1
|
Wright CS, Lewis KJ, Semon K, Yi X, Reyes Fernandez PC, Rust K, Prideaux M, Schneider A, Pederson M, Deosthale P, Plotkin LI, Hum JM, Sankar U, Farach-Carson MC, Robling AG, Thompson WR. Deletion of the auxiliary α2δ1 voltage sensitive calcium channel subunit in osteocytes and late-stage osteoblasts impairs femur strength and load-induced bone formation in male mice. J Bone Miner Res 2024; 39:298-314. [PMID: 38477790 DOI: 10.1093/jbmr/zjae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 12/03/2023] [Accepted: 12/27/2023] [Indexed: 03/14/2024]
Abstract
Osteocytes sense and respond to mechanical force by controlling the activity of other bone cells. However, the mechanisms by which osteocytes sense mechanical input and transmit biological signals remain unclear. Voltage-sensitive calcium channels (VSCCs) regulate calcium (Ca2+) influx in response to external stimuli. Inhibition or deletion of VSCCs impairs osteogenesis and skeletal responses to mechanical loading. VSCC activity is influenced by its auxiliary subunits, which bind the channel's α1 pore-forming subunit to alter intracellular Ca2+ concentrations. The α2δ1 auxiliary subunit associates with the pore-forming subunit via a glycosylphosphatidylinositol anchor and regulates the channel's calcium-gating kinetics. Knockdown of α2δ1 in osteocytes impairs responses to membrane stretch, and global deletion of α2δ1 in mice results in osteopenia and impaired skeletal responses to loading in vivo. Therefore, we hypothesized that the α2δ1 subunit functions as a mechanotransducer, and its deletion in osteocytes would impair skeletal development and load-induced bone formation. Mice (C57BL/6) with LoxP sequences flanking Cacna2d1, the gene encoding α2δ1, were crossed with mice expressing Cre under the control of the Dmp1 promoter (10 kb). Deletion of α2δ1 in osteocytes and late-stage osteoblasts decreased femoral bone quantity (P < .05) by DXA, reduced relative osteoid surface (P < .05), and altered osteoblast and osteocyte regulatory gene expression (P < .01). Cacna2d1f/f, Cre + male mice displayed decreased femoral strength and lower 10-wk cancellous bone in vivo micro-computed tomography measurements at the proximal tibia (P < .01) compared to controls, whereas Cacna2d1f/f, Cre + female mice showed impaired 20-wk cancellous and cortical bone ex vivo micro-computed tomography measurements (P < .05) vs controls. Deletion of α2δ1 in osteocytes and late-stage osteoblasts suppressed load-induced calcium signaling in vivo and decreased anabolic responses to mechanical loading in male mice, demonstrating decreased mechanosensitivity. Collectively, the α2δ1 auxiliary subunit is essential for the regulation of osteoid-formation, femur strength, and load-induced bone formation in male mice.
Collapse
Affiliation(s)
- Christian S Wright
- Department of Physical Therapy, School of Health and Rehabilitation Sciences, Indiana University, Indianapolis, IN 46202, United States
- Indiana Center for Musculoskeletal Health, Indianapolis, IN 46202, United States
| | - Karl J Lewis
- Department of Biomedical Engineering, Cornell University, Ithaca, NY 14850, United States
| | - Katelyn Semon
- Department of Physical Therapy, School of Health and Rehabilitation Sciences, Indiana University, Indianapolis, IN 46202, United States
- Department of Anatomy & Cell Biology, School of Medicine, Indiana University, Indianapolis, IN 46202, United States
| | - Xin Yi
- Department of Physical Therapy, School of Health and Rehabilitation Sciences, Indiana University, Indianapolis, IN 46202, United States
- Indiana Center for Musculoskeletal Health, Indianapolis, IN 46202, United States
| | - Perla C Reyes Fernandez
- Department of Physical Therapy, School of Health and Rehabilitation Sciences, Indiana University, Indianapolis, IN 46202, United States
- Indiana Center for Musculoskeletal Health, Indianapolis, IN 46202, United States
| | - Katie Rust
- Department of Physical Therapy, School of Health and Rehabilitation Sciences, Indiana University, Indianapolis, IN 46202, United States
| | - Matthew Prideaux
- Indiana Center for Musculoskeletal Health, Indianapolis, IN 46202, United States
| | - Artur Schneider
- Department of Physiology, College of Osteopathic Medicine, Marian University, Indianapolis, IN 46202, United States
| | - Molly Pederson
- School of Science, Indiana University-Purdue University, Indianapolis, IN 46202, United States
| | - Padmini Deosthale
- Department of Anatomy & Cell Biology, School of Medicine, Indiana University, Indianapolis, IN 46202, United States
| | - Lilian I Plotkin
- Indiana Center for Musculoskeletal Health, Indianapolis, IN 46202, United States
- Department of Anatomy & Cell Biology, School of Medicine, Indiana University, Indianapolis, IN 46202, United States
| | - Julia M Hum
- Department of Physiology, College of Osteopathic Medicine, Marian University, Indianapolis, IN 46202, United States
| | - Uma Sankar
- Indiana Center for Musculoskeletal Health, Indianapolis, IN 46202, United States
- Department of Anatomy & Cell Biology, School of Medicine, Indiana University, Indianapolis, IN 46202, United States
| | - Mary C Farach-Carson
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, University of Texas, Health Science Center, Houston, TX 78712, United States
| | - Alexander G Robling
- Indiana Center for Musculoskeletal Health, Indianapolis, IN 46202, United States
- Department of Anatomy & Cell Biology, School of Medicine, Indiana University, Indianapolis, IN 46202, United States
| | - William R Thompson
- Department of Physical Therapy, School of Health and Rehabilitation Sciences, Indiana University, Indianapolis, IN 46202, United States
- Indiana Center for Musculoskeletal Health, Indianapolis, IN 46202, United States
- Department of Anatomy & Cell Biology, School of Medicine, Indiana University, Indianapolis, IN 46202, United States
| |
Collapse
|
2
|
Korff C, Adaway M, Atkinson EG, Horan DJ, Klunk A, Silva BS, Bellido T, Plotkin LI, Robling AG, Bidwell JP. Loss of Nmp4 enhances bone gain from sclerostin antibody administration. Bone 2023; 177:116891. [PMID: 37660938 PMCID: PMC10591883 DOI: 10.1016/j.bone.2023.116891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/22/2023] [Accepted: 08/30/2023] [Indexed: 09/05/2023]
Abstract
Severe osteoporosis is often treated with one of three Food and Drug Administration (FDA)-approved osteoanabolics. These drugs act by (1) parathyroid hormone (PTH) receptor stimulation using analogues to PTH (teriparatide) or PTH-related peptide (abaloparatide) or by (2) monoclonal antibody neutralization of sclerostin, an innate Wnt inhibitor (Scl-mAb, romosozumab-aqqg). The efficacies of both strategies wane over time. The transcription factor Nmp4 (Nuclear Matrix Protein 4) is expressed in all tissues yet mice lacking this gene are healthy and exhibit enhanced PTH-induced bone formation. Conditional deletion of Nmp4 in mesenchymal stem progenitor cells (MSPCs) phenocopies the elevated response to PTH in global Nmp4-/- mice. However, targeted deletion in later osteoblast stages does not replicate this response. In this study we queried whether loss of Nmp4 improves Scl-mAb potency. Experimental cohorts included global Nmp4-/- and Nmp4+/+ littermates and three conditional knockout models. Nmp4-floxed (Nmp4fl/fl) mice were crossed with mice harboring one of three Cre-drivers (i) Prx1Cre+ targeting MSPCs, (ii) BglapCre+ (mature osteocalcin-expressing osteoblasts), and (iii) Dmp1Cre+ (osteocytes). Female mice were treated with Scl-mAb or 0.9 % saline vehicle for 4 or 7 weeks from 10 weeks of age. Skeletal response was assessed using micro-computed tomography, dual-energy X-ray absorptiometry, bone histomorphometry, and serum analysis. Global Nmp4-/- mice exhibited enhanced Scl-mAb-induced increases in trabecular bone in the femur and spine and a heightened increase in whole body areal bone mineral density compared to global Nmp4+/+ controls. This improved Scl-mAb potency was primarily driven by enhanced increases in bone formation. Nmp4fl/fl;PrxCre+ mice showed an exaggerated Scl-mAb-induced increase in femoral bone but not in the spine since Prrx1 is not expressed in vertebra. The Nmp4fl/fl;BglapCre+ and Nmp4fl/fl;Dmp1Cre+ mice did not exhibit an improved Scl-mAb response. We conclude that Nmp4 expression in MSPCs interferes with the bone anabolic response to anti-sclerostin therapy.
Collapse
Affiliation(s)
- Crystal Korff
- Department of Medical and Molecular Genetics, Indiana University School of Medicine (IUSM), Indianapolis, IN 46202, USA
| | - Michele Adaway
- Department of Anatomy, Cell Biology, & Physiology, Indiana University School of Medicine (IUSM), Indianapolis, IN 46202, USA; Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, IN, USA
| | - Emily G Atkinson
- Department of Anatomy, Cell Biology, & Physiology, Indiana University School of Medicine (IUSM), Indianapolis, IN 46202, USA
| | - Daniel J Horan
- Department of Anatomy, Cell Biology, & Physiology, Indiana University School of Medicine (IUSM), Indianapolis, IN 46202, USA; Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, IN, USA
| | - Angela Klunk
- Department of Biochemistry and Molecular Biology, IUSM, USA
| | - Brandy Suarez Silva
- Department of Anatomy, Cell Biology, & Physiology, Indiana University School of Medicine (IUSM), Indianapolis, IN 46202, USA
| | - Teresita Bellido
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR 72205, USA; Central Arkansas Veterans Healthcare System, Little Rock, AR 72205, USA
| | - Lilian I Plotkin
- Department of Anatomy, Cell Biology, & Physiology, Indiana University School of Medicine (IUSM), Indianapolis, IN 46202, USA; Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, IN, USA; Indiana Center for Musculoskeletal Health, IUSM, USA
| | - Alexander G Robling
- Department of Anatomy, Cell Biology, & Physiology, Indiana University School of Medicine (IUSM), Indianapolis, IN 46202, USA; Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, IN, USA; Indiana Center for Musculoskeletal Health, IUSM, USA
| | - Joseph P Bidwell
- Department of Anatomy, Cell Biology, & Physiology, Indiana University School of Medicine (IUSM), Indianapolis, IN 46202, USA; Indiana Center for Musculoskeletal Health, IUSM, USA.
| |
Collapse
|
3
|
Korff C, Atkinson E, Adaway M, Klunk A, Wek RC, Vashishth D, Wallace JM, Anderson-Baucum EK, Evans-Molina C, Robling AG, Bidwell JP. NMP4, an Arbiter of Bone Cell Secretory Capacity and Regulator of Skeletal Response to PTH Therapy. Calcif Tissue Int 2023; 113:110-125. [PMID: 37147466 PMCID: PMC10330242 DOI: 10.1007/s00223-023-01088-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/21/2023] [Indexed: 05/07/2023]
Abstract
The skeleton is a secretory organ, and the goal of some osteoporosis therapies is to maximize bone matrix output. Nmp4 encodes a novel transcription factor that regulates bone cell secretion as part of its functional repertoire. Loss of Nmp4 enhances bone response to osteoanabolic therapy, in part, by increasing the production and delivery of bone matrix. Nmp4 shares traits with scaling factors, which are transcription factors that influence the expression of hundreds of genes to govern proteome allocation for establishing secretory cell infrastructure and capacity. Nmp4 is expressed in all tissues and while global loss of this gene leads to no overt baseline phenotype, deletion of Nmp4 has broad tissue effects in mice challenged with certain stressors. In addition to an enhanced response to osteoporosis therapies, Nmp4-deficient mice are less sensitive to high fat diet-induced weight gain and insulin resistance, exhibit a reduced disease severity in response to influenza A virus (IAV) infection, and resist the development of some forms of rheumatoid arthritis. In this review, we present the current understanding of the mechanisms underlying Nmp4 regulation of the skeletal response to osteoanabolics, and we discuss how this unique gene contributes to the diverse phenotypes among different tissues and stresses. An emerging theme is that Nmp4 is important for the infrastructure and capacity of secretory cells that are critical for health and disease.
Collapse
Affiliation(s)
- Crystal Korff
- Department of Medical and Molecular Genetics, Indiana University School of Medicine (IUSM), Indianapolis, IN, 46202, USA
| | - Emily Atkinson
- Department of Anatomy, Cell Biology & Physiology, IUSM, Indianapolis, IN, 46202, USA
| | - Michele Adaway
- Department of Anatomy, Cell Biology & Physiology, IUSM, Indianapolis, IN, 46202, USA
| | - Angela Klunk
- Department of Anatomy, Cell Biology & Physiology, IUSM, Indianapolis, IN, 46202, USA
| | - Ronald C Wek
- Department of Biochemistry and Molecular Biology, IUSM, Indianapolis, IN, USA
| | - Deepak Vashishth
- Center for Biotechnology & Interdisciplinary Studies and Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Joseph M Wallace
- Department of Biomedical Engineering, Indiana University-Purdue University at Indianapolis, Indianapolis, IN, 46202, USA
- Indiana Center for Musculoskeletal Health, IUSM, Indianapolis, IN, USA
| | - Emily K Anderson-Baucum
- Department of Pediatrics and the Herman B Wells Center for Pediatric Research, IUSM, Indianapolis, IN, USA
| | - Carmella Evans-Molina
- Department of Pediatrics and the Herman B Wells Center for Pediatric Research, IUSM, Indianapolis, IN, USA
- Center for Diabetes and Metabolic Disease and the Wells Center for Pediatric Research, IUSM, Indianapolis, IN, USA
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, 46202, USA
- Department of Medicine, IUSM, Indianapolis, IN, USA
| | - Alexander G Robling
- Department of Anatomy, Cell Biology & Physiology, IUSM, Indianapolis, IN, 46202, USA
- Indiana Center for Musculoskeletal Health, IUSM, Indianapolis, IN, USA
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, 46202, USA
| | - Joseph P Bidwell
- Department of Anatomy, Cell Biology & Physiology, IUSM, Indianapolis, IN, 46202, USA.
- Indiana Center for Musculoskeletal Health, IUSM, Indianapolis, IN, USA.
| |
Collapse
|
4
|
Atkinson EG, Adaway M, Horan DJ, Korff C, Klunk A, Orr AL, Ratz K, Bellido T, Plotkin LI, Robling AG, Bidwell JP. Conditional Loss of Nmp4 in Mesenchymal Stem Progenitor Cells Enhances PTH-Induced Bone Formation. J Bone Miner Res 2023; 38:70-85. [PMID: 36321253 PMCID: PMC9825665 DOI: 10.1002/jbmr.4732] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/12/2022] [Accepted: 10/29/2022] [Indexed: 11/24/2022]
Abstract
Activation of bone anabolic pathways is a fruitful approach for treating severe osteoporosis, yet FDA-approved osteoanabolics, eg, parathyroid hormone (PTH), have limited efficacy. Improving their potency is a promising strategy for maximizing bone anabolic output. Nmp4 (Nuclear Matrix Protein 4) global knockout mice exhibit enhanced PTH-induced increases in trabecular bone but display no overt baseline skeletal phenotype. Nmp4 is expressed in all tissues; therefore, to determine which cell type is responsible for driving the beneficial effects of Nmp4 inhibition, we conditionally removed this gene from cells at distinct stages of osteogenic differentiation. Nmp4-floxed (Nmp4fl/fl ) mice were crossed with mice bearing one of three Cre drivers including (i) Prx1Cre+ to remove Nmp4 from mesenchymal stem/progenitor cells (MSPCs) in long bones; (ii) BglapCre+ targeting mature osteoblasts, and (iii) Dmp1Cre+ to disable Nmp4 in osteocytes. Virgin female Cre+ and Cre- mice (10 weeks of age) were sorted into cohorts by weight and genotype. Mice were administered daily injections of either human PTH 1-34 at 30 μg/kg or vehicle for 4 weeks or 7 weeks. Skeletal response was assessed using dual-energy X-ray absorptiometry, micro-computed tomography, bone histomorphometry, and serum analysis for remodeling markers. Nmp4fl/fl ;Prx1Cre+ mice virtually phenocopied the global Nmp4-/- skeleton in the femur, ie, a mild baseline phenotype but significantly enhanced PTH-induced increase in femur trabecular bone volume/total volume (BV/TV) compared with their Nmp4fl/fl ;Prx1Cre- controls. This was not observed in the spine, where Prrx1 is not expressed. Heightened response to PTH was coincident with enhanced bone formation. Conditional loss of Nmp4 from the mature osteoblasts (Nmp4fl/fl ;BglapCre+ ) failed to increase BV/TV or enhance PTH response. However, conditional disabling of Nmp4 in osteocytes (Nmp4fl/fl ;Dmp1Cre+ ) increased BV/TV without boosting response to hormone under our experimental regimen. We conclude that Nmp4-/- Prx1-expressing MSPCs drive the improved response to PTH therapy and that this gene has stage-specific effects on osteoanabolism. © 2022 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Emily G. Atkinson
- Department of Anatomy, Cell Biology, & Physiology, Indiana University School of Medicine (IUSM), Indianapolis, IN 46202
| | - Michele Adaway
- Department of Anatomy, Cell Biology, & Physiology, Indiana University School of Medicine (IUSM), Indianapolis, IN 46202
| | - Daniel J. Horan
- Department of Anatomy, Cell Biology, & Physiology, Indiana University School of Medicine (IUSM), Indianapolis, IN 46202
- Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana, USA
| | | | - Angela Klunk
- Department of Anatomy, Cell Biology, & Physiology, Indiana University School of Medicine (IUSM), Indianapolis, IN 46202
| | - Ashley L. Orr
- Department of Anatomy, Cell Biology, & Physiology, Indiana University School of Medicine (IUSM), Indianapolis, IN 46202
- Present Address: Division of Biomedical Sciences, College of Osteopathic Medicine, Marian University Indianapolis, IN 46222
| | - Katherine Ratz
- Department of Anatomy, Cell Biology, & Physiology, Indiana University School of Medicine (IUSM), Indianapolis, IN 46202
- Present Address: Division of Biomedical Sciences, College of Osteopathic Medicine, Marian University Indianapolis, IN 46222
| | - Teresita Bellido
- Department of Physiology and Cell Biology University of Arkansas for Medical Sciences (UAMS), Little Rock, AR 72205
- Central Arkansas Veterans Healthcare System, Little Rock, AR 72205
| | - Lilian I. Plotkin
- Department of Anatomy, Cell Biology, & Physiology, Indiana University School of Medicine (IUSM), Indianapolis, IN 46202
- Indiana Center for Musculoskeletal Health, IUSM
| | - Alexander G. Robling
- Department of Anatomy, Cell Biology, & Physiology, Indiana University School of Medicine (IUSM), Indianapolis, IN 46202
- Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana, USA
- Indiana Center for Musculoskeletal Health, IUSM
| | - Joseph P. Bidwell
- Department of Anatomy, Cell Biology, & Physiology, Indiana University School of Medicine (IUSM), Indianapolis, IN 46202
- Indiana Center for Musculoskeletal Health, IUSM
| |
Collapse
|
5
|
Bidwell J, Tersey SA, Adaway M, Bone RN, Creecy A, Klunk A, Atkinson EG, Wek RC, Robling AG, Wallace JM, Evans-Molina C. Nmp4, a Regulator of Induced Osteoanabolism, Also Influences Insulin Secretion and Sensitivity. Calcif Tissue Int 2022; 110:244-259. [PMID: 34417862 PMCID: PMC8792173 DOI: 10.1007/s00223-021-00903-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 08/04/2021] [Indexed: 02/03/2023]
Abstract
A bidirectional and complex relationship exists between bone and glycemia. Persons with type 2 diabetes (T2D) are at risk for bone loss and fracture, however, heightened osteoanabolism may ameliorate T2D-induced deficits in glycemia as bone-forming osteoblasts contribute to energy metabolism via increased glucose uptake and cellular glycolysis. Mice globally lacking nuclear matrix protein 4 (Nmp4), a transcription factor expressed in all tissues and conserved between humans and rodents, are healthy and exhibit enhanced bone formation in response to anabolic osteoporosis therapies. To test whether loss of Nmp4 similarly impacted bone deficits caused by diet-induced obesity, male wild-type and Nmp4-/- mice (8 weeks) were fed either low-fat diet or high-fat diet (HFD) for 12 weeks. Endpoint parameters included bone architecture, structural and estimated tissue-level mechanical properties, body weight/composition, glucose-stimulated insulin secretion, glucose tolerance, insulin tolerance, and metabolic cage analysis. HFD diminished bone architecture and ultimate force and stiffness equally in both genotypes. Unexpectedly, the Nmp4-/- mice exhibited deficits in pancreatic β-cell function and were modestly glucose intolerant under normal diet conditions. Despite the β-cell deficits, the Nmp4-/- mice were less sensitive to HFD-induced weight gain, increases in % fat mass, and decreases in glucose tolerance and insulin sensitivity. We conclude that Nmp4 supports pancreatic β-cell function but suppresses peripheral glucose utilization, perhaps contributing to its suppression of induced skeletal anabolism. Selective disruption of Nmp4 in peripheral tissues may provide a strategy for improving both induced osteoanabolism and energy metabolism in comorbid patients.
Collapse
Affiliation(s)
- Joseph Bidwell
- Department of Anatomy, Cell Biology, & Physiology (ACBP), Indiana University School of Medicine (IUSM), Indianapolis, IN, 46202, USA.
- Indiana Center for Musculoskeletal Health, IUSM, Indianapolis, USA.
| | - Sarah A Tersey
- Department of Pediatrics, Indiana University School of Medicine (IUSM), Indianapolis, IN, 46202, USA
- Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, The University of Chicago, Chicago, IL, 60637, USA
| | - Michele Adaway
- Department of Anatomy, Cell Biology, & Physiology (ACBP), Indiana University School of Medicine (IUSM), Indianapolis, IN, 46202, USA
| | - Robert N Bone
- Department of Pediatrics, Indiana University School of Medicine (IUSM), Indianapolis, IN, 46202, USA
- Center for Diabetes and Metabolic Disease and the Wells Center for Pediatric Research, IUSM, Indianapolis, IN, 46202, USA
| | - Amy Creecy
- Department of Biomedical Engineering, Indiana University-Purdue University at Indianapolis (IUPUI), Indianapolis, IN, 46202, USA
| | - Angela Klunk
- Department of Anatomy, Cell Biology, & Physiology (ACBP), Indiana University School of Medicine (IUSM), Indianapolis, IN, 46202, USA
| | - Emily G Atkinson
- Department of Anatomy, Cell Biology, & Physiology (ACBP), Indiana University School of Medicine (IUSM), Indianapolis, IN, 46202, USA
| | - Ronald C Wek
- Department of Biochemistry & Molecular Biology, IUSM, Indianapolis, USA
| | - Alexander G Robling
- Department of Anatomy, Cell Biology, & Physiology (ACBP), Indiana University School of Medicine (IUSM), Indianapolis, IN, 46202, USA
- Indiana Center for Musculoskeletal Health, IUSM, Indianapolis, USA
| | - Joseph M Wallace
- Indiana Center for Musculoskeletal Health, IUSM, Indianapolis, USA.
- Department of Biomedical Engineering, Indiana University-Purdue University at Indianapolis (IUPUI), Indianapolis, IN, 46202, USA.
| | - Carmella Evans-Molina
- Department of Pediatrics, Indiana University School of Medicine (IUSM), Indianapolis, IN, 46202, USA.
- Center for Diabetes and Metabolic Disease and the Wells Center for Pediatric Research, IUSM, Indianapolis, IN, 46202, USA.
- Richard L. Roudebush VA Medical Center, Indianapolis, USA.
| |
Collapse
|
6
|
Zweifler LE, Koh AJ, Daignault-Newton S, McCauley LK. Anabolic actions of PTH in murine models: two decades of insights. J Bone Miner Res 2021; 36:1979-1998. [PMID: 34101904 PMCID: PMC8596798 DOI: 10.1002/jbmr.4389] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 05/26/2021] [Accepted: 06/02/2021] [Indexed: 01/19/2023]
Abstract
Parathyroid hormone (PTH) is produced by the parathyroid glands in response to low serum calcium concentrations where it targets bones, kidneys, and indirectly, intestines. The N-terminus of PTH has been investigated for decades for its ability to stimulate bone formation when administered intermittently (iPTH) and is used clinically as an effective anabolic agent for the treatment of osteoporosis. Despite great interest in iPTH and its clinical use, the mechanisms of PTH action remain complicated and not fully defined. More than 70 gene targets in more than 90 murine models have been utilized to better understand PTH anabolic actions. Because murine studies utilized wild-type mice as positive controls, a variety of variables were analyzed to better understand the optimal conditions under which iPTH functions. The greatest responses to iPTH were in male mice, with treatment starting later than 12 weeks of age, a treatment duration lasting 5-6 weeks, and a PTH dose of 30-60 μg/kg/day. This comprehensive study also evaluated these genetic models relative to the bone formative actions with a primary focus on the trabecular compartment revealing trends in critical genes and gene families relevant for PTH anabolic actions. The summation of these data revealed the gene deletions with the greatest increase in trabecular bone volume in response to iPTH. These included PTH and 1-α-hydroxylase (Pth;1α(OH)ase, 62-fold), amphiregulin (Areg, 15.8-fold), and PTH related protein (Pthrp, 10.2-fold). The deletions with the greatest inhibition of the anabolic response include deletions of: proteoglycan 4 (Prg4, -9.7-fold), low-density lipoprotein receptor-related protein 6 (Lrp6, 1.3-fold), and low-density lipoprotein receptor-related protein 5 (Lrp5, -1.0-fold). Anabolic actions of iPTH were broadly affected via multiple and diverse genes. This data provides critical insight for future research and development, as well as application to human therapeutics. © 2021 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Laura E Zweifler
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
| | - Amy J Koh
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
| | | | - Laurie K McCauley
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA.,Department of Pathology, Medical School, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
7
|
NMP4 regulates the innate immune response to influenza A virus infection. Mucosal Immunol 2021; 14:209-218. [PMID: 32152414 PMCID: PMC7483155 DOI: 10.1038/s41385-020-0280-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 02/05/2020] [Accepted: 02/25/2020] [Indexed: 02/04/2023]
Abstract
Severe influenza A virus infection typically triggers excessive and detrimental lung inflammation with massive cell infiltration and hyper-production of cytokines and chemokines. We identified a novel function for nuclear matrix protein 4 (NMP4), a zinc-finger-containing transcription factor playing roles in bone formation and spermatogenesis, in regulating antiviral immune response and immunopathology. Nmp4-deficient mice are protected from H1N1 influenza infection, losing only 5% body weight compared to a 20% weight loss in wild type mice. While having no effects on viral clearance or CD8/CD4 T cell or humoral responses, deficiency of Nmp4 in either lung structural cells or hematopoietic cells significantly reduces the recruitment of monocytes and neutrophils to the lungs. Consistent with fewer innate cells in the airways, influenza-infected Nmp4-deficient mice have significantly decreased expression of chemokine genes Ccl2, Ccl7 and Cxcl1 as well as pro-inflammatory cytokine genes Il1b and Il6. Furthermore, NMP4 binds to the promoters and/or conserved non-coding sequences of the chemokine genes and regulates their expression in mouse lung epithelial cells and macrophages. Our data suggest that NMP4 functions to promote monocyte- and neutrophil-attracting chemokine expression upon influenza A infection, resulting in exaggerated innate inflammation and lung tissue damage.
Collapse
|
8
|
Shao Y, Wichern E, Childress PJ, Adaway M, Misra J, Klunk A, Burr DB, Wek RC, Mosley AL, Liu Y, Robling AG, Brustovetsky N, Hamilton J, Jacobs K, Vashishth D, Stayrook KR, Allen MR, Wallace JM, Bidwell JP. Loss of Nmp4 optimizes osteogenic metabolism and secretion to enhance bone quality. Am J Physiol Endocrinol Metab 2019; 316:E749-E772. [PMID: 30645175 PMCID: PMC6580174 DOI: 10.1152/ajpendo.00343.2018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 01/07/2019] [Accepted: 01/09/2019] [Indexed: 12/11/2022]
Abstract
A goal of osteoporosis therapy is to restore lost bone with structurally sound tissue. Mice lacking the transcription factor nuclear matrix protein 4 (Nmp4, Zfp384, Ciz, ZNF384) respond to several classes of osteoporosis drugs with enhanced bone formation compared with wild-type (WT) animals. Nmp4-/- mesenchymal stem/progenitor cells (MSPCs) exhibit an accelerated and enhanced mineralization during osteoblast differentiation. To address the mechanisms underlying this hyperanabolic phenotype, we carried out RNA-sequencing and molecular and cellular analyses of WT and Nmp4-/- MSPCs during osteogenesis to define pathways and mechanisms associated with elevated matrix production. We determined that Nmp4 has a broad impact on the transcriptome during osteogenic differentiation, contributing to the expression of over 5,000 genes. Phenotypic anchoring of transcriptional data was performed for the hypothesis-testing arm through analysis of cell metabolism, protein synthesis and secretion, and bone material properties. Mechanistic studies confirmed that Nmp4-/- MSPCs exhibited an enhanced capacity for glycolytic conversion: a key step in bone anabolism. Nmp4-/- cells showed elevated collagen translation and secretion. The expression of matrix genes that contribute to bone material-level mechanical properties was elevated in Nmp4-/- cells, an observation that was supported by biomechanical testing of bone samples from Nmp4-/- and WT mice. We conclude that loss of Nmp4 increases the magnitude of glycolysis upon the metabolic switch, which fuels the conversion of the osteoblast into a super-secretor of matrix resulting in more bone with improvements in intrinsic quality.
Collapse
Affiliation(s)
- Yu Shao
- Department of Medical and Molecular Genetics, Indiana University School of Medicine , Indianapolis, Indiana
| | - Emily Wichern
- Department of Anatomy and Cell Biology, Indiana University School of Medicine , Indianapolis, Indiana
| | - Paul J Childress
- Department of Orthopaedic Surgery, Indiana University School of Medicine , Indianapolis, Indiana
- Indiana Center for Musculoskeletal Health Indiana University School of Medicine , Indianapolis, Indiana
| | - Michele Adaway
- Department of Anatomy and Cell Biology, Indiana University School of Medicine , Indianapolis, Indiana
| | - Jagannath Misra
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine , Indianapolis, Indiana
| | - Angela Klunk
- Department of Anatomy and Cell Biology, Indiana University School of Medicine , Indianapolis, Indiana
| | - David B Burr
- Department of Anatomy and Cell Biology, Indiana University School of Medicine , Indianapolis, Indiana
- Indiana Center for Musculoskeletal Health Indiana University School of Medicine , Indianapolis, Indiana
- Department of Biomedical Engineering, Indiana University-Purdue University , Indianapolis, Indiana
| | - Ronald C Wek
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine , Indianapolis, Indiana
| | - Amber L Mosley
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine , Indianapolis, Indiana
| | - Yunlong Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine , Indianapolis, Indiana
| | - Alexander G Robling
- Department of Anatomy and Cell Biology, Indiana University School of Medicine , Indianapolis, Indiana
- Indiana Center for Musculoskeletal Health Indiana University School of Medicine , Indianapolis, Indiana
| | - Nickolay Brustovetsky
- Department of Pharmacology and Toxicology, Indiana University School of Medicine , Indianapolis, Indiana
| | - James Hamilton
- Department of Pharmacology and Toxicology, Indiana University School of Medicine , Indianapolis, Indiana
| | - Kylie Jacobs
- Department of Microbiology and Immunology, Indiana University School of Medicine , Indianapolis, Indiana
| | - Deepak Vashishth
- Center for Biotechnology and Interdisciplinary Studies and Department of Biomedical Engineering, Rensselaer Polytechnic Institute , Troy, New York
| | - Keith R Stayrook
- Lilly Research Laboratories, Eli Lilly and Company , Indianapolis, Indiana
| | - Matthew R Allen
- Department of Anatomy and Cell Biology, Indiana University School of Medicine , Indianapolis, Indiana
- Indiana Center for Musculoskeletal Health Indiana University School of Medicine , Indianapolis, Indiana
- Roudebush Veterans Administration Medical Center , Indianapolis, Indiana
| | - Joseph M Wallace
- Department of Orthopaedic Surgery, Indiana University School of Medicine , Indianapolis, Indiana
- Indiana Center for Musculoskeletal Health Indiana University School of Medicine , Indianapolis, Indiana
- Department of Biomedical Engineering, Indiana University-Purdue University , Indianapolis, Indiana
| | - Joseph P Bidwell
- Department of Medical and Molecular Genetics, Indiana University School of Medicine , Indianapolis, Indiana
- Department of Anatomy and Cell Biology, Indiana University School of Medicine , Indianapolis, Indiana
- Indiana Center for Musculoskeletal Health Indiana University School of Medicine , Indianapolis, Indiana
| |
Collapse
|
9
|
Zekri J, Marples M, Taylor D, Kandukurti K, McParland L, Brown JE. Complications of bone metastases from malignant melanoma. J Bone Oncol 2017; 8:13-17. [PMID: 28856087 PMCID: PMC5568878 DOI: 10.1016/j.jbo.2017.08.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 08/08/2017] [Accepted: 08/10/2017] [Indexed: 12/24/2022] Open
Abstract
INTRODUCTION Metastatic bone disease (MBD) carries significant morbidity for patients with cancer. MBD from malignant melanoma (MM) is understudied. We examined the characteristics, morbidity, management and outcome of MBD in patients with MM. METHODS Patients with metastatic MM managed at two referral cancer centres in England were identified. Those with bone metastases (BMs) were selected. Patient and disease characteristics including skeletal related events (SREs) were extracted from medical records. The Kaplan Meier method was used to calculate median survival. RESULTS Five hundred and eighteen patients with metastatic MM were managed between years 2000 and 2008. Eighty nine (17.2%) patients had BMs and are the subject of this study. Median age at diagnosis was 53 years and 55% were males. BMs were identified at the time of diagnosis of metastatic disease in 68.5% patients. Sixty-six (74.2%) had multiple bone lesions and 80.9% had axial skeleton involvement. One hundred and twenty nine skeletal related events occurred in 59 (66.3%) patients (50 radiotherapy, 28 hypercalcaemia, 20 bone fractures, 18 spinal cord compression and 13 orthopaedic surgery). The annual skeletal morbidity rate was 2.5. Median survival from diagnosis of BMs was 17.3 weeks and was 5.6 weeks from the first episode of hypercalcaemia. CONCLUSION MBD affects a clinically important proportion (17.2%) of patients with metastatic MM. It carries a substantial morbidity and mortality exceeding that caused by BMs from breast and prostate cancer. These patients should receive the currently licensed bone modifying agents and should be included in clinical trials addressing MBD.
Collapse
Affiliation(s)
- Jamal Zekri
- Weston Park Hospital, Sheffield S10 2SJ, England, UK
- Al-Faisal University, King Faisal Specialist Hospital & Research Centre, Jeddah, Saudi Arabia
| | - Maria Marples
- St James's Institute of Oncology, St James's University Hospital, Leeds LS9 7TF, UK
| | - Dominic Taylor
- St James's Institute of Oncology, St James's University Hospital, Leeds LS9 7TF, UK
| | | | - Lucy McParland
- Clinical Trials Research Unit, Leeds Institute of Clinical Trials Research, University of Leeds, Leeds LS2 9PH, UK
| | - Janet E. Brown
- Academic Unit of Clinical Oncology, University of Sheffield, Weston Park Hospital, Sheffield S10 2SJ, England, UK
| |
Collapse
|
10
|
Shao Y, Hernandez-Buquer S, Childress P, Stayrook KR, Alvarez MB, Davis H, Plotkin LI, He Y, Condon KW, Burr DB, Warden SJ, Robling AG, Yang FC, Wek RC, Allen MR, Bidwell JP. Improving Combination Osteoporosis Therapy in a Preclinical Model of Heightened Osteoanabolism. Endocrinology 2017; 158:2722-2740. [PMID: 28637206 PMCID: PMC5659666 DOI: 10.1210/en.2017-00355] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 06/15/2017] [Indexed: 11/19/2022]
Abstract
Combining anticatabolic agents with parathyroid hormone (PTH) to enhance bone mass has yielded mixed results in osteoporosis patients. Toward the goal of enhancing the efficacy of these regimens, we tested their utility in combination with loss of the transcription factor Nmp4 because disabling this gene amplifies PTH-induced increases in trabecular bone in mice by boosting osteoblast secretory activity. We addressed whether combining a sustained anabolic response with an anticatabolic results in superior bone acquisition compared with PTH monotherapy. Additionally, we inquired whether Nmp4 interferes with anticatabolic efficacy. Wild-type and Nmp4-/- mice were ovariectomized at 12 weeks of age, followed by therapy regimens, administered from 16 to 24 weeks, and included individually or combined PTH, alendronate (ALN), zoledronate (ZOL), and raloxifene (RAL). Anabolic therapeutic efficacy generally corresponded with PTH + RAL = PTH + ZOL > PTH + ALN = PTH > vehicle control. Loss of Nmp4 enhanced femoral trabecular bone increases under PTH + RAL and PTH + ZOL. RAL and ZOL promoted bone restoration, but unexpectedly, loss of Nmp4 boosted RAL-induced increases in femoral trabecular bone. The combination of PTH, RAL, and loss of Nmp4 significantly increased bone marrow osteoprogenitor number, but did not affect adipogenesis or osteoclastogenesis. RAL, but not ZOL, increased osteoprogenitors in both genotypes. Nmp4 status did not influence bone serum marker responses to treatments, but Nmp4-/- mice as a group showed elevated levels of the bone formation marker osteocalcin. We conclude that the heightened osteoanabolism of the Nmp4-/- skeleton enhances the effectiveness of diverse osteoporosis treatments, in part by increasing hyperanabolic osteoprogenitors. Nmp4 provides a promising target pathway for identifying barriers to pharmacologically induced bone formation.
Collapse
Affiliation(s)
- Yu Shao
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Selene Hernandez-Buquer
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Paul Childress
- Department of Orthopedic Surgery, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Keith R. Stayrook
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Marta B. Alvarez
- Department of Orthopedic Surgery, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Hannah Davis
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Lilian I. Plotkin
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Yongzheng He
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana 46202
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Keith W. Condon
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - David B. Burr
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Stuart J. Warden
- Center for Translational Musculoskeletal Research, School of Health and Rehabilitation Sciences, Indiana University, Indianapolis, Indiana 46202
- Department of Physical Therapy, School of Health and Rehabilitation Sciences, Indiana University, Indianapolis, Indiana 46202
| | - Alexander G. Robling
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Feng-Chun Yang
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, Florida 33136
| | - Ronald C. Wek
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Matthew R. Allen
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202
- Richard A. Roudebush Veterans Administration Medical Center, Indianapolis, Indiana 46202
| | - Joseph P. Bidwell
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana 46202
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| |
Collapse
|
11
|
Young SK, Shao Y, Bidwell JP, Wek RC. Nuclear Matrix Protein 4 Is a Novel Regulator of Ribosome Biogenesis and Controls the Unfolded Protein Response via Repression of Gadd34 Expression. J Biol Chem 2016; 291:13780-8. [PMID: 27129771 DOI: 10.1074/jbc.m116.729830] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Indexed: 12/24/2022] Open
Abstract
The unfolded protein response (UPR) maintains protein homeostasis by governing the processing capacity of the endoplasmic reticulum (ER) to manage ER client loads; however, key regulators within the UPR remain to be identified. Activation of the UPR sensor PERK (EIFAK3/PEK) results in the phosphorylation of the α subunit of eIF2 (eIF2α-P), which represses translation initiation and reduces influx of newly synthesized proteins into the overloaded ER. As part of this adaptive response, eIF2α-P also induces a feedback mechanism through enhanced transcriptional and translational expression of Gadd34 (Ppp1r15A),which targets type 1 protein phosphatase for dephosphorylation of eIF2α-P to restore protein synthesis. Here we describe a novel mechanism by which Gadd34 expression is regulated through the activity of the zinc finger transcription factor NMP4 (ZNF384, CIZ). NMP4 functions to suppress bone anabolism, and we suggest that this occurs due to decreased protein synthesis of factors involved in bone formation through NMP4-mediated dampening of Gadd34 and c-Myc expression. Loss of Nmp4 resulted in an increase in c-Myc and Gadd34 expression that facilitated enhanced ribosome biogenesis and global protein synthesis. Importantly, protein synthesis was sustained during pharmacological induction of the UPR through a mechanism suggested to involve GADD34-mediated dephosphorylation of eIF2α-P. Sustained protein synthesis sensitized cells to pharmacological induction of the UPR, and the observed decrease in cell viability was restored upon inhibition of GADD34 activity. We conclude that NMP4 is a key regulator of ribosome biogenesis and the UPR, which together play a central role in determining cell viability during endoplasmic reticulum stress.
Collapse
Affiliation(s)
- Sara K Young
- From the Department of Biochemistry and Molecular Biology
| | - Yu Shao
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana 46202-5126
| | | | - Ronald C Wek
- From the Department of Biochemistry and Molecular Biology,
| |
Collapse
|
12
|
Nakamoto T, Izu Y, Kawasaki M, Notomi T, Hayata T, Noda M, Ezura Y. Mice Deficient in CIZ/NMP4 Develop an Attenuated Form of K/BxN-Serum Induced Arthritis. J Cell Biochem 2015; 117:970-7. [PMID: 26378628 DOI: 10.1002/jcb.25382] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Accepted: 09/15/2015] [Indexed: 01/08/2023]
Abstract
CIZ/NMP4 (Cas interacting zinc finger protein, Nmp4, Zfp384) is a transcription factor that is known to regulate matrix related-proteins. To explore the possible pathophysiological role of CIZ/NMP4 in arthritis, we examined CIZ/NMP4 expression in articular cartilage in arthritis model. CIZ/NMP4 was expressed in the articular chondrocytes of mice at low levels while its expression was enhanced when arthritis was induced. Arthritis induction increased clinical score in wild type mice. In contrast, CIZ/NMP4 deficiency suppressed such rise in the levels of arthritis score and swelling of soft tissue. CIZ/NMP4 deficiency also reduced invasion of inflammatory cells in joint tissue. Quantitative PCR analyses of mRNA from joints revealed that arthritis-induced increase in expressions of IL-1β was suppressed by CIZ/NMP4 deficiency. CIZ/NMP4 bound to IL-1β promoter and activated its transcription. The increase in CIZ/NMP4 in arthritis was also associated with enhancement in bone resorption and cartilage matrix degradation. In fact, RANKL, a signaling molecule prerequisite for osteoclastogenesis and, MMP-3, a clinical marker for arthritis were increased in joints upon arthritis induction. In contrast, CIZ/NMP4 deficiency suppressed the arthritis-induced increase in bone resorption, expression of RANKL and MMP-3 mRNA. Thus, CIZ/NMP4 plays a role in the development of arthritis at least in part through regulation of key molecules related to the arthritis.
Collapse
Affiliation(s)
- Tetsuya Nakamoto
- Department of Molecular Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan
| | - Yayoi Izu
- Department of Molecular Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan
| | - Makiri Kawasaki
- Department of Molecular Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan
| | - Takuya Notomi
- Department of Molecular Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan
| | - Tadayoshi Hayata
- Department of Molecular Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan
| | - Masaki Noda
- Department of Molecular Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan
| | - Yoichi Ezura
- Department of Molecular Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan
| |
Collapse
|
13
|
Childress P, Stayrook KR, Alvarez MB, Wang Z, Shao Y, Hernandez-Buquer S, Mack JK, Grese ZR, He Y, Horan D, Pavalko FM, Warden SJ, Robling AG, Yang FC, Allen MR, Krishnan V, Liu Y, Bidwell JP. Genome-Wide Mapping and Interrogation of the Nmp4 Antianabolic Bone Axis. Mol Endocrinol 2015; 29:1269-85. [PMID: 26244796 DOI: 10.1210/me.2014-1406] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
PTH is an osteoanabolic for treating osteoporosis but its potency wanes. Disabling the transcription factor nuclear matrix protein 4 (Nmp4) in healthy, ovary-intact mice enhances bone response to PTH and bone morphogenetic protein 2 and protects from unloading-induced osteopenia. These Nmp4(-/-) mice exhibit expanded bone marrow populations of osteoprogenitors and supporting CD8(+) T cells. To determine whether the Nmp4(-/-) phenotype persists in an osteoporosis model we compared PTH response in ovariectomized (ovx) wild-type (WT) and Nmp4(-/-) mice. To identify potential Nmp4 target genes, we performed bioinformatic/pathway profiling on Nmp4 chromatin immunoprecipitation sequencing (ChIP-seq) data. Mice (12 w) were ovx or sham operated 4 weeks before the initiation of PTH therapy. Skeletal phenotype analysis included microcomputed tomography, histomorphometry, serum profiles, fluorescence-activated cell sorting and the growth/mineralization of cultured WT and Nmp4(-/-) bone marrow mesenchymal stem progenitor cells (MSPCs). ChIP-seq data were derived using MC3T3-E1 preosteoblasts, murine embryonic stem cells, and 2 blood cell lines. Ovx Nmp4(-/-) mice exhibited an improved response to PTH coupled with elevated numbers of osteoprogenitors and CD8(+) T cells, but were not protected from ovx-induced bone loss. Cultured Nmp4(-/-) MSPCs displayed enhanced proliferation and accelerated mineralization. ChIP-seq/gene ontology analyses identified target genes likely under Nmp4 control as enriched for negative regulators of biosynthetic processes. Interrogation of mRNA transcripts in nondifferentiating and osteogenic differentiating WT and Nmp4(-/-) MSPCs was performed on 90 Nmp4 target genes and differentiation markers. These data suggest that Nmp4 suppresses bone anabolism, in part, by regulating IGF-binding protein expression. Changes in Nmp4 status may lead to improvements in osteoprogenitor response to therapeutic cues.
Collapse
Affiliation(s)
- Paul Childress
- Department of Anatomy and Cell Biology (P.C., S.H.-B., D.H., A.G.R., M.R.A., J.P.B.), Indiana University School of Medicine, Indianapolis, Indiana 46202; Lilly Research Laboratories (K.R.S., J.K.M., Z.R.G., V.K.), Eli Lilly and Company, Indianapolis, Indiana 46202; Orthopaedic Surgery (M.B.A.), Indiana University School of Medicine; Department of Medical and Molecular Genetics (Z.W., Y.S., Y.L., J.P.B.), Indiana University School of Medicine; Center for Computational Biology and Bioinformatics (Z.W., Y.L.), Indiana University School of Medicine; Department of Pediatrics (Y.H., F.-C.Y.), Indiana University School of Medicine; Herman B Wells Center for Pediatric Research (Y.H., F.-C.Y.); Cellular and Integrative Physiology (F.M.P.); Center for Translational Musculoskeletal Research (S.J.W.), School of Health and Rehabilitation Sciences, Indiana University; and Department of Physical Therapy (S.J.W.), School of Health and Rehabilitation Sciences, Indiana University, Indianapolis, Indiana 46202
| | - Keith R Stayrook
- Department of Anatomy and Cell Biology (P.C., S.H.-B., D.H., A.G.R., M.R.A., J.P.B.), Indiana University School of Medicine, Indianapolis, Indiana 46202; Lilly Research Laboratories (K.R.S., J.K.M., Z.R.G., V.K.), Eli Lilly and Company, Indianapolis, Indiana 46202; Orthopaedic Surgery (M.B.A.), Indiana University School of Medicine; Department of Medical and Molecular Genetics (Z.W., Y.S., Y.L., J.P.B.), Indiana University School of Medicine; Center for Computational Biology and Bioinformatics (Z.W., Y.L.), Indiana University School of Medicine; Department of Pediatrics (Y.H., F.-C.Y.), Indiana University School of Medicine; Herman B Wells Center for Pediatric Research (Y.H., F.-C.Y.); Cellular and Integrative Physiology (F.M.P.); Center for Translational Musculoskeletal Research (S.J.W.), School of Health and Rehabilitation Sciences, Indiana University; and Department of Physical Therapy (S.J.W.), School of Health and Rehabilitation Sciences, Indiana University, Indianapolis, Indiana 46202
| | - Marta B Alvarez
- Department of Anatomy and Cell Biology (P.C., S.H.-B., D.H., A.G.R., M.R.A., J.P.B.), Indiana University School of Medicine, Indianapolis, Indiana 46202; Lilly Research Laboratories (K.R.S., J.K.M., Z.R.G., V.K.), Eli Lilly and Company, Indianapolis, Indiana 46202; Orthopaedic Surgery (M.B.A.), Indiana University School of Medicine; Department of Medical and Molecular Genetics (Z.W., Y.S., Y.L., J.P.B.), Indiana University School of Medicine; Center for Computational Biology and Bioinformatics (Z.W., Y.L.), Indiana University School of Medicine; Department of Pediatrics (Y.H., F.-C.Y.), Indiana University School of Medicine; Herman B Wells Center for Pediatric Research (Y.H., F.-C.Y.); Cellular and Integrative Physiology (F.M.P.); Center for Translational Musculoskeletal Research (S.J.W.), School of Health and Rehabilitation Sciences, Indiana University; and Department of Physical Therapy (S.J.W.), School of Health and Rehabilitation Sciences, Indiana University, Indianapolis, Indiana 46202
| | - Zhiping Wang
- Department of Anatomy and Cell Biology (P.C., S.H.-B., D.H., A.G.R., M.R.A., J.P.B.), Indiana University School of Medicine, Indianapolis, Indiana 46202; Lilly Research Laboratories (K.R.S., J.K.M., Z.R.G., V.K.), Eli Lilly and Company, Indianapolis, Indiana 46202; Orthopaedic Surgery (M.B.A.), Indiana University School of Medicine; Department of Medical and Molecular Genetics (Z.W., Y.S., Y.L., J.P.B.), Indiana University School of Medicine; Center for Computational Biology and Bioinformatics (Z.W., Y.L.), Indiana University School of Medicine; Department of Pediatrics (Y.H., F.-C.Y.), Indiana University School of Medicine; Herman B Wells Center for Pediatric Research (Y.H., F.-C.Y.); Cellular and Integrative Physiology (F.M.P.); Center for Translational Musculoskeletal Research (S.J.W.), School of Health and Rehabilitation Sciences, Indiana University; and Department of Physical Therapy (S.J.W.), School of Health and Rehabilitation Sciences, Indiana University, Indianapolis, Indiana 46202
| | - Yu Shao
- Department of Anatomy and Cell Biology (P.C., S.H.-B., D.H., A.G.R., M.R.A., J.P.B.), Indiana University School of Medicine, Indianapolis, Indiana 46202; Lilly Research Laboratories (K.R.S., J.K.M., Z.R.G., V.K.), Eli Lilly and Company, Indianapolis, Indiana 46202; Orthopaedic Surgery (M.B.A.), Indiana University School of Medicine; Department of Medical and Molecular Genetics (Z.W., Y.S., Y.L., J.P.B.), Indiana University School of Medicine; Center for Computational Biology and Bioinformatics (Z.W., Y.L.), Indiana University School of Medicine; Department of Pediatrics (Y.H., F.-C.Y.), Indiana University School of Medicine; Herman B Wells Center for Pediatric Research (Y.H., F.-C.Y.); Cellular and Integrative Physiology (F.M.P.); Center for Translational Musculoskeletal Research (S.J.W.), School of Health and Rehabilitation Sciences, Indiana University; and Department of Physical Therapy (S.J.W.), School of Health and Rehabilitation Sciences, Indiana University, Indianapolis, Indiana 46202
| | - Selene Hernandez-Buquer
- Department of Anatomy and Cell Biology (P.C., S.H.-B., D.H., A.G.R., M.R.A., J.P.B.), Indiana University School of Medicine, Indianapolis, Indiana 46202; Lilly Research Laboratories (K.R.S., J.K.M., Z.R.G., V.K.), Eli Lilly and Company, Indianapolis, Indiana 46202; Orthopaedic Surgery (M.B.A.), Indiana University School of Medicine; Department of Medical and Molecular Genetics (Z.W., Y.S., Y.L., J.P.B.), Indiana University School of Medicine; Center for Computational Biology and Bioinformatics (Z.W., Y.L.), Indiana University School of Medicine; Department of Pediatrics (Y.H., F.-C.Y.), Indiana University School of Medicine; Herman B Wells Center for Pediatric Research (Y.H., F.-C.Y.); Cellular and Integrative Physiology (F.M.P.); Center for Translational Musculoskeletal Research (S.J.W.), School of Health and Rehabilitation Sciences, Indiana University; and Department of Physical Therapy (S.J.W.), School of Health and Rehabilitation Sciences, Indiana University, Indianapolis, Indiana 46202
| | - Justin K Mack
- Department of Anatomy and Cell Biology (P.C., S.H.-B., D.H., A.G.R., M.R.A., J.P.B.), Indiana University School of Medicine, Indianapolis, Indiana 46202; Lilly Research Laboratories (K.R.S., J.K.M., Z.R.G., V.K.), Eli Lilly and Company, Indianapolis, Indiana 46202; Orthopaedic Surgery (M.B.A.), Indiana University School of Medicine; Department of Medical and Molecular Genetics (Z.W., Y.S., Y.L., J.P.B.), Indiana University School of Medicine; Center for Computational Biology and Bioinformatics (Z.W., Y.L.), Indiana University School of Medicine; Department of Pediatrics (Y.H., F.-C.Y.), Indiana University School of Medicine; Herman B Wells Center for Pediatric Research (Y.H., F.-C.Y.); Cellular and Integrative Physiology (F.M.P.); Center for Translational Musculoskeletal Research (S.J.W.), School of Health and Rehabilitation Sciences, Indiana University; and Department of Physical Therapy (S.J.W.), School of Health and Rehabilitation Sciences, Indiana University, Indianapolis, Indiana 46202
| | - Zachary R Grese
- Department of Anatomy and Cell Biology (P.C., S.H.-B., D.H., A.G.R., M.R.A., J.P.B.), Indiana University School of Medicine, Indianapolis, Indiana 46202; Lilly Research Laboratories (K.R.S., J.K.M., Z.R.G., V.K.), Eli Lilly and Company, Indianapolis, Indiana 46202; Orthopaedic Surgery (M.B.A.), Indiana University School of Medicine; Department of Medical and Molecular Genetics (Z.W., Y.S., Y.L., J.P.B.), Indiana University School of Medicine; Center for Computational Biology and Bioinformatics (Z.W., Y.L.), Indiana University School of Medicine; Department of Pediatrics (Y.H., F.-C.Y.), Indiana University School of Medicine; Herman B Wells Center for Pediatric Research (Y.H., F.-C.Y.); Cellular and Integrative Physiology (F.M.P.); Center for Translational Musculoskeletal Research (S.J.W.), School of Health and Rehabilitation Sciences, Indiana University; and Department of Physical Therapy (S.J.W.), School of Health and Rehabilitation Sciences, Indiana University, Indianapolis, Indiana 46202
| | - Yongzheng He
- Department of Anatomy and Cell Biology (P.C., S.H.-B., D.H., A.G.R., M.R.A., J.P.B.), Indiana University School of Medicine, Indianapolis, Indiana 46202; Lilly Research Laboratories (K.R.S., J.K.M., Z.R.G., V.K.), Eli Lilly and Company, Indianapolis, Indiana 46202; Orthopaedic Surgery (M.B.A.), Indiana University School of Medicine; Department of Medical and Molecular Genetics (Z.W., Y.S., Y.L., J.P.B.), Indiana University School of Medicine; Center for Computational Biology and Bioinformatics (Z.W., Y.L.), Indiana University School of Medicine; Department of Pediatrics (Y.H., F.-C.Y.), Indiana University School of Medicine; Herman B Wells Center for Pediatric Research (Y.H., F.-C.Y.); Cellular and Integrative Physiology (F.M.P.); Center for Translational Musculoskeletal Research (S.J.W.), School of Health and Rehabilitation Sciences, Indiana University; and Department of Physical Therapy (S.J.W.), School of Health and Rehabilitation Sciences, Indiana University, Indianapolis, Indiana 46202
| | - Daniel Horan
- Department of Anatomy and Cell Biology (P.C., S.H.-B., D.H., A.G.R., M.R.A., J.P.B.), Indiana University School of Medicine, Indianapolis, Indiana 46202; Lilly Research Laboratories (K.R.S., J.K.M., Z.R.G., V.K.), Eli Lilly and Company, Indianapolis, Indiana 46202; Orthopaedic Surgery (M.B.A.), Indiana University School of Medicine; Department of Medical and Molecular Genetics (Z.W., Y.S., Y.L., J.P.B.), Indiana University School of Medicine; Center for Computational Biology and Bioinformatics (Z.W., Y.L.), Indiana University School of Medicine; Department of Pediatrics (Y.H., F.-C.Y.), Indiana University School of Medicine; Herman B Wells Center for Pediatric Research (Y.H., F.-C.Y.); Cellular and Integrative Physiology (F.M.P.); Center for Translational Musculoskeletal Research (S.J.W.), School of Health and Rehabilitation Sciences, Indiana University; and Department of Physical Therapy (S.J.W.), School of Health and Rehabilitation Sciences, Indiana University, Indianapolis, Indiana 46202
| | - Fredrick M Pavalko
- Department of Anatomy and Cell Biology (P.C., S.H.-B., D.H., A.G.R., M.R.A., J.P.B.), Indiana University School of Medicine, Indianapolis, Indiana 46202; Lilly Research Laboratories (K.R.S., J.K.M., Z.R.G., V.K.), Eli Lilly and Company, Indianapolis, Indiana 46202; Orthopaedic Surgery (M.B.A.), Indiana University School of Medicine; Department of Medical and Molecular Genetics (Z.W., Y.S., Y.L., J.P.B.), Indiana University School of Medicine; Center for Computational Biology and Bioinformatics (Z.W., Y.L.), Indiana University School of Medicine; Department of Pediatrics (Y.H., F.-C.Y.), Indiana University School of Medicine; Herman B Wells Center for Pediatric Research (Y.H., F.-C.Y.); Cellular and Integrative Physiology (F.M.P.); Center for Translational Musculoskeletal Research (S.J.W.), School of Health and Rehabilitation Sciences, Indiana University; and Department of Physical Therapy (S.J.W.), School of Health and Rehabilitation Sciences, Indiana University, Indianapolis, Indiana 46202
| | - Stuart J Warden
- Department of Anatomy and Cell Biology (P.C., S.H.-B., D.H., A.G.R., M.R.A., J.P.B.), Indiana University School of Medicine, Indianapolis, Indiana 46202; Lilly Research Laboratories (K.R.S., J.K.M., Z.R.G., V.K.), Eli Lilly and Company, Indianapolis, Indiana 46202; Orthopaedic Surgery (M.B.A.), Indiana University School of Medicine; Department of Medical and Molecular Genetics (Z.W., Y.S., Y.L., J.P.B.), Indiana University School of Medicine; Center for Computational Biology and Bioinformatics (Z.W., Y.L.), Indiana University School of Medicine; Department of Pediatrics (Y.H., F.-C.Y.), Indiana University School of Medicine; Herman B Wells Center for Pediatric Research (Y.H., F.-C.Y.); Cellular and Integrative Physiology (F.M.P.); Center for Translational Musculoskeletal Research (S.J.W.), School of Health and Rehabilitation Sciences, Indiana University; and Department of Physical Therapy (S.J.W.), School of Health and Rehabilitation Sciences, Indiana University, Indianapolis, Indiana 46202
| | - Alexander G Robling
- Department of Anatomy and Cell Biology (P.C., S.H.-B., D.H., A.G.R., M.R.A., J.P.B.), Indiana University School of Medicine, Indianapolis, Indiana 46202; Lilly Research Laboratories (K.R.S., J.K.M., Z.R.G., V.K.), Eli Lilly and Company, Indianapolis, Indiana 46202; Orthopaedic Surgery (M.B.A.), Indiana University School of Medicine; Department of Medical and Molecular Genetics (Z.W., Y.S., Y.L., J.P.B.), Indiana University School of Medicine; Center for Computational Biology and Bioinformatics (Z.W., Y.L.), Indiana University School of Medicine; Department of Pediatrics (Y.H., F.-C.Y.), Indiana University School of Medicine; Herman B Wells Center for Pediatric Research (Y.H., F.-C.Y.); Cellular and Integrative Physiology (F.M.P.); Center for Translational Musculoskeletal Research (S.J.W.), School of Health and Rehabilitation Sciences, Indiana University; and Department of Physical Therapy (S.J.W.), School of Health and Rehabilitation Sciences, Indiana University, Indianapolis, Indiana 46202
| | - Feng-Chun Yang
- Department of Anatomy and Cell Biology (P.C., S.H.-B., D.H., A.G.R., M.R.A., J.P.B.), Indiana University School of Medicine, Indianapolis, Indiana 46202; Lilly Research Laboratories (K.R.S., J.K.M., Z.R.G., V.K.), Eli Lilly and Company, Indianapolis, Indiana 46202; Orthopaedic Surgery (M.B.A.), Indiana University School of Medicine; Department of Medical and Molecular Genetics (Z.W., Y.S., Y.L., J.P.B.), Indiana University School of Medicine; Center for Computational Biology and Bioinformatics (Z.W., Y.L.), Indiana University School of Medicine; Department of Pediatrics (Y.H., F.-C.Y.), Indiana University School of Medicine; Herman B Wells Center for Pediatric Research (Y.H., F.-C.Y.); Cellular and Integrative Physiology (F.M.P.); Center for Translational Musculoskeletal Research (S.J.W.), School of Health and Rehabilitation Sciences, Indiana University; and Department of Physical Therapy (S.J.W.), School of Health and Rehabilitation Sciences, Indiana University, Indianapolis, Indiana 46202
| | - Matthew R Allen
- Department of Anatomy and Cell Biology (P.C., S.H.-B., D.H., A.G.R., M.R.A., J.P.B.), Indiana University School of Medicine, Indianapolis, Indiana 46202; Lilly Research Laboratories (K.R.S., J.K.M., Z.R.G., V.K.), Eli Lilly and Company, Indianapolis, Indiana 46202; Orthopaedic Surgery (M.B.A.), Indiana University School of Medicine; Department of Medical and Molecular Genetics (Z.W., Y.S., Y.L., J.P.B.), Indiana University School of Medicine; Center for Computational Biology and Bioinformatics (Z.W., Y.L.), Indiana University School of Medicine; Department of Pediatrics (Y.H., F.-C.Y.), Indiana University School of Medicine; Herman B Wells Center for Pediatric Research (Y.H., F.-C.Y.); Cellular and Integrative Physiology (F.M.P.); Center for Translational Musculoskeletal Research (S.J.W.), School of Health and Rehabilitation Sciences, Indiana University; and Department of Physical Therapy (S.J.W.), School of Health and Rehabilitation Sciences, Indiana University, Indianapolis, Indiana 46202
| | - Venkatesh Krishnan
- Department of Anatomy and Cell Biology (P.C., S.H.-B., D.H., A.G.R., M.R.A., J.P.B.), Indiana University School of Medicine, Indianapolis, Indiana 46202; Lilly Research Laboratories (K.R.S., J.K.M., Z.R.G., V.K.), Eli Lilly and Company, Indianapolis, Indiana 46202; Orthopaedic Surgery (M.B.A.), Indiana University School of Medicine; Department of Medical and Molecular Genetics (Z.W., Y.S., Y.L., J.P.B.), Indiana University School of Medicine; Center for Computational Biology and Bioinformatics (Z.W., Y.L.), Indiana University School of Medicine; Department of Pediatrics (Y.H., F.-C.Y.), Indiana University School of Medicine; Herman B Wells Center for Pediatric Research (Y.H., F.-C.Y.); Cellular and Integrative Physiology (F.M.P.); Center for Translational Musculoskeletal Research (S.J.W.), School of Health and Rehabilitation Sciences, Indiana University; and Department of Physical Therapy (S.J.W.), School of Health and Rehabilitation Sciences, Indiana University, Indianapolis, Indiana 46202
| | - Yunlong Liu
- Department of Anatomy and Cell Biology (P.C., S.H.-B., D.H., A.G.R., M.R.A., J.P.B.), Indiana University School of Medicine, Indianapolis, Indiana 46202; Lilly Research Laboratories (K.R.S., J.K.M., Z.R.G., V.K.), Eli Lilly and Company, Indianapolis, Indiana 46202; Orthopaedic Surgery (M.B.A.), Indiana University School of Medicine; Department of Medical and Molecular Genetics (Z.W., Y.S., Y.L., J.P.B.), Indiana University School of Medicine; Center for Computational Biology and Bioinformatics (Z.W., Y.L.), Indiana University School of Medicine; Department of Pediatrics (Y.H., F.-C.Y.), Indiana University School of Medicine; Herman B Wells Center for Pediatric Research (Y.H., F.-C.Y.); Cellular and Integrative Physiology (F.M.P.); Center for Translational Musculoskeletal Research (S.J.W.), School of Health and Rehabilitation Sciences, Indiana University; and Department of Physical Therapy (S.J.W.), School of Health and Rehabilitation Sciences, Indiana University, Indianapolis, Indiana 46202
| | - Joseph P Bidwell
- Department of Anatomy and Cell Biology (P.C., S.H.-B., D.H., A.G.R., M.R.A., J.P.B.), Indiana University School of Medicine, Indianapolis, Indiana 46202; Lilly Research Laboratories (K.R.S., J.K.M., Z.R.G., V.K.), Eli Lilly and Company, Indianapolis, Indiana 46202; Orthopaedic Surgery (M.B.A.), Indiana University School of Medicine; Department of Medical and Molecular Genetics (Z.W., Y.S., Y.L., J.P.B.), Indiana University School of Medicine; Center for Computational Biology and Bioinformatics (Z.W., Y.L.), Indiana University School of Medicine; Department of Pediatrics (Y.H., F.-C.Y.), Indiana University School of Medicine; Herman B Wells Center for Pediatric Research (Y.H., F.-C.Y.); Cellular and Integrative Physiology (F.M.P.); Center for Translational Musculoskeletal Research (S.J.W.), School of Health and Rehabilitation Sciences, Indiana University; and Department of Physical Therapy (S.J.W.), School of Health and Rehabilitation Sciences, Indiana University, Indianapolis, Indiana 46202
| |
Collapse
|
14
|
Frey JL, Stonko DP, Faugere MC, Riddle RC. Hypoxia-inducible factor-1α restricts the anabolic actions of parathyroid hormone. Bone Res 2014; 2:14005. [PMID: 26273518 PMCID: PMC4472139 DOI: 10.1038/boneres.2014.5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Revised: 12/24/2013] [Accepted: 01/01/2014] [Indexed: 11/29/2022] Open
Abstract
The hypoxia inducible factors (Hifs) are evolutionarily conserved transcriptional factors that control homeostatic responses to low oxygen. In developing bone, Hif-1 generated signals induce angiogenesis necessary for osteoblast specification, but in mature bone, loss of Hif-1 in osteoblasts resulted in a more rapid accumulation of bone. These findings suggested that Hif-1 exerts distinct developmental functions and acts as a negative regulator of bone formation. To investigate the function of Hif-1α in osteoanabolic signaling, we assessed the effect of Hif-1α loss-of-function on bone formation in response to intermittent parathyroid hormone (PTH). Mice lacking Hif-1α in osteoblasts and osteocytes form more bone in response to PTH, likely through a larger increase in osteoblast activity and increased sensitivity to the hormone. Consistent with this effect, exposure of primary mouse osteoblasts to PTH resulted in the rapid induction of Hif-1α protein levels via a post-transcriptional mechanism. The enhanced anabolic response appears to result from the removal of Hif-1α-mediated suppression of β-catenin transcriptional activity. Together, these data indicate that Hif-1α functions in the mature skeleton to restrict osteoanabolic signaling. The availability of pharmacological agents that reduce Hif-1α function suggests the value in further exploration of this pathway to optimize the therapeutic benefits of PTH.
Collapse
Affiliation(s)
- Julie L Frey
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine , Baltimore, MD, USA
| | - David P Stonko
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine , Baltimore, MD, USA
| | - Marie-Claude Faugere
- Division of Nephrology, Bone & Mineral Metabolism, University of Kentucky , Lexington, KY, USA
| | - Ryan C Riddle
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine , Baltimore, MD, USA ; Veterans Administration Medical Center , Baltimore, MD, USA
| |
Collapse
|
15
|
Bidwell JP, Alvarez MB, Hood M, Childress P. Functional impairment of bone formation in the pathogenesis of osteoporosis: the bone marrow regenerative competence. Curr Osteoporos Rep 2013; 11:117-25. [PMID: 23471774 DOI: 10.1007/s11914-013-0139-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The skeleton is a high-renewal organ that undergoes ongoing cycles of remodeling. The regenerative bone formation arm ultimately declines in the aging, postmenopausal skeleton, but current therapies do not adequately address this deficit. Bone marrow is the primary source of the skeletal anabolic response and the mesenchymal stem cells (MSCs), which give rise to bone matrix-producing osteoblasts. The identity of these stem cells is emerging, but it now appears that the term 'MSC' has often been misapplied to the bone marrow stromal cell (BMSC), a progeny of the MSC. Nevertheless, the changes in BMSC phenotype associated with age and estrogen depletion likely contribute to the attenuated regenerative competence of the marrow and may reflect alterations in MSC phenotype. Here we summarize current concepts in bone marrow MSC identity, and within this context, review recent observations on changes in bone marrow population dynamics associated with aging and menopause.
Collapse
Affiliation(s)
- Joseph P Bidwell
- Department of Anatomy and Cell Biology, Indiana University School of Medicine (IUSM), Medical Science Bldg 5035, 635 Barnhill Drive, Indianapolis, IN 46202, USA.
| | | | | | | |
Collapse
|
16
|
New insights into adhesion signaling in bone formation. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 305:1-68. [PMID: 23890379 DOI: 10.1016/b978-0-12-407695-2.00001-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Mineralized tissues that are protective scaffolds in the most primitive species have evolved and acquired more specific functions in modern animals. These are as diverse as support in locomotion, ion homeostasis, and precise hormonal regulation. Bone formation is tightly controlled by a balance between anabolism, in which osteoblasts are the main players, and catabolism mediated by the osteoclasts. The bone matrix is deposited in a cyclic fashion during homeostasis and integrates several environmental cues. These include diffusible elements that would include estrogen or growth factors and physicochemical parameters such as bone matrix composition, stiffness, and mechanical stress. Therefore, the microenvironment is of paramount importance for controlling this delicate equilibrium. Here, we provide an overview of the most recent data highlighting the role of cell-adhesion molecules during bone formation. Due to the very large scope of the topic, we focus mainly on the role of the integrin receptor family during osteogenesis. Bone phenotypes of some deficient mice as well as diseases of human bones involving cell adhesion during this process are discussed in the context of bone physiology.
Collapse
|
17
|
Bidwell JP, Childress P, Alvarez MB, Hood M, He Y, Pavalko FM, Kacena MA, Yang FC. Nmp4/CIZ closes the parathyroid hormone anabolic window. Crit Rev Eukaryot Gene Expr 2012; 22:205-18. [PMID: 23140162 DOI: 10.1615/critreveukargeneexpr.v22.i3.40] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Chronic degenerative diseases are increasing with the aging U.S. population. One consequence of this phenomenon is the need for long-term osteoporosis therapies. Parathyroid hormone (PTH), the only FDA-approved treatment that adds bone to the aged skeleton, loses its potency within two years of initial treatment but the mechanism regulating its limited "anabolic window" is unknown. We have discovered that disabling the nucleocytoplasmic shuttling transcription factor nuclear matrix protein 4/cas interacting zinc finger protein (Nmp4/CIZ) in mice extends the PTH bone-forming capacity. Nmp4 was discovered during our search for nuclear matrix transcription factors that couple this hormone's impact on osteoblast cytoskeletal and nuclear organization with its anabolic capacity. CIZ was independently discovered as a protein that associates with the focal adhesion-associated mechanosensor p130Cas. The Nmp4/CIZ-knockout (KO) skeletal phenotype exhibits a modestly enhanced bone mineral density but manifests an exaggerated response to both PTH and to BMP2 and is resistant to disuse-induced bone loss. The cellular basis of the global Nmp4/CIZ-KO skeletal phenotype remains to be elucidated but may involve an expansion of the bone marrow osteoprogenitor population along with modestly enhanced osteoblast and osteoclast activities supporting anabolic bone turnover. As a shuttling Cys(2)His(2) zinc finger protein, Nmp4/CIZ acts as a repressive transcription factor perhaps associated with epigenetic remodeling complexes, but the functional significance of its interaction with p130Cas is not known. Despite numerous remaining questions, Nmp4/CIZ provides insights into how the anabolic window is regulated, and itself may provide an adjuvant therapy target for the treatment of osteoporosis by extending PTH anabolic efficacy.
Collapse
Affiliation(s)
- Joseph P Bidwell
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
He Y, Childress P, Hood M, Alvarez M, Kacena MA, Hanlon M, McKee B, Bidwell JP, Yang FC. Nmp4/CIZ suppresses the parathyroid hormone anabolic window by restricting mesenchymal stem cell and osteoprogenitor frequency. Stem Cells Dev 2012; 22:492-500. [PMID: 22873745 DOI: 10.1089/scd.2012.0308] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Parathyroid hormone (PTH) anabolic osteoporosis therapy is intrinsically limited by unknown mechanisms. We previously showed that disabling the transcription factor Nmp4/CIZ in mice expanded this anabolic window while modestly elevating bone resorption. This enhanced bone formation requires a lag period to materialize. Wild-type (WT) and Nmp4-knockout (KO) mice exhibited equivalent PTH-induced increases in bone at 2 weeks of treatment, but by 7 weeks, the null mice showed more new bone. At 3-week treatment, serum osteocalcin, a bone formation marker, peaked in WT mice, but continued to increase in null mice. To determine if 3 weeks is the time when the addition of new bone diverges and to investigate its cellular basis, we treated 10-week-old null and WT animals with human PTH (1-34) (30 μg/kg/day) or vehicle before analyzing femoral trabecular architecture and bone marrow (BM) and peripheral blood phenotypic cell profiles. PTH-treated Nmp4-KO mice gained over 2-fold more femoral trabecular bone than WT by 3 weeks. There was no difference between genotypes in BM cellularity or profiles of several blood elements. However, the KO mice exhibited a significant elevation in CFU-F cells, CFU-F(Alk)(Phos+) cells (osteoprogenitors), and a higher percentage of CFU-F(Alk)(Phos+) cells/CFU-F cells consistent with an increase in CD45-/CD146+/CD105+/nestin+ mesenchymal stem cell frequency. Null BM exhibited a 2-fold enhancement in CD8+ T cells known to support osteoprogenitor differentiation and a 1.6-fold increase in CFU-GM colonies (osteoclast progenitors). We propose that Nmp4/CIZ limits the PTH anabolic window by restricting the number of BM stem, progenitor, and blood cells that support anabolic bone remodeling.
Collapse
Affiliation(s)
- Yongzheng He
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis 46202, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Alvarez MB, Childress P, Philip BK, Gerard-O'Riley R, Hanlon M, Herbert BS, Robling AG, Pavalko FM, Bidwell JP. Immortalization and characterization of osteoblast cell lines generated from wild-type and Nmp4-null mouse bone marrow stromal cells using murine telomerase reverse transcriptase (mTERT). J Cell Physiol 2012; 227:1873-82. [PMID: 21732358 DOI: 10.1002/jcp.22915] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Intermittent parathyroid hormone (PTH) adds new bone to the osteoporotic skeleton; the transcription factor Nmp4/CIZ represses PTH-induced bone formation in mice and as a consequence is a potential drug target for improving hormone clinical efficacy. To explore the impact of Nmp4/CIZ on osteoblast phenotype, we immortalized bone marrow stromal cells from wildtype (WT) and Nmp4-knockout (KO) mice using murine telomerase reverse transcriptase. Clonal lines were initially chosen based on their positive staining for alkaline phosphatase and capacity for mineralization. Disabling Nmp4/CIZ had no gross impact on osteoblast phenotype development. WT and KO clones exhibited identical sustained growth, reduced population doubling times, extended maintenance of the mature osteoblast phenotype, and competency for differentiating toward the osteoblast and adipocyte lineages. Additional screening of the immortalized cells for PTH-responsiveness permitted further studies with single WT and KO clones. We recently demonstrated that PTH-induced c-fos femoral mRNA expression is enhanced in Nmp4-KO mice and in the present study we observed that hormone stimulated either an equivalent or modestly enhanced increase in c-fos mRNA expression in both primary null and KO clone cells depending on PTH concentration. The null primary osteoblasts and KO clone cells exhibited a transiently enhanced response to bone morphogenetic protein 2 (BMP2). The clones exhibited lower and higher expressions of the PTH receptor (Pthr1) and the BMP2 receptor (Bmpr1a, Alk3), respectively, as compared to primary cells. These immortalized cell lines will provide a valuable tool for disentangling the complex functional roles underlying Nmp4/CIZ regulation of bone anabolism.
Collapse
Affiliation(s)
- Marta B Alvarez
- Department of Anatomy & Cell Biology, Indiana University School of Medicine (IUSM), Indianapolis, IN 46202, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Childress P, Philip BK, Robling AG, Bruzzaniti A, Kacena MA, Bivi N, Plotkin LI, Heller A, Bidwell JP. Nmp4/CIZ suppresses the response of bone to anabolic parathyroid hormone by regulating both osteoblasts and osteoclasts. Calcif Tissue Int 2011; 89:74-89. [PMID: 21607813 PMCID: PMC3200195 DOI: 10.1007/s00223-011-9496-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Accepted: 04/27/2011] [Indexed: 10/18/2022]
Abstract
How parathyroid hormone (PTH) increases bone mass is unclear, but understanding this phenomenon is significant to the improvement of osteoporosis therapy. Nmp4/CIZ is a nucleocytoplasmic shuttling transcriptional repressor that suppresses PTH-induced osteoblast gene expression and hormone-stimulated gains in murine femoral trabecular bone. To further characterize Nmp4/CIZ suppression of hormone-mediated bone growth, we treated 10-week-old Nmp4-knockout (KO) and wild-type (WT) mice with intermittent human PTH(1-34) at 30 μg/kg daily or vehicle, 7 days/week, for 2, 3, or 7 weeks. Null mice treated with hormone (7 weeks) gained more vertebral and tibial cancellous bone than WT animals, paralleling the exaggerated response in the femur. Interestingly, Nmp4/CIZ suppression of this hormone-stimulated bone formation was not apparent during the first 2 weeks of treatment. Consistent with the null mice enhanced PTH-stimulated addition of trabecular bone, these animals exhibited an augmented hormone-induced increase in serum osteocalcin 3 weeks into treatment. Unexpectedly, the Nmp4-KO mice displayed an osteoclast phenotype. Serum C-terminal telopeptide, a marker for bone resorption, was elevated in the null mice, irrespective of treatment. Nmp4-KO bone marrow cultures produced more osteoclasts, which exhibited elevated resorbing activity, compared to WT cultures. The expression of several genes critical to the development of both osteoblasts and osteoclasts was elevated in Nmp4-KO mice at 2 weeks, but not 3 weeks, of hormone exposure. We propose that Nmp4/CIZ dampens PTH-induced improvement of trabecular bone throughout the skeleton by transiently suppressing hormone-stimulated increases in the expression of proteins key to the required enhanced activity and number of both osteoblasts and osteoclasts.
Collapse
Affiliation(s)
- Paul Childress
- Department of Anatomy and Cell Biology, Indiana University School of Medicine (IUSM), Medical Science Bldg., Indianapolis, IN 46202, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
The receptor for advanced glycation end products (RAGE), a member of the immunoglobulin super-family transmembrane proteins, has multiple ligands, thus, is implicated in the pathogenesis of various diseases, including diabetic complications, neurodegenerative disorders, and inflammatory responses. Its function in normal physiology is beginning to be defined, and recent studies have pointed to an important role for RAGE and its ligands (e.g., HMGB1 (high mobility group box 1)) in innate immune response. In addition, RAGE and its ligands are also implicated in osteoclast activation and bone remodeling. Understanding how RAGE and its ligands regulate bone remodeling may provide insight into the pathogenesis of diabetes and chronic inflammation associated bone loss. Recent progress relevant to the functions of RAGE and its ligands in bone remodeling is discussed in this review.
Collapse
Affiliation(s)
- Zheng Zhou
- Institute of Molecular Medicine and Genetics and Department of Neurology, Medical College of Georgia, Augusta, GA 30912
| | - Wen-Cheng Xiong
- Institute of Molecular Medicine and Genetics and Department of Neurology, Medical College of Georgia, Augusta, GA 30912
| |
Collapse
|
22
|
Affiliation(s)
- Joseph P Bidwell
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | | |
Collapse
|
23
|
Abstract
We introduced the mechanosome hypothesis in 2003 as a heuristic model for investigating mechanotransduction in bone (Pavalko et al., J Cell Biochem, 2003, 88(1):104-112). This model suggested specific approaches for investigating how mechanical information is conveyed from the membrane of the sensor bone cell to the target genes and how this transmitted information from the membrane is converted into changes in transcription. The key concepts underlying the mechanosome hypothesis are that load-induced deformation of bone deforms the sensor cell membrane; embedded in the membrane are the focal adhesion and cadherin-catenin complexes, which in turn are physically connected to the chromatin via a solid-state scaffold. The physical stimulation of the membrane launches multiprotein complexes (mechanosomes) from the adhesion platforms while concomitantly tugging target genes into position for contact with the incoming mechanosomes, the carriers of the mechanical information to the nucleus. The mechanosome is comprised of an adhesion-associated protein and a nucleocytoplasmic shuttling transcription factor. Upon arrival at the target gene, mechanosomes alter DNA conformation and thus influence the interactions between trans-acting proteins along the gene, changing gene activity. Here, we update significant progress related to the mechanosome concept since publication of our original hypothesis. The launching of adhesion- and cytoskeletal-associated proteins into the nucleus toward target genes appears to be a common mechanism for regulating cell response to changes in its mechanical microenvironment.
Collapse
Affiliation(s)
- Joseph P Bidwell
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | |
Collapse
|
24
|
Xu XH, Dong SS, Guo Y, Yang TL, Lei SF, Papasian CJ, Zhao M, Deng HW. Molecular genetic studies of gene identification for osteoporosis: the 2009 update. Endocr Rev 2010; 31:447-505. [PMID: 20357209 PMCID: PMC3365849 DOI: 10.1210/er.2009-0032] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Accepted: 02/02/2010] [Indexed: 12/12/2022]
Abstract
Osteoporosis is a complex human disease that results in increased susceptibility to fragility fractures. It can be phenotypically characterized using several traits, including bone mineral density, bone size, bone strength, and bone turnover markers. The identification of gene variants that contribute to osteoporosis phenotypes, or responses to therapy, can eventually help individualize the prognosis, treatment, and prevention of fractures and their adverse outcomes. Our previously published reviews have comprehensively summarized the progress of molecular genetic studies of gene identification for osteoporosis and have covered the data available to the end of September 2007. This review represents our continuing efforts to summarize the important and representative findings published between October 2007 and November 2009. The topics covered include genetic association and linkage studies in humans, transgenic and knockout mouse models, as well as gene-expression microarray and proteomics studies. Major results are tabulated for comparison and ease of reference. Comments are made on the notable findings and representative studies for their potential influence and implications on our present understanding of the genetics of osteoporosis.
Collapse
Affiliation(s)
- Xiang-Hong Xu
- Institute of Molecular Genetics, Xi'an Jiaotong University, Shaanxi, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Yang Z, Bidwell JP, Young SR, Gerard-O'Riley R, Wang H, Pavalko FM. Nmp4/CIZ inhibits mechanically induced beta-catenin signaling activity in osteoblasts. J Cell Physiol 2010; 223:435-41. [PMID: 20112285 DOI: 10.1002/jcp.22057] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Cellular mechanotransduction, the process of converting mechanical signals into biochemical responses within cells, is a critical aspect of bone health. While the effects of mechanical loading on bone are well recognized, elucidating the specific molecular pathways involved in the processing of mechanical signals by bone cells represents a challenge and an opportunity to identify therapeutic strategies to combat bone loss. In this study we have for the first time examined the relationship between the nucleocytoplasmic shuttling transcription factor nuclear matrix protein-4/cas interacting zinc finger protein (Nmp4/CIZ) and beta-catenin signaling in response to a physiologic mechanical stimulation (oscillatory fluid shear stress, OFSS) in osteoblasts. Using calvaria-derived osteoblasts from Nmp4-deficient and wild-type mice, we found that the normal translocation of beta-catenin to the nucleus in osteoblasts that is induced by OFSS is enhanced when Nmp4/CIZ is absent. Furthermore, we found that other aspects of OFSS-induced mechanotransduction generally associated with the beta-catenin signaling pathway, including ERK, Akt, and GSK3beta activity, as well as expression of the beta-catenin-responsive protein cyclin D1 are also enhanced in cells lacking Nmp4/CIZ. Finally, we found that in the absence of Nmp4/CIZ, OFSS-induced cytoskeletal reorganization and the formation of focal adhesions between osteoblasts and the extracellular substrate is qualitatively enhanced, suggesting that Nmp4/CIZ may reduce the sensitivity of bone cells to mechanical stimuli. Together these results provide experimental support for the concept that Nmp4/CIZ plays an inhibitory role in the response of bone cells to mechanical stimulation induced by OFSS.
Collapse
Affiliation(s)
- Zhouqi Yang
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | | | | | | | |
Collapse
|
26
|
Philip BK, Childress PJ, Robling AG, Heller A, Nawroth PP, Bierhaus A, Bidwell JP. RAGE supports parathyroid hormone-induced gains in femoral trabecular bone. Am J Physiol Endocrinol Metab 2010; 298:E714-25. [PMID: 20028966 PMCID: PMC2838526 DOI: 10.1152/ajpendo.00564.2009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Accepted: 12/17/2009] [Indexed: 11/22/2022]
Abstract
Parathyroid hormone (PTH) restores bone mass to the osteopenic skeleton, but significant questions remain as to the underlying mechanisms. The receptor for advanced glycation end products (RAGE) is a multiligand receptor of the immunoglobulin superfamily; however, recent studies indicate a role in bone physiology. We investigated the significance of RAGE to hormone-induced increases in bone by treating 10-wk-old female Rage-knockout (KO) and wild-type (WT) mice with human PTH-(1-34) at 30 microg.kg(-1).day(-1) or vehicle control, 7 days/wk, for 7 wk. PTH produced equivalent relative gains in bone mineral density (BMD) and bone mineral content (BMC) throughout the skeleton in both genotypes. PTH-mediated relative increases in cortical area of the midshaft femur were not compromised in the null mice. However, the hormone-induced gain in femoral cancellous bone was significantly attenuated in Rage-KO mice. The loss of RAGE impaired PTH-mediated increases in femoral cancellous bone volume, connectivity density, and trabecular number but did not impact increases in trabecular thickness or decreases in trabecular spacing. Disabling RAGE reduced femoral expression of bone formation genes, but their relative PTH-responsiveness was not impaired. Neutralizing RAGE did not attenuate vertebral cancellous bone response to hormone. Rage-null mice exhibited an attenuated accrual rate of bone mass, with the exception of the spine, and an enhanced accrual rate of fat mass. We conclude that RAGE is necessary for key aspects of the skeleton's response to anabolic PTH. Specifically, RAGE is required for hormone-mediated improvement of femoral trabecular architecture but not intrinsically necessary for increasing cortical thickness.
Collapse
Affiliation(s)
- Binu K Philip
- Dept. of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, 46202, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Childress P, Robling AG, Bidwell JP. Nmp4/CIZ: road block at the intersection of PTH and load. Bone 2010; 46:259-66. [PMID: 19766748 PMCID: PMC2818167 DOI: 10.1016/j.bone.2009.09.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Revised: 09/10/2009] [Accepted: 09/14/2009] [Indexed: 11/17/2022]
Abstract
Teriparatide (parathyroid hormone, [PTH]) is the only FDA-approved drug that replaces bone lost to osteoporosis. Enhancing PTH efficacy will improve cost-effectiveness and ameliorate contraindications. Combining this hormone with load-bearing exercise may enhance therapeutic potential consistent with a growing body of evidence that these agonists are synergistic and share common signaling pathways. Additionally, neutralizing molecules that naturally suppress the anabolic response to PTH may also improve the efficacy of treatment with this hormone. Nmp4/CIZ (nuclear matrix protein 4/cas interacting zinc finger)-null mice have enhanced responses to intermittent PTH with respect to increasing trabecular bone mass and are also immune to disuse-induced bone loss likely by the removal of Nmp4/CIZ suppressive action on osteoblast function. Nmp4/CIZ activity may be sensitive to changes in the mechanical environment of the bone cell brought about by hormone- or mechanical load-induced changes in cell shape and adhesion. Nmp4 was identified in a screen for PTH-responsive nuclear matrix architectural transcription factors (ATFs) that we proposed translate hormone-induced changes in cell shape and adhesion into changes in target gene DNA conformation. CIZ was independently identified as a nucleocytoplasmic shuttling transcription factor associating with the mechano-sensitive focal adhesion proteins p130Cas and zxyin. The p130Cas/zyxin/Nmp4/CIZ pathway resembles the beta-catenin/TCF/LEF1 mechanotransduction response limb and both share features with the HMGB1 (high mobility group box 1)/RAGE (receptor for advanced glycation end products) signaling axis. Here we describe Nmp4/CIZ within the context of the PTH-induced anabolic response and consider the place of this molecule in the hierarchy of the PTH-load response network.
Collapse
Affiliation(s)
- Paul Childress
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | |
Collapse
|