1
|
Yan M, Cai L, Duan X, Tycksen ED, Rai MF. Carbonic anhydrase 2 is important for chondrocyte function and metabolic homeostasis. Bone 2024:117313. [PMID: 39488239 DOI: 10.1016/j.bone.2024.117313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/24/2024] [Accepted: 10/28/2024] [Indexed: 11/04/2024]
Abstract
OBJECTIVES Aberrant chondrocyte metabolism significantly contributes to cartilage degeneration and osteoarthritis (OA) genesis. However, the mechanisms driving the metabolic shift in OA chondrocytes remain unclear. Interestingly, carbonic anhydrase 2 (CA2) is implicated in metabolic regulation, and its expression dramatically increases in OA chondrocytes, but its exact role and mechanism are poorly understood. This study investigates the mechanistic role of CA2 in chondrocyte metabolic homeostasis under inflammatory conditions. METHODS RNA-seq was performed on CA2-deficient C28/I2 cells to identify pathways affected by the loss of CA2 function. We examined CA2's impact on chondrocyte metabolism, anabolism, and catabolism using C28/I2 cells and primary chondrocytes under normoxia and hypoxia and in a model of inflammatory OA. RESULTS RNA-seq revealed enrichment of glycolysis, apoptosis, and TNF signaling pathways in CA2-deficient cells. Under hypoxia, CA2 expression increased 10-fold in a HIF-1α-independent manner. Knockdown of CA2 reduced extracellular lactate production, increased ADP/ATP ratio, impaired glycolysis, reduced glycolytic capacity, and lowered expression of glycolysis rate-limiting enzymes but did not disrupt pHi and ROS production. CA2 deficiency altered chondrocyte anabolic and catabolic equilibrium by affecting PI3K/AKT and RELA/p65 signaling. Chondrocyte migration was impeded, proliferation suppressed, and the cell cycle arrested at G0/G1 in cells lacking CA2. Forced expression of CA2 stabilized chondrocyte metabolism and restored cellular functions. CONCLUSIONS Our research uncovered a novel mechanistic role for CA2 in regulating chondrocyte energy metabolism and inflammation, underscoring its potential as a critical mediator in OA pathogenesis. Further research using a murine model of experimental OA is warranted to capture the functional implications of CA2.
Collapse
Affiliation(s)
- Mingming Yan
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO, USA; Department of Orthopaedic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Lei Cai
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Xin Duan
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Eric D Tycksen
- Genome Technology Access Center, McDonell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - Muhammad Farooq Rai
- Department of Biological Sciences, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates; Center for Biotechnology, Khalifa University, Abu Dhabi, United Arab Emirates; Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA; Department of Biomedical Engineering, Saint Louis University School of Science and Engineering, St. Louis, MO, USA.
| |
Collapse
|
2
|
Didan Y, Ghomlaghi M, Nguyen LK, Ng DCH. Stress pathway outputs are encoded by pH-dependent clustering of kinase components. Nat Commun 2024; 15:6614. [PMID: 39103333 DOI: 10.1038/s41467-024-50638-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 07/10/2024] [Indexed: 08/07/2024] Open
Abstract
Signal processing by intracellular kinases controls near all biological processes but how signal pathway functions evolve with changed cellular context is poorly understood. Functional specificity of c-Jun N-terminal Kinases (JNK) are partly encoded by signal strength. Here we reveal that intracellular pH (pHi) is a significant component of the JNK network and defines signal response to specific stimuli. We show pHi regulates JNK activity in response to cell stress, with the relationship between pHi and JNK activity dependent on specific stimuli and upstream kinases activated. Using the optogenetic clustering tag CRY2, we show that an increase in pHi promotes the light-induced phase transition of ASK1 to augment JNK activation. While increased pHi similarly promoted CRY2-tagged JNK2 to form light-induced condensates, this attenuated JNK activity. Mathematical modelling of feedback signalling incorporating pHi and differential contributions by ASK1 and JNK2 condensates was sufficient to delineate signal responses to specific stimuli. Taking pHi and ASK1/JNK2 signal contributions into consideration may delineate oncogenic versus tumour suppressive JNK functions and cancer cell drug responses.
Collapse
Affiliation(s)
- Yuliia Didan
- School of Biomedical Science, Faculty of Medicine, University of Queensland; St Lucia, Brisbane, Australia
| | - Milad Ghomlaghi
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Australia
- Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Lan K Nguyen
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Australia
- Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Dominic C H Ng
- School of Biomedical Science, Faculty of Medicine, University of Queensland; St Lucia, Brisbane, Australia.
| |
Collapse
|
3
|
Zito F, Bonaventura R, Costa C, Russo R. Carbonic anhydrases in development: morphological observations and gene expression profiling in sea urchin embryos exposed to acetazolamide. Open Biol 2023; 13:220254. [PMID: 36597694 PMCID: PMC9811153 DOI: 10.1098/rsob.220254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Carbonic anhydrases (CANs) are conserved metalloenzymes catalysing the reversible hydration of carbon dioxide into protons and bicarbonate, with important roles in cells physiology. Some CAN-coding genes were found in sea urchin genome, although only one involved in embryonic skeletogenesis was described in Paracentrotus lividus. Here, we investigated gene expression patterns of P. lividus embryos cultured in the presence of acetazolamide (AZ), a CAN inhibitor, to combine morphological defects with their molecular underpinning. CAN inhibition blocked skeletogenesis, affected the spatial/temporal expression of some biomineralization-related genes, inhibited embryos swimming. A comparative analysis on the expression of 127 genes in control and 3 h/24 h AZ-treated embryos, using NanoString technology, showed the differential expression of genes encoding for structural/regulatory proteins, with different embryonic roles: biomineralization, transcriptional regulation, signalling, development and defence response. The study of the differentially expressed genes and the signalling pathways affected, besides in silico analyses and a speculative 'interactomic model', leads to predicting the presence of various CAN isoforms, possibly involved in different physiological processes/activities in sea urchin embryo, and their potential target genes/proteins. Our findings provide new valuable molecular data for further studies in several biological fields: developmental biology (biomineralization, axes patterning), cell differentiation (neural development) and drug toxicology (AZ effects on embryos/tissues).
Collapse
Affiliation(s)
- Francesca Zito
- Istituto per la Ricerca e l'Innovazione Biomedica, Consiglio Nazionale delle Ricerche, via Ugo La Malfa 153, Palermo 90146, Italy
| | - Rosa Bonaventura
- Istituto per la Ricerca e l'Innovazione Biomedica, Consiglio Nazionale delle Ricerche, via Ugo La Malfa 153, Palermo 90146, Italy
| | - Caterina Costa
- Istituto per la Ricerca e l'Innovazione Biomedica, Consiglio Nazionale delle Ricerche, via Ugo La Malfa 153, Palermo 90146, Italy
| | - Roberta Russo
- Istituto per la Ricerca e l'Innovazione Biomedica, Consiglio Nazionale delle Ricerche, via Ugo La Malfa 153, Palermo 90146, Italy
| |
Collapse
|
4
|
Zhang Y, Jin T, Zhu W, Pandya M, Gopinathan G, Allen M, Reed D, Keiderling T, Liao X, Diekwisch TGH. Highly acidic pH facilitates enamel protein self-assembly, apatite crystal growth and enamel protein interactions in the early enamel matrix. Front Physiol 2022; 13:1019364. [PMID: 36569763 PMCID: PMC9772882 DOI: 10.3389/fphys.2022.1019364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 11/22/2022] [Indexed: 12/13/2022] Open
Abstract
Tooth enamel develops within a pH sensitive amelogenin-rich protein matrix. The purpose of the present study is to shed light on the intimate relationship between enamel matrix pH, enamel protein self-assembly, and enamel crystal growth during early amelogenesis. Universal indicator dye staining revealed highly acidic pH values (pH 3-4) at the exocytosis site of secretory ameloblasts. When increasing the pH of an amelogenin solution from pH 5 to pH 7, there was a gradual increase in subunit compartment size from 2 nm diameter subunits at pH 5 to a stretched configuration at pH6 and to 20 nm subunits at pH 7. HSQC NMR spectra revealed that the formation of the insoluble amelogenin self-assembly structure at pH6 was critically mediated by at least seven of the 11 histidine residues of the amelogenin coil domain (AA 46-117). Comparing calcium crystal growth on polystyrene plates, crystal length was more than 20-fold elevated at pH 4 when compared to crystals grown at pH 6 or pH 7. To illustrate the effect of pH on enamel protein self-assembly at the site of initial enamel formation, molar teeth were immersed in phosphate buffer at pH4 and pH7, resulting in the formation of intricate berry tree-like assemblies surrounding initial enamel crystal assemblies at pH4 that were not evident at pH7 nor in citrate buffer. Amelogenin and ameloblastin enamel proteins interacted at the secretory ameloblast pole and in the initial enamel layer, and co-immunoprecipitation studies revealed that this amelogenin/ameloblastin interaction preferentially takes place at pH 4-pH 4.5. Together, these studies highlight the highly acidic pH of the very early enamel matrix as an essential contributing factor for enamel protein structure and self-assembly, apatite crystal growth, and enamel protein interactions.
Collapse
Affiliation(s)
- Youbin Zhang
- Department of Oral Biology, University of Illinois at Chicago, Dallas, Illinois, United States
| | - Tianquan Jin
- Department of Oral Biology, University of Illinois at Chicago, Dallas, Illinois, United States
| | - Weiying Zhu
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Mirali Pandya
- Center for Craniofacial Research and Diagnosis, Texas A and M College of Dentistry, Dallas, Texas, United States
| | - Gokul Gopinathan
- Center for Craniofacial Research and Diagnosis, Texas A and M College of Dentistry, Dallas, Texas, United States
| | - Michael Allen
- Department of Medicine, University of Chicago, Chicago, Illinois, United States
| | - David Reed
- Department of Oral Biology, University of Illinois at Chicago, Dallas, Illinois, United States
| | - Timothy Keiderling
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois, United States,*Correspondence: Timothy Keiderling, ; Xiubei Liao, ; Thomas G. H. Diekwisch,
| | - Xiubei Liao
- Department of Biochemistry, University of Illinois at Chicago, Chicago, Illinois, United States,*Correspondence: Timothy Keiderling, ; Xiubei Liao, ; Thomas G. H. Diekwisch,
| | - Thomas G. H. Diekwisch
- Department of Oral Biology, University of Illinois at Chicago, Dallas, Illinois, United States,Center for Craniofacial Research and Diagnosis, Texas A and M College of Dentistry, Dallas, Texas, United States,*Correspondence: Timothy Keiderling, ; Xiubei Liao, ; Thomas G. H. Diekwisch,
| |
Collapse
|
5
|
Rudenko NN, Ivanov BN. Unsolved Problems of Carbonic Anhydrases Functioning in Photosynthetic Cells of Higher C3 Plants. BIOCHEMISTRY. BIOKHIMIIA 2021; 86:1243-1255. [PMID: 34903154 DOI: 10.1134/s0006297921100072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The review presents current data on carbonic anhydrases found in various compartments of photosynthetic cells of higher plants. The available data on expression of genes some of carbonic anhydrases and its dependence on environmental factors and plant age are considered. The existing hypotheses on the functions of carbonic anhydrases of plasma membrane, cytoplasm, as well as of stroma and thylakoids of chloroplast, first of all, the hypothesis on participation of these enzymes in supplying carbon dioxide molecules to ribulose-bisphosphate carboxylase (Rubisco) are analyzed. Difficulties of establishing physiological role of the plant cell carbonic anhydrase are discussed in detail.
Collapse
Affiliation(s)
- Natalia N Rudenko
- Institute of Basic Biological Problems, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Boris N Ivanov
- Institute of Basic Biological Problems, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| |
Collapse
|
6
|
Ohki R, Matsuki-Fukushima M, Fujikawa K, Mayahara M, Matsuyama K, Nakamura M. In the absence of a basal lamina, ameloblasts absorb enamel in a serumless and chemically defined organ culture system. J Oral Biosci 2021; 63:66-73. [PMID: 33493674 DOI: 10.1016/j.job.2020.12.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/23/2020] [Accepted: 12/17/2020] [Indexed: 11/30/2022]
Abstract
OBJECTIVES Tooth organ development was examined in a serumless, chemically defined organ culture system to determine whether morphological and functional development was identical to that in in vivo and serum-supplemented organ cultures. METHODS Mouse mandibular first molar tooth organs at 16 days of gestation were cultured for up to 28 days in a Tronwell culture system using a serum-supplemented or serumless, chemically defined medium. After culture, specimens were processed for assessing tooth development using ultrastructural, immunohistochemical, and mRNA expression analyses. RESULTS In serum-supplemented conditions, inner enamel epithelial cells differentiated into secretory-stage ameloblasts, which formed enamel and reached the maturation stage after 14 and 21 days of culture, respectively. Ameloblasts deposited a basal lamina on immature enamel. Conversely, in serumless conditions, ameloblasts formed enamel on mineralized dentin after 21 days. Moreover, maturation-stage ameloblasts did not form basal lamina and directly absorbed mineralized enamel after 28 days of culture. RT-PCR analysis indicated that tooth organs, cultured in serumless conditions for 28 days, had significantly reduced expression levels of ODAM, amelotin, and laminin-322. CONCLUSIONS These results indicate that several differences were detected compared to the development in serum-supplemented conditions, such as delayed enamel and dentin formation and the failure of maturation-stage ameloblasts to form basal laminae. Therefore, our results suggest that some factors might be required for the steady formation of mineralized dentin, enamel, and a basal lamina. Additionally, our results indicate that a basal lamina is necessary for enamel maturation.
Collapse
Affiliation(s)
- Retsu Ohki
- Department of Oral Anatomy and Developmental Biology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 4142-8555, Japan
| | - M Matsuki-Fukushima
- Department of Oral Anatomy and Developmental Biology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 4142-8555, Japan
| | - K Fujikawa
- Department of Oral Anatomy and Developmental Biology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 4142-8555, Japan
| | - Mitsuori Mayahara
- Department of Oral Anatomy and Developmental Biology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 4142-8555, Japan
| | - Kayo Matsuyama
- Department of Oral Anatomy and Developmental Biology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 4142-8555, Japan
| | - Masanori Nakamura
- Department of Oral Anatomy and Developmental Biology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 4142-8555, Japan.
| |
Collapse
|
7
|
Kim HE, Hong JH. The overview of channels, transporters, and calcium signaling molecules during amelogenesis. Arch Oral Biol 2018; 93:47-55. [PMID: 29803993 DOI: 10.1016/j.archoralbio.2018.05.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 05/18/2018] [Accepted: 05/19/2018] [Indexed: 01/02/2023]
Abstract
Enamel is a highly calcified tissue. Its formation requires a progressive and dynamic system for the regulation of electrolyte concentration by enamel epithelia. A critical function of enamel epithelial cells, ameloblasts, is the secretion and movement of electrolytes via various channels and transporters to develop the enamel tissue. Enamel formation generates protons, which need to be neutralised. Thus, ameloblasts possess a buffering system to sustain mineral accretion. Normal tooth formation involves stage-dependent net fluctuations in pH during amelogenesis. To date, all of our information about ion transporters in dental enamel tissue is based solely on immunostaining-expression techniques. This review critically evaluates the current understanding and recent discoveries and physiological role of ion channels and transporters, Mg2+ transporters, and Ca2+ regulatory proteins during amelogenesis in enamel formation. The ways in which ameloblasts modulate ions are discussed in the context of current research for developing a novel morphologic-functional model of enamel maturation.
Collapse
Affiliation(s)
- Hee-Eun Kim
- Department of Dental Hygiene, College of Health Science, Gachon University, 191 Hambangmoe-ro, Yeonsu-gu, Incheon, 21936, South Korea
| | - Jeong Hee Hong
- Department of Physiology, College of Medicine, Lee Gil Ya Cancer and Diabetes Institute, GAIHST, Gachon University, Incheon, 21999, South Korea.
| |
Collapse
|
8
|
Yin K, Guo J, Lin W, Robertson SYT, Soleimani M, Paine ML. Deletion of Slc26a1 and Slc26a7 Delays Enamel Mineralization in Mice. Front Physiol 2017; 8:307. [PMID: 28559854 PMCID: PMC5432648 DOI: 10.3389/fphys.2017.00307] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 04/28/2017] [Indexed: 12/12/2022] Open
Abstract
Amelogenesis features two major developmental stages—secretory and maturation. During maturation stage, hydroxyapatite deposition and matrix turnover require delicate pH regulatory mechanisms mediated by multiple ion transporters. Several members of the Slc26 gene family (Slc26a1, Slc26a3, Slc26a4, Slc26a6, and Slc26a7), which exhibit bicarbonate transport activities, have been suggested by previous studies to be involved in maturation-stage amelogenesis, especially the key process of pH regulation. However, details regarding the functional role of these genes in enamel formation are yet to be clarified, as none of the separate mutant animal lines demonstrates any discernible enamel defects. Continuing with our previous investigation of Slc26a1−/− and Slc26a7−/− animal models, we generated a double-mutant animal line with the absence of both Slc26a1 and Slc26a7. We showed in the present study that the double-mutant enamel density was significantly lower in the regions that represent late maturation-, maturation- and secretory-stage enamel development in wild-type mandibular incisors. However, the “maturation” and “secretory” enamel microstructures in double-mutant animals resembled those observed in wild-type secretory and/or pre-secretory stages. Elemental composition analysis revealed a lack of mineral deposition and an accumulation of carbon and chloride in double-mutant enamel. Deletion of Slc26a1 and Slc26a7 did not affect the stage-specific morphology of the enamel organ. Finally, compensatory expression of pH regulator genes and ion transporters was detected in maturation-stage enamel organs of double-mutant animals when compared to wild-type. Combined with the findings from our previous study, these data indicate the involvement of SLC26A1and SLC26A7 as key ion transporters in the pH regulatory network during enamel maturation.
Collapse
Affiliation(s)
- Kaifeng Yin
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry of University of Southern CaliforniaLos Angeles, CA, USA.,Department of Orthodontics, Herman Ostrow School of Dentistry of University of Southern CaliforniaLos Angeles, CA, USA
| | - Jing Guo
- Department of Endodontics, Herman Ostrow School of Dentistry of University of Southern CaliforniaLos Angeles, CA, USA
| | - Wenting Lin
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry of University of Southern CaliforniaLos Angeles, CA, USA
| | - Sarah Y T Robertson
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry of University of Southern CaliforniaLos Angeles, CA, USA
| | - Manoocher Soleimani
- Department of Medicine, University of Cincinnati, Research Services, Veterans Affairs Medical CenterCincinnati, OH, USA
| | - Michael L Paine
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry of University of Southern CaliforniaLos Angeles, CA, USA
| |
Collapse
|
9
|
MiR-153 Regulates Amelogenesis by Targeting Endocytotic and Endosomal/lysosomal Pathways-Novel Insight into the Origins of Enamel Pathologies. Sci Rep 2017; 7:44118. [PMID: 28287144 PMCID: PMC5347039 DOI: 10.1038/srep44118] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 02/03/2017] [Indexed: 12/15/2022] Open
Abstract
Amelogenesis imperfecta (AI) is group of inherited disorders resulting in enamel pathologies. The involvement of epigenetic regulation in the pathogenesis of AI is yet to be clarified due to a lack of knowledge about amelogenesis. Our previous genome-wide microRNA and mRNA transcriptome analyses suggest a key role for miR-153 in endosome/lysosome-related pathways during amelogenesis. Here we show that miR-153 is significantly downregulated in maturation ameloblasts compared with secretory ameloblasts. Within ameloblast-like cells, upregulation of miR-153 results in the downregulation of its predicted targets including Cltc, Lamp1, Clcn4 and Slc4a4, and a number of miRNAs implicated in endocytotic pathways. Luciferase reporter assays confirmed the predicted interactions between miR-153 and the 3'-UTRs of Cltc, Lamp1 (in a prior study), Clcn4 and Slc4a4. In an enamel protein intake assay, enamel cells transfected with miR-153 show a decreased ability to endocytose enamel proteins. Finally, microinjection of miR-153 in the region of mouse first mandibular molar at postnatal day 8 (PN8) induced AI-like pathologies when the enamel development reached maturity (PN12). In conclusion, miR-153 regulates maturation-stage amelogenesis by targeting key genes involved in the endocytotic and endosomal/lysosomal pathways, and disruption of miR-153 expression is a potential candidate etiologic factor contributing to the occurrence of AI.
Collapse
|
10
|
Duverger O, Ohara T, Bible PW, Zah A, Morasso MI. DLX3-Dependent Regulation of Ion Transporters and Carbonic Anhydrases is Crucial for Enamel Mineralization. J Bone Miner Res 2017; 32:641-653. [PMID: 27760456 PMCID: PMC11025043 DOI: 10.1002/jbmr.3022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 10/10/2016] [Accepted: 10/14/2016] [Indexed: 12/11/2022]
Abstract
Patients with tricho-dento-osseous (TDO) syndrome, an ectodermal dysplasia caused by mutations in the homeodomain transcription factor DLX3, exhibit enamel hypoplasia and hypomineralization. Here we used a conditional knockout mouse model to investigate the developmental and molecular consequences of Dlx3 deletion in the dental epithelium in vivo. Dlx3 deletion in the dental epithelium resulted in the formation of chalky hypomineralized enamel in all teeth. Interestingly, transcriptomic analysis revealed that major enamel matrix proteins and proteases known to be involved in enamel secretion and maturation were not affected significantly by Dlx3 deletion in the enamel organ. In contrast, expression of several ion transporters and carbonic anhydrases known to play an important role in enamel pH regulation during maturation was significantly affected in enamel organs lacking DLX3. Most of these affected genes showed binding of DLX3 to their proximal promoter as evidenced by chromatin immunoprecipitation sequencing (ChIP-seq) analysis on rat enamel organ. These molecular findings were consistent with altered pH staining evidenced by disruption of characteristic pH oscillations in the enamel. Taken together, these results show that DLX3 is indispensable for the regulation of ion transporters and carbonic anhydrases during the maturation stage of amelogenesis, exerting a crucial regulatory function on pH oscillations during enamel mineralization. © 2016 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Olivier Duverger
- Laboratory of Skin Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Takahiro Ohara
- Laboratory of Skin Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Paul W Bible
- Laboratory of Skin Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Angela Zah
- Laboratory of Skin Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Maria I Morasso
- Laboratory of Skin Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD, USA
| |
Collapse
|
11
|
Yin K, Lei Y, Wen X, Lacruz RS, Soleimani M, Kurtz I, Snead ML, White SN, Paine ML. SLC26A Gene Family Participate in pH Regulation during Enamel Maturation. PLoS One 2015; 10:e0144703. [PMID: 26671068 PMCID: PMC4679777 DOI: 10.1371/journal.pone.0144703] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 11/23/2015] [Indexed: 12/15/2022] Open
Abstract
The bicarbonate transport activities of Slc26a1, Slc26a6 and Slc26a7 are essential to physiological processes in multiple organs. Although mutations of Slc26a1, Slc26a6 and Slc26a7 have not been linked to any human diseases, disruption of Slc26a1, Slc26a6 or Slc26a7 expression in animals causes severe dysregulation of acid-base balance and disorder of anion homeostasis. Amelogenesis, especially the enamel formation during maturation stage, requires complex pH regulation mechanisms based on ion transport. The disruption of stage-specific ion transporters frequently results in enamel pathosis in animals. Here we present evidence that Slc26a1, Slc26a6 and Slc26a7 are highly expressed in rodent incisor ameloblasts during maturation-stage tooth development. In maturation-stage ameloblasts, Slc26a1, Slc26a6 and Slc26a7 show a similar cellular distribution as the cystic fibrosis transmembrane conductance regulator (Cftr) to the apical region of cytoplasmic membrane, and the distribution of Slc26a7 is also seen in the cytoplasmic/subapical region, presumably on the lysosomal membrane. We have also examined Slc26a1 and Slc26a7 null mice, and although no overt abnormal enamel phenotypes were observed in Slc26a1-/- or Slc26a7-/- animals, absence of Slc26a1 or Slc26a7 results in up-regulation of Cftr, Ca2, Slc4a4, Slc4a9 and Slc26a9, all of which are involved in pH homeostasis, indicating that this might be a compensatory mechanism used by ameloblasts cells in the absence of Slc26 genes. Together, our data show that Slc26a1, Slc26a6 and Slc26a7 are novel participants in the extracellular transport of bicarbonate during enamel maturation, and that their functional roles may be achieved by forming interaction units with Cftr.
Collapse
Affiliation(s)
- Kaifeng Yin
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry of University of Southern California, Los Angeles, California, United States of America
| | - Yuejuan Lei
- Department of Operative and Endodontics, The Affiliated Stomatological Hospital, Guangxi Medical University, Nanning, Guangxi, China
| | - Xin Wen
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry of University of Southern California, Los Angeles, California, United States of America
| | - Rodrigo S. Lacruz
- Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, New York, United States of America
| | - Manoocher Soleimani
- Department of Medicine, University of Cincinnati, Research Services, Veterans Affairs Medical Center, Cincinnati, Ohio, United States of America
| | - Ira Kurtz
- Division of Nephrology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
| | - Malcolm L. Snead
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry of University of Southern California, Los Angeles, California, United States of America
| | - Shane N. White
- School of Dentistry, University of California Los Angeles, Los Angeles, California, United States of America
| | - Michael L. Paine
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry of University of Southern California, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
12
|
Maruyama T, Miyamoto Y, Yamamoto G, Yamada A, Yoshimura K, Suzawa T, Takami M, Akiyama T, Hoshino M, Iwasa F, Ikumi N, Tachikawa T, Mishima K, Baba K, Kamijo R. Downregulation of carbonic anhydrase IX promotes Col10a1 expression in chondrocytes. PLoS One 2013; 8:e56984. [PMID: 23441228 PMCID: PMC3575511 DOI: 10.1371/journal.pone.0056984] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Accepted: 01/21/2013] [Indexed: 11/18/2022] Open
Abstract
Carbonic anhydrase (CA) IX is a transmembrane isozyme of CAs that catalyzes reversible hydration of CO(2). While it is known that CA IX is distributed in human embryonic chondrocytes, its role in chondrocyte differentiation has not been reported. In the present study, we found that Car9 mRNA and CA IX were expressed in proliferating but not hypertrophic chondrocytes. Next, we examined the role of CA IX in the expression of marker genes of chondrocyte differentiation in vitro. Introduction of Car9 siRNA to mouse primary chondrocytes obtained from costal cartilage induced the mRNA expressions of Col10a1, the gene for type X collagen α-1 chain, and Epas1, the gene for hypoxia-responsible factor-2α (HIF-2α), both of which are known to be characteristically expressed in hypertrophic chondrocytes. On the other hand, forced expression of CA IX had no effect of the proliferation of chondrocytes or the transcription of Col10a1 and Epas1, while the transcription of Col2a1 and Acan were up-regulated. Although HIF-2α has been reported to be a potent activator of Col10a1 transcription, Epas1 siRNA did not suppress Car9 siRNA-induced increment in Col10a1 expression, indicating that down-regulation of CA IX induces the expression of Col10a1 in chondrocytes in a HIF-2α-independent manner. On the other hand, cellular cAMP content was lowered by Car9 siRNA. Furthermore, the expression of Col10a1 mRNA after Car9 silencing was augmented by an inhibitor of protein kinase A, and suppressed by an inhibitor for phosphodiesterase as well as a brominated analog of cAMP. While these results suggest a possible involvement of cAMP-dependent pathway, at least in part, in induction of Col10a1 expression by down-regulation of Car9, more detailed study is required to clarify the role of CA IX in regulation of Col10a1 expression in chondrocytes.
Collapse
Affiliation(s)
- Toshifumi Maruyama
- Department of Biochemistry, School of Dentistry, Showa University, Shinagawa, Tokyo, Japan
- Department of Prosthodontics, School of Dentistry, Showa University, Shinagawa, Tokyo, Japan
| | - Yoichi Miyamoto
- Department of Biochemistry, School of Dentistry, Showa University, Shinagawa, Tokyo, Japan
- * E-mail:
| | - Gou Yamamoto
- Division of Pathology, Department of Oral Diagnostic Sciences, School of Dentistry, Showa University, Shinagawa, Tokyo, Japan
| | - Atsushi Yamada
- Department of Biochemistry, School of Dentistry, Showa University, Shinagawa, Tokyo, Japan
| | - Kentaro Yoshimura
- Department of Biochemistry, School of Dentistry, Showa University, Shinagawa, Tokyo, Japan
| | - Tetsuo Suzawa
- Department of Biochemistry, School of Dentistry, Showa University, Shinagawa, Tokyo, Japan
| | - Masamichi Takami
- Department of Biochemistry, School of Dentistry, Showa University, Shinagawa, Tokyo, Japan
| | - Tomohito Akiyama
- Department of Biochemistry, School of Dentistry, Showa University, Shinagawa, Tokyo, Japan
- Department of Prosthodontics, School of Dentistry, Showa University, Shinagawa, Tokyo, Japan
| | - Marie Hoshino
- Department of Biochemistry, School of Dentistry, Showa University, Shinagawa, Tokyo, Japan
- Department of Prosthodontics, School of Dentistry, Showa University, Shinagawa, Tokyo, Japan
| | - Fuminori Iwasa
- Department of Prosthodontics, School of Dentistry, Showa University, Shinagawa, Tokyo, Japan
| | - Noriharu Ikumi
- Department of Biochemistry, School of Dentistry, Showa University, Shinagawa, Tokyo, Japan
| | - Tetsuhiko Tachikawa
- Division of Pathology, Department of Oral Diagnostic Sciences, School of Dentistry, Showa University, Shinagawa, Tokyo, Japan
| | - Kenji Mishima
- Division of Pathology, Department of Oral Diagnostic Sciences, School of Dentistry, Showa University, Shinagawa, Tokyo, Japan
| | - Kazuyoshi Baba
- Department of Prosthodontics, School of Dentistry, Showa University, Shinagawa, Tokyo, Japan
| | - Ryutaro Kamijo
- Department of Biochemistry, School of Dentistry, Showa University, Shinagawa, Tokyo, Japan
| |
Collapse
|
13
|
Krainer G, Broecker J, Vargas C, Fanghänel J, Keller S. Quantifying high-affinity binding of hydrophobic ligands by isothermal titration calorimetry. Anal Chem 2012; 84:10715-22. [PMID: 23130786 DOI: 10.1021/ac3025575] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A fast and reliable quantification of the binding thermodynamics of hydrophobic high-affinity ligands employing a new calorimetric competition experiment is described. Although isothermal titration calorimetry is the method of choice for a quantitative characterization of intermolecular interactions in solution, a reliable determination of a dissociation constant (K(D)) is typically limited to the range 100 μM > K(D) > 1 nM. Interactions displaying higher or lower K(D) values can be assessed indirectly, provided that a suitable competing ligand is available whose K(D) falls within the directly accessible affinity window. This established displacement assay, however, requires the high-affinity ligand to be soluble at high concentrations in aqueous buffer and, consequently, poses serious problems in the study of protein binding involving small-molecule ligands dissolved in organic solvents--a familiar case in many drug-discovery projects relying on compound libraries. The calorimetric competition assay introduced here overcomes this limitation, thus allowing for a detailed thermodynamic description of high-affinity receptor-ligand interactions involving poorly water-soluble compounds. Based on a single titration of receptor into a dilute mixture of the two competing ligands, this competition assay provides accurate and precise values for the dissociation constants and binding enthalpies of both high- and moderate-affinity ligands. We discuss the theoretical background underlying the approach, demonstrate its practical application to metal ion chelation and high-affinity protein-inhibitor interactions, and explore its potential and limitations with the aid of simulations and statistical analyses.
Collapse
Affiliation(s)
- Georg Krainer
- Molecular Biophysics, University of Kaiserslautern, Erwin-Schrödinger-Strasse 13, 67663 Kaiserslautern, Germany
| | | | | | | | | |
Collapse
|
14
|
Snead CM, Smith SM, Sadeghein N, Lacruz RS, Hu P, Kurtz I, Paine ML. Identification of a pH-responsive DNA region upstream of the transcription start site of human NBCe1-B. Eur J Oral Sci 2012; 119 Suppl 1:136-41. [PMID: 22243239 DOI: 10.1111/j.1600-0722.2011.00867.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In rodent incisors two distinct stages of enamel formation can be identified visually based on cell morphology: the secretory stage and the maturation stage. The expression profiles of many genes characterize both stages, including the bicarbonate transport protein NBCe1. Bicarbonate is a requirement for the mineralizing enamel matrix to buffer excessive protons that form as a consequence of hydroxyapatite formation. NBCe1-B mRNA is up-regulated during the maturation stage of amelogenesis, where hydroxyapatite formation predominates. In this study, a presumed 572-bp NBCe1-B promoter region was subcloned into a reporter construct, and within this 572-bp region of DNA we characterized a 285-bp segment that shows an increase of ≈ 2.3-fold in gene-transcription activity when transfected into ameloblast-like cells and cultured in medium maintained at pH 6.8 (vs. pH 7.4). A presumed pH-responsive transcriptional factor-binding domain(s) thus resides in the 285-bp NBCe1-B promoter region where candidate domains include the nuclear factor of kappa light polypeptide gene enhancer in B-cells1(NFKB1), jun proto-oncogene (JUN), and tumor protein p53(TP53)-binding sites. Mutagenesis studies identify that both the NFKB1- and TP53-binding sites are responsive to changes in the extracellular pH. These data help to explain how ameloblasts respond to the altered extracellular milieu of protons by changing their gene-expression profile throughout the stages of amelogenesis.
Collapse
Affiliation(s)
- Christian M Snead
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Tsumuraya T, Ishikawa C, Machijima Y, Nakachi S, Senba M, Tanaka J, Mori N. Effects of hippuristanol, an inhibitor of eIF4A, on adult T-cell leukemia. Biochem Pharmacol 2011; 81:713-22. [PMID: 21219881 DOI: 10.1016/j.bcp.2010.12.025] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Revised: 12/18/2010] [Accepted: 12/22/2010] [Indexed: 12/12/2022]
Abstract
We evaluated the anti-adult T-cell leukemia (ATL) effects of hippuristanol, an eukaryotic translation initiation inhibitor from the coral Isis hippuris. Hippuristanol inhibited proliferation of HTLV-1-infected T-cell lines and ATL cells, but not normal peripheral blood mononuclear cells. It induced cell cycle arrest during G₁ phase by reducing the expression of cyclin D1, cyclin D2, CDK4 and CDK6, and induced apoptosis by reducing the expression of Bcl-x(L), c-IAP2, XIAP and c-FLIP. The induced apoptosis was associated with activation of caspase-3, -8 and -9. Hippuristanol also suppressed IkappaBalpha phosphorylation and depleted IKKalpha, IKKgamma, JunB and JunD, resulting in inactivation of NF-kappaB and AP-1. It also suppressed carbonic anhydrase type II expression. In addition to its in vitro effects, hippuristanol suppressed tumor growth in mice with severe combined immunodeficiency harboring tumors induced by inoculation of HTLV-1-infected T cells. These preclinical data suggest that hippuristanol could be a potentially useful therapeutic agent for patients with ATL.
Collapse
Affiliation(s)
- Tomoyuki Tsumuraya
- Department of Microbiology and Oncology, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Okinawa 903-0215, Japan
| | | | | | | | | | | | | |
Collapse
|