariectomized mice. The blockage of osteoclastogenesis elicited by iguratimod results from abrogation of the p38、ERK and NF-κB pathways induced by RANKL. Importantly, Iguratimod also dampened TNF-α-induced osteoclastogenesis in vitro and attenuated osteoclasts generation in vivo through disrupting NF-κB late nuclear translocation without interfering with IκBα degradation. CONCLUSIONS Iguratimod not only suppresses osteoclastogenesis by interfering with RANKL and TNF-α signals, but also inhibits the bone resorption of mature osteoclasts. These results provided promising evidence for the therapeutic application of iguratimod as a unique treatment option against RA and especially in prevention of bone loss.
Collapse
MESH Headings
- Animals
- Antirheumatic Agents/pharmacology
- Arthritis, Experimental/drug therapy
- Arthritis, Experimental/metabolism
- Arthritis, Experimental/pathology
- Arthritis, Rheumatoid/drug therapy
- Arthritis, Rheumatoid/metabolism
- Arthritis, Rheumatoid/pathology
- Cell Differentiation/drug effects
- Cells, Cultured
- Chromones/pharmacology
- Extracellular Signal-Regulated MAP Kinases/metabolism
- Female
- Humans
- Mice, Inbred C57BL
- NF-kappa B/metabolism
- Osteoclasts/drug effects
- Osteoclasts/metabolism
- Osteoclasts/pathology
- Osteogenesis/drug effects
- Osteoporosis, Postmenopausal/metabolism
- Osteoporosis, Postmenopausal/pathology
- Osteoporosis, Postmenopausal/prevention & control
- Ovariectomy
- RANK Ligand/pharmacology
- Rats, Wistar
- Signal Transduction
- Sulfonamides/pharmacology
- Tumor Necrosis Factor-alpha/pharmacology
- p38 Mitogen-Activated Protein Kinases/metabolism
- Mice
- Rats
Collapse
Affiliation(s)
- Chang-Hong Li
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing 100191, PR China; Osteoporosis and Bone Metabolic Diseases Center, Peking University Third Hospital, Beijing 100191, PR China
| | - Zhen-Zhen Ma
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing 100191, PR China
| | - Lei-Lei Jian
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing 100191, PR China
| | - Xin-Yu Wang
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing 100191, PR China
| | - Lin Sun
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing 100191, PR China
| | - Xiang-Yuan Liu
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing 100191, PR China
| | - Zhong-Qiang Yao
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing 100191, PR China.
| | - Jin-Xia Zhao
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing 100191, PR China; Osteoporosis and Bone Metabolic Diseases Center, Peking University Third Hospital, Beijing 100191, PR China.
| |
Collapse
|
6
|
Karkache IY, Damodaran JR, Molstad DHH, Bradley EW. Serine/threonine phosphatases in osteoclastogenesis and bone resorption. Gene 2020; 771:145362. [PMID: 33338510 DOI: 10.1016/j.gene.2020.145362] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 11/24/2020] [Accepted: 12/08/2020] [Indexed: 12/27/2022]
Abstract
Maintenance of optimal bone mass is controlled through the concerted functions of several cell types, including bone resorbing osteoclasts. Osteoclasts function to remove calcified tissue during developmental bone modeling, and degrade bone at sites of damage during bone remodeling. Changes to bone homeostasis can arise with alterations in osteoclastogenesis and/or catabolic activity that are not offset by anabolic activity; thus, factors that regulate osteoclastogenesis and bone resorption are of interest to further our understanding of basic bone biology, and as potential targets for therapeutic intervention. Several key cytokines, including RANKL and M-CSF, as well as co-stimulatory factors elicit kinase signaling cascades that promote osteoclastogenesis. These kinase cascades are offset by the action of protein phosphatases, including members of the serine/threonine phosphatase family. Here we review the functions of serine/threonine phosphatases and their control of osteoclast differentiation and function, while highlighting deficiencies in our understanding of this understudied class of proteins within the field.
Collapse
Affiliation(s)
- Ismael Y Karkache
- Department of Orthopedic Surgery, University of Minnesota, Minneapolis, MN 55455, United States
| | - Jeyaram R Damodaran
- Department of Orthopedic Surgery, University of Minnesota, Minneapolis, MN 55455, United States
| | - David H H Molstad
- Department of Orthopedic Surgery, University of Minnesota, Minneapolis, MN 55455, United States
| | - Elizabeth W Bradley
- Department of Orthopedic Surgery, University of Minnesota, Minneapolis, MN 55455, United States; Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, United States.
| |
Collapse
|
7
|
Mattson AM, Begun DL, Molstad DHH, Meyer MA, Oursler MJ, Westendorf JJ, Bradley EW. Deficiency in the phosphatase PHLPP1 suppresses osteoclast-mediated bone resorption and enhances bone formation in mice. J Biol Chem 2019; 294:11772-11784. [PMID: 31189651 DOI: 10.1074/jbc.ra119.007660] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 05/24/2019] [Indexed: 12/21/2022] Open
Abstract
Enhanced osteoclast-mediated bone resorption and diminished formation may promote bone loss. Pleckstrin homology (PH) domain and leucine-rich repeat protein phosphatase 1 (Phlpp1) regulates protein kinase C (PKC) and other proteins in the control of bone mass. Germline Phlpp1 deficiency reduces bone volume, but the mechanisms remain unknown. Here, we found that conditional Phlpp1 deletion in murine osteoclasts increases their numbers, but also enhances bone mass. Despite elevating osteoclasts, Phlpp1 deficiency did not increase serum markers of bone resorption, but elevated serum markers of bone formation. These results suggest that Phlpp1 suppresses osteoclast formation and production of paracrine factors controlling osteoblast activity. Phlpp1 deficiency elevated osteoclast numbers and size in ex vivo osteoclastogenesis assays, accompanied by enhanced expression of proto-oncogene C-Fms (C-Fms) and hyper-responsiveness to macrophage colony-stimulating factor (M-CSF) in bone marrow macrophages. Although Phlpp1 deficiency increased TRAP+ cell numbers, it suppressed actin-ring formation and bone resorption in these assays. We observed that Phlpp1 deficiency increases activity of PKCζ, a PKC isoform controlling cell polarity, and that addition of a PKCζ pseudosubstrate restores osteoclastogenesis and bone resorption of Phlpp1-deficient osteoclasts. Moreover, Phlpp1 deficiency increased expression of the bone-coupling factor collagen triple helix repeat-containing 1 (Cthrc1). Conditioned growth medium derived from Phlpp1-deficient osteoclasts enhanced mineralization of ex vivo osteoblast cultures, an effect that was abrogated by Cthrc1 knockdown. In summary, Phlpp1 critically regulates osteoclast numbers, and Phlpp1 deficiency enhances bone mass despite higher osteoclast numbers because it apparently disrupts PKCζ activity, cell polarity, and bone resorption and increases secretion of bone-forming Cthrc1.
Collapse
Affiliation(s)
- Anna M Mattson
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota 55901
| | - Dana L Begun
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota 55901
| | - David H H Molstad
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota 55901
| | - Margaret A Meyer
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota 55901
| | - Merry Jo Oursler
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota 55901.,Endocrine Research Unit, Mayo Clinic, Rochester, Minnesota 55901.,Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota 55901
| | - Jennifer J Westendorf
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota 55901.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota 55901
| | - Elizabeth W Bradley
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota 55901 .,Department of Biomedical Engineering and Physiology, Mayo Clinic, Rochester, Minnesota 55901
| |
Collapse
|
8
|
Yang W, Han W, Qin A, Wang Z, Xu J, Qian Y. The emerging role of Hippo signaling pathway in regulating osteoclast formation. J Cell Physiol 2018; 233:4606-4617. [PMID: 29219182 DOI: 10.1002/jcp.26372] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 12/01/2017] [Indexed: 12/14/2022]
Abstract
A delicate balance between osteoblastic bone formation and osteoclastic bone resorption is crucial for bone homeostasis. This process is regulated by the Hippo signaling pathway including key regulatory molecules RASSF2, NF2, MST1/2, SAV1, LATS1/2, MOB1, YAP, and TAZ. It is well established that the Hippo signaling pathway plays an important part in regulating osteoblast differentiation, but its role in osteoclast formation and activation remains poorly understood. In this review, we discuss the emerging role of Hippo-signaling pathway in osteoclast formation and bone homeostasis. It is revealed that specific molecules of the Hippo-signaling pathway take part in a stage specific regulation in pre-osteoclast proliferation, osteoclast differentiation and osteoclast apoptosis and survival. Upon activation, MST and LAST, transcriptional co-activators YAP and TAZ bind to the members of the TEA domain (TEAD) family transcription factors, and influence osteoclast differentiation via regulating the expression of downstream target genes such as connective tissue growth factor (CTGF/CCN2) and cysteine-rich protein 61 (CYR61/CCN1). In addition, through interacting or cross talking with RANKL-mediated signaling cascades including NF-κB, MAPKs, AP1, and NFATc1, Hippo-signaling molecules such as YAP/TAZ/TEAD complex, RASSF2, MST2, and Ajuba could also potentially modulate osteoclast differentiation and function. Elucidating the roles of the Hippo-signaling pathway in osteoclast development and specific molecules involved is important for understanding the mechanism of bone homeostasis and diseases.
Collapse
Affiliation(s)
- Wanlei Yang
- Department of Orthopaedics, Shaoxing People's Hospital (Shaoxing Hospital of Zhejiang University), Shaoxing, Zhejiang, P. R. China
| | - Weiqi Han
- Department of Orthopaedics, Shaoxing People's Hospital (Shaoxing Hospital of Zhejiang University), Shaoxing, Zhejiang, P. R. China
| | - An Qin
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ziyi Wang
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Jiake Xu
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Yu Qian
- Department of Orthopaedics, Shaoxing People's Hospital (Shaoxing Hospital of Zhejiang University), Shaoxing, Zhejiang, P. R. China
| |
Collapse
|
9
|
Itzstein C, Coxon FP, Rogers MJ. The regulation of osteoclast function and bone resorption by small GTPases. Small GTPases 2014; 2:117-130. [PMID: 21776413 DOI: 10.4161/sgtp.2.3.16453] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 04/22/2011] [Accepted: 05/10/2011] [Indexed: 01/11/2023] Open
Abstract
Osteoclasts are multinucleated cells that are responsible for resorption of bone, and increased activity of these cells is associated with several common bone diseases, including postmenopausal osteoporosis. Upon adhesion to bone, osteoclasts become polarized and reorganise their cytoskeleton and membrane to form unique domains including the sealing zone (SZ), which is a dense ring of F-actin-rich podosomes delimiting the ruffled border (RB), where protons and proteases are secreted to demineralise and degrade the bone matrix, respectively. These processes are dependent on the activity of small GTPases. Rho GTPases are well known to control the organization of F-actin and adhesion structures of different cell types, affecting subsequently their migration. In osteoclasts, RhoA, Rac, Cdc42, RhoU and also Arf6 regulate podosome assembly and their organization into the SZ. By contrast, the formation of the RB involves vesicular trafficking pathways that are regulated by the Rab family of GTPases, in particular lysosomal Rab7. Finally, osteoclast survival is dependent on the activity of Ras GTPases. The correct function of almost all these GTPases is absolutely dependent on post-translational prenylation, which enables them to localize to specific target membranes. Bisphosphonate drugs, which are widely used in the treatment of bone diseases such as osteoporosis, act by preventing the prenylation of small GTPases, resulting in the loss of the SZ and RB and therefore inhibition of osteoclast activity, as well as inducing osteoclast apoptosis. In this review we summarize current understanding of the role of specific prenylated small GTPases in osteoclast polarization, function and survival.
Collapse
Affiliation(s)
- Cecile Itzstein
- Musculoskeletal Research Programme; Institute of Medical Sciences; University of Aberdeen; Aberdeen, Scotland UK
| | | | | |
Collapse
|
10
|
Zhang B, Dai J, Wang H, Wei H, Zhao J, Guo Y, Fan K. Anti-osteopontin monoclonal antibody prevents ovariectomy-induced osteoporosis in mice by promotion of osteoclast apoptosis. Biochem Biophys Res Commun 2014; 452:795-800. [DOI: 10.1016/j.bbrc.2014.08.149] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 08/31/2014] [Indexed: 11/25/2022]
|
11
|
A Rac1/Cdc42 GTPase-specific small molecule inhibitor suppresses growth of primary human prostate cancer xenografts and prolongs survival in mice. PLoS One 2013; 8:e74924. [PMID: 24040362 PMCID: PMC3770583 DOI: 10.1371/journal.pone.0074924] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 08/07/2013] [Indexed: 01/05/2023] Open
Abstract
Deregulated Rho GTPases Rac1 and Cdc42 have been discovered in various tumors, including prostate and Rac protein expression significantly increases in prostate cancer. The Rac and Cdc42 pathways promote the uncontrolled proliferation, invasion and metastatic properties of human cancer cells. We synthesized the novel compound AZA1 based on structural information of the known Rac1 inhibitor NSC23766. In the current study we investigated the effects of inhibition of these pathways by AZA1 on prostate tumorigenicity by performing preclinical studies using a xenograft mouse model of prostate cancer. In androgen-independent prostate cancer cells, AZA1 inhibited both Rac1 and Cdc42 but not RhoA GTPase activity in a dose-dependent manner and blocked cellular migration and proliferation. Cyclin D1 expression significantly decreased following Rac1/Cdc42 inhibition in prostate cancer cells. AZA1 treatment also down-regulated PAK and AKT activity in prostate cancer cells, associated with induction of the pro-apoptotic function of BAD by suppression of serine-112 phosphorylation. Daily systemic administration of AZA1 for 2 weeks reduced growth of human 22Rv1 prostate tumor xenografts in mice and improved the survival of tumor-bearing animals significantly. These data suggest a role of AZA1 in blocking Rac1/Cdc42-dependent cell cycle progression, cancer cell migration and increase of cancer cell apoptosis involving down-regulation of the AKT and PAK signaling pathway in prostate cancer cells. We therefore propose that a small-molecule inhibitor therapy targeting Rac1/Cdc42 Rho GTPase signaling pathways may be used as a novel treatment for patients with advanced prostate cancer.
Collapse
|
12
|
Abstract
Functional β-cell mass deficiency in diabetes results from imbalanced β-cell death and replication, and decreased PAK1 protein levels in human islets from donors with type 2 diabetes implicates a possible role for PAK1 in maintaining β-cell mass. Here, we aim to address the linkage between PAK1 and Survivin, a protein essential for β-cell replication. PAK1 knockout (KO) mouse islets exhibited decreased expression of Survivin protein. MIN6 β-cells with siRNA-mediated suppression of PAK1 also had decreased Survivin protein and exhibited an increased level of ubiquitinated-Survivin. However, no significant changes in Survivin mRNA were found in islets from PAK1 KO mice and PAK1-depleted MIN6 β-cells. The decreased Survivin level in MIN6 cells subjected to hyperglycemic stress was prevented by expression of exogenous PAK1. Moreover, overexpressing Survivin restored proliferation of β-cells that was impaired by the loss of PAK1. These data implicate a role for PAK1 in regulating Survivin protein stability in the β-cell and suggest PAK1 as a potential molecular target for the restoration of β-cell mass.
Collapse
Affiliation(s)
- Yi-Chun Chen
- Department of Cellular and Integrative Physiology; Indiana University School of Medicine; Indianapolis, IN USA
| | - Patrick T. Fueger
- Department of Cellular and Integrative Physiology; Indiana University School of Medicine; Indianapolis, IN USA
- Herman B. Wells Center for Pediatric Research; Department of Pediatrics; Indiana University School of Medicine; Indianapolis, IN USA
| | - Zhanxiang Wang
- Herman B. Wells Center for Pediatric Research; Department of Pediatrics; Indiana University School of Medicine; Indianapolis, IN USA
- Correspondence to: Zhanxiang Wang;
| |
Collapse
|
13
|
TGF-β inducible early gene 1 regulates osteoclast differentiation and survival by mediating the NFATc1, AKT, and MEK/ERK signaling pathways. PLoS One 2011; 6:e17522. [PMID: 21423731 PMCID: PMC3056664 DOI: 10.1371/journal.pone.0017522] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Accepted: 02/04/2011] [Indexed: 01/18/2023] Open
Abstract
TGF-β Inducible Early Gene-1 (TIEG1) is a Krüppel-like transcription factor (KLF10) that was originally cloned from human osteoblasts as an early response gene to TGF-β treatment. As reported previously, TIEG1(-/-) mice have decreased cortical bone thickness and vertebral bone volume and have increased spacing between the trabeculae in the femoral head relative to wildtype controls. Here, we have investigated the role of TIEG1 in osteoclasts to further determine their potential role in mediating this phenotype. We have found that TIEG1(-/-) osteoclast precursors differentiated more slowly compared to wildtype precursors in vitro and high RANKL doses are able to overcome this defect. We also discovered that TIEG1(-/-) precursors exhibit defective RANKL-induced phosphorylation and accumulation of NFATc1 and the NFATc1 target gene DC-STAMP. Higher RANKL concentrations reversed defective NFATc1 signaling and restored differentiation. After differentiation, wildtype osteoclasts underwent apoptosis more quickly than TIEG1(-/-) osteoclasts. We observed increased AKT and MEK/ERK signaling pathway activation in TIEG1(-/-) osteoclasts, consistent with the roles of these kinases in promoting osteoclast survival. Adenoviral delivery of TIEG1 (AdTIEG1) to TIEG1(-/-) cells reversed the RANKL-induced NFATc1 signaling defect in TIEG1(-/-) precursors and eliminated the differentiation and apoptosis defects. Suppression of TIEG1 with siRNA in wildtype cells reduced differentiation and NFATc1 activation. Together, these data provide evidence that TIEG1 controls osteoclast differentiation by reducing NFATc1 pathway activation and reduces osteoclast survival by suppressing AKT and MEK/ERK signaling.
Collapse
|
14
|
Baratchi S, Kanwar RK, Kanwar JR. Survivin: A target from brain cancer to neurodegenerative disease. Crit Rev Biochem Mol Biol 2010; 45:535-54. [DOI: 10.3109/10409238.2010.516740] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
15
|
Kichina JV, Goc A, Al-Husein B, Somanath PR, Kandel ES. PAK1 as a therapeutic target. Expert Opin Ther Targets 2010; 14:703-25. [PMID: 20507214 DOI: 10.1517/14728222.2010.492779] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
IMPORTANCE OF THE FIELD P21-activated kinases (PAKs) are involved in multiple signal transduction pathways in mammalian cells. PAKs, and PAK1 in particular, play a role in such disorders as cancer, mental retardation and allergy. Cell motility, survival and proliferation, the organization and function of cytoskeleton and extracellular matrix, transcription and translation are among the processes affected by PAK1. AREAS COVERED IN THIS REVIEW We discuss the mechanisms that control PAK1 activity, its involvement in physiological and pathophysiological processes, the benefits and the drawbacks of the current tools to regulate PAK1 activity, the evidence that suggests PAK1 as a therapeutic target and the likely directions of future research. WHAT THE READER WILL GAIN The reader will gain a better knowledge and understanding of the areas described above. TAKE HOME MESSAGE PAK1 is a promising therapeutic target in cancer and allergen-induced disorders. Its suitability as a target in vascular, neurological and infectious diseases remains ambiguous. Further advancement of this field requires progress on such issues as the development of specific and clinically acceptable inhibitors, the choice between targeting one or multiple PAK isoforms, elucidation of the individual roles of PAK1 targets and the mechanisms that may circumvent inhibition of PAK1.
Collapse
Affiliation(s)
- Julia V Kichina
- Roswell Park Cancer Institute, Department of Cell Stress Biology, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | | | | | | | | |
Collapse
|
16
|
p21-activated kinase 5 inhibits camptothecin-induced apoptosis in colorectal carcinoma cells. Tumour Biol 2010; 31:575-82. [PMID: 20567954 DOI: 10.1007/s13277-010-0071-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Accepted: 06/08/2010] [Indexed: 12/27/2022] Open
Abstract
p21-activated kinase 5 (PAK5) is a recently identified member of the group B PAK family. The PAK proteins are effectors of the small GTPase Cdc42 and Rac1 and are known to regulate cell motility and activate cell-survival signaling pathways. Especially, the mitochondrial localization of PAK5 is vital to its effects on apoptosis and cell survival. Previously, we demonstrated that PAK5 expression increased significantly during the malignant progression of colorectal carcinoma (CRC) and that PAK5 promoted CRC metastasis by regulating CRC cell adhesion and migration. In the present study, we aim to investigate the role of PAK5 in camptothecin-induced apoptosis and its potential mechanism of action. Our results showed that overexpression of PAK5 inhibited camptothecin-induced apoptosis by inhibiting the activity of caspase-8 in CRC cells. Accordingly, knockdown of PAK5 in LoVo cells resulted in increased apoptosis. Mechanistically, we found that PAK5 directly phosphorylated Bad on serine 112 and indirectly led to phosphorylation of serine 136 via the Akt pathway. In conclusion, our study revealed previously unappreciated inhibitory role of PAK5 in camptothecin-induced apoptosis, thus suggesting PAK5 as a novel therapeutic target in CRC.
Collapse
|
17
|
Yuan L, Santi M, Rushing EJ, Cornelison R, MacDonald TJ. ERK activation of p21 activated kinase-1 (Pak1) is critical for medulloblastoma cell migration. Clin Exp Metastasis 2010; 27:481-91. [PMID: 20526801 DOI: 10.1007/s10585-010-9337-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Accepted: 05/24/2010] [Indexed: 01/07/2023]
Abstract
We previously identified that overexpression of the platelet-derived growth factor receptor (PDGFR) is associated with metastatic medulloblastoma (MB) and showed that PDGF treatment increases ERK activity and promotes MB cell migration. In this study, we investigated whether ERK regulates Rac1/Pak1 signaling and is critically linked to MB cell migration. Herein we demonstrate that PDGF-BB treatment of MB cells induces concomitant activation of PDGFRβ, MEK1/ERK, Rac1 and Pak1, but suppresses Rho activity, which together significantly promotes cell migration. Conversely, cells transfected with either PDGFRβ or Pak1 siRNA or treated with an inhibitor of Rac1 (NSC23766) or N-myristoyltransferase-1 (Tris-dipalladium) are unable to activate Rac1 or Pak1 in response to PDGF, and consequently, are unable to undergo PDGF-mediated cell migration. Furthermore, we also demonstrate that either chemical inhibition of MEK/ERK (U0126) or stable downregulation of PDGFRβ by shRNA similarly results in the loss of PDGF-induced ERK phosphorylation and abolishes Rac1/Pak1 activation and cell migration in response to PDGF. However, specific depletion of Pak1 by siRNA has no effect on PDGF-induced ERK phosphorylation, indicating that in MB cells ERK signaling is Pak1-independent, but PDGF-induced migration is dependent on ERK-mediated activation of Pak1. Finally, using tissue microarrays, we detect phosphorylated Pak1 in 53% of medulloblastomas and show that immunopositivity is associated with unfavorable outcome. We conclude that Rac1/Pak1 signaling is critical to MB cell migration and is functionally dependent on PDGFRβ/ERK activity.
Collapse
Affiliation(s)
- Liangping Yuan
- Aflac Center for Cancer and Blood Disorders, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | |
Collapse
|
18
|
Ito Y, Teitelbaum SL, Zou W, Zheng Y, Johnson JF, Chappel J, Ross FP, Zhao H. Cdc42 regulates bone modeling and remodeling in mice by modulating RANKL/M-CSF signaling and osteoclast polarization. J Clin Invest 2010; 120:1981-93. [PMID: 20501942 DOI: 10.1172/jci39650] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2009] [Accepted: 02/24/2010] [Indexed: 11/17/2022] Open
Abstract
The modeling and remodeling of bone requires activation and polarization of osteoclasts, achieved by reorganization of the cytoskeleton. Members of the Rho subfamily of small GTPases, including Cdc42, are known regulators of cytoskeletal components, but the role of these proteins in bone physiology and pathophysiology remains unclear. Here, we examined loss-of-function mice in which Cdc42 was selectively ablated in differentiated osteoclasts and gain-of-function animals wherein Cdc42Gap, a protein that inactivates the small GTPase, was deleted globally. Cdc42 loss-of-function mice were osteopetrotic and resistant to ovariectomy-induced bone loss, while gain-of-function animals were osteoporotic. Isolated Cdc42-deficient osteoclasts displayed suppressed bone resorption, while osteoclasts with increased Cdc42 activity had enhanced resorptive capacity. We further demonstrated that Cdc42 modulated M-CSF-stimulated cyclin D expression and phosphorylation of Rb and induced caspase 3 and Bim, thus contributing to osteoclast proliferation and apoptosis rates. Furthermore, Cdc42 was required for multiple M-CSF- and RANKL-induced osteoclastogenic signals including activation and expression of the differentiation factors MITF and NFATc1 and was a component of the Par3/Par6/atypical PKC polarization complex in osteoclasts. These data suggest that Cdc42 regulates osteoclast formation and function and may represent a promising therapeutic target for prevention of pathological bone loss.
Collapse
Affiliation(s)
- Yuji Ito
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | | | |
Collapse
|