1
|
Arakil N, Akhund SA, Elaasser B, Mohammad KS. Intersecting Paths: Unraveling the Complex Journey of Cancer to Bone Metastasis. Biomedicines 2024; 12:1075. [PMID: 38791037 PMCID: PMC11117796 DOI: 10.3390/biomedicines12051075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/27/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
The phenomenon of bone metastases presents a significant challenge within the context of advanced cancer treatments, particularly pertaining to breast, prostate, and lung cancers. These metastatic occurrences stem from the dissemination of cancerous cells into the bone, thereby interrupting the equilibrium between osteoblasts and osteoclasts. Such disruption results in skeletal complications, adversely affecting patient morbidity and quality of life. This review discusses the intricate interplay between cancer cells and the bone microenvironment, positing the bone not merely as a passive recipient of metastatic cells but as an active contributor to cancer progression through its distinctive biochemical and cellular makeup. A thorough examination of bone structure and the dynamics of bone remodeling is undertaken, elucidating how metastatic cancer cells exploit these processes. This review explores the genetic and molecular pathways that underpin the onset and development of bone metastases. Particular emphasis is placed on the roles of cytokines and growth factors in facilitating osteoclastogenesis and influencing osteoblast activity. Additionally, this paper offers a meticulous critique of current diagnostic methodologies, ranging from conventional radiography to advanced molecular imaging techniques, and discusses the implications of a nuanced understanding of bone metastasis biology for therapeutic intervention. This includes the development of targeted therapies and strategies for managing bone pain and other skeletal-related events. Moreover, this review underscores the imperative of ongoing research efforts aimed at identifying novel therapeutic targets and refining management approaches for bone metastases. It advocates for a multidisciplinary strategy that integrates advancements in medical oncology and radiology with insights derived from molecular biology and genetics, to enhance prognostic outcomes and the quality of life for patients afflicted by this debilitating condition. In summary, bone metastases constitute a complex issue that demands a comprehensive and informed approach to treatment. This article contributes to the ongoing discourse by consolidating existing knowledge and identifying avenues for future investigation, with the overarching objective of ameliorating patient care in the domain of oncology.
Collapse
Affiliation(s)
| | | | | | - Khalid S. Mohammad
- Department of Anatomy, College of Medicine, Alfaisal University, Riyadh 1153, Saudi Arabia; (N.A.); (S.A.A.); (B.E.)
| |
Collapse
|
2
|
Szilágyi SS, Amsalem-Zafran AR, Shapira KE, Ehrlich M, Henis YI. Competition between type I activin and BMP receptors for binding to ACVR2A regulates signaling to distinct Smad pathways. BMC Biol 2022; 20:50. [PMID: 35177083 PMCID: PMC8855587 DOI: 10.1186/s12915-022-01252-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 02/10/2022] [Indexed: 11/17/2022] Open
Abstract
Background Activins and bone morphogenetic proteins (BMPs) play critical, sometimes opposing roles, in multiple physiological and pathological processes and diseases. They signal to distinct Smad branches; activins signal mainly to Smad2/3, while BMPs activate mainly Smad1/5/8. This gives rise to the possibility that competition between the different type I receptors through which activin and BMP signal for common type II receptors can provide a mechanism for fine-tuning the cellular response to activin/BMP stimuli. Among the transforming growth factor-β superfamily type II receptors, ACVR2A/B are highly promiscuous, due to their ability to interact with different type I receptors (e.g., ALK4 vs. ALK2/3/6) and with their respective ligands [activin A (ActA) vs. BMP9/2]. However, studies on complex formation between these full-length receptors situated at the plasma membrane, and especially on the potential competition between the different activin and BMP type I receptors for a common activin type II receptor, were lacking. Results We employed a combination of IgG-mediated patching-immobilization of several type I receptors in the absence or presence of ligands with fluorescence recovery after photobleaching (FRAP) measurements on the lateral diffusion of an activin type II receptor, ACVR2A, to demonstrate the principle of competition between type I receptors for ACVR2. Our results show that ACVR2A can form stable heteromeric complexes with ALK4 (an activin type I receptor), as well as with several BMP type I receptors (ALK2/3/6). Of note, ALK4 and the BMP type I receptors competed for binding ACVR2A. To assess the implications of this competition for signaling output, we first validated that in our cell model system (U2OS cells), ACVR2/ALK4 transduce ActA signaling to Smad2/3, while BMP9 signaling to Smad1/5/8 employ ACVR2/ALK2 or ACVR2/ALK3. By combining ligand stimulation with overexpression of a competing type I receptor, we showed that differential complex formation of distinct type I receptors with a common type II receptor balances the signaling to the two Smad branches. Conclusions Different type I receptors that signal to distinct Smad pathways (Smad2/3 vs. Smad1/5/8) compete for binding to common activin type II receptors. This provides a novel mechanism to balance signaling between Smad2/3 and Smad1/5/8. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01252-z.
Collapse
Affiliation(s)
- Szabina Szófia Szilágyi
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Ayelet R Amsalem-Zafran
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Keren E Shapira
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Marcelo Ehrlich
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Yoav I Henis
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel Aviv University, 6997801, Tel Aviv, Israel.
| |
Collapse
|
3
|
Clézardin P, Coleman R, Puppo M, Ottewell P, Bonnelye E, Paycha F, Confavreux CB, Holen I. Bone metastasis: mechanisms, therapies, and biomarkers. Physiol Rev 2020; 101:797-855. [PMID: 33356915 DOI: 10.1152/physrev.00012.2019] [Citation(s) in RCA: 176] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Skeletal metastases are frequent complications of many cancers, causing bone complications (fractures, bone pain, disability) that negatively affect the patient's quality of life. Here, we first discuss the burden of skeletal complications in cancer bone metastasis. We then describe the pathophysiology of bone metastasis. Bone metastasis is a multistage process: long before the development of clinically detectable metastases, circulating tumor cells settle and enter a dormant state in normal vascular and endosteal niches present in the bone marrow, which provide immediate attachment and shelter, and only become active years later as they proliferate and alter the functions of bone-resorbing (osteoclasts) and bone-forming (osteoblasts) cells, promoting skeletal destruction. The molecular mechanisms involved in mediating each of these steps are described, and we also explain how tumor cells interact with a myriad of interconnected cell populations in the bone marrow, including a rich vascular network, immune cells, adipocytes, and nerves. We discuss metabolic programs that tumor cells could engage with to specifically grow in bone. We also describe the progress and future directions of existing bone-targeted agents and report emerging therapies that have arisen from recent advances in our understanding of the pathophysiology of bone metastases. Finally, we discuss the value of bone turnover biomarkers in detection and monitoring of progression and therapeutic effects in patients with bone metastasis.
Collapse
Affiliation(s)
- Philippe Clézardin
- INSERM, Research Unit UMR_S1033, LyOS, Faculty of Medicine Lyon-Est, University of Lyon 1, Lyon, France.,Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
| | - Rob Coleman
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
| | - Margherita Puppo
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
| | - Penelope Ottewell
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
| | - Edith Bonnelye
- INSERM, Research Unit UMR_S1033, LyOS, Faculty of Medicine Lyon-Est, University of Lyon 1, Lyon, France
| | - Frédéric Paycha
- Service de Médecine Nucléaire, Hôpital Lariboisière, Paris, France
| | - Cyrille B Confavreux
- INSERM, Research Unit UMR_S1033, LyOS, Faculty of Medicine Lyon-Est, University of Lyon 1, Lyon, France.,Service de Rhumatologie Sud, CEMOS-Centre Expert des Métastases Osseuses, Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, Lyon, France
| | - Ingunn Holen
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
4
|
Ma L, Duan CC, Yang ZQ, Ding JL, Liu S, Yue ZP, Guo B. Crosstalk between Activin A and Shh signaling contributes to the proliferation and differentiation of antler chondrocytes. Bone 2019; 123:176-188. [PMID: 30928640 DOI: 10.1016/j.bone.2019.03.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 02/24/2019] [Accepted: 03/26/2019] [Indexed: 12/14/2022]
Abstract
Chondrocyte proliferation and differentiation are crucial for endochondral ossification and strictly regulated by numerous signaling molecules and transcription factors, but the hierarchical regulatory network remains to be deciphered. The present study emphasized the interplay of Activin A, Foxa, Notch and Shh signaling in the proliferation and differentiation of antler chondrocytes. We found that Activin A promoted chondrocyte proliferation and differentiation, and accelerated the transition of cell cycle from G1 into S phase along with the activation of Notch and Shh signaling whose blockage attenuated above function of Activin A. Inhibition of Notch pathway by DAPT led to a significant reduction in the expression of Shh signaling molecules, whereas addition of exogenous rShh rescued the delayed onset of chondrocyte proliferation and differentiation elicited by DAPT, indicating that Notch pathway is upstream of Shh signaling. Further analysis evidenced that DAPT attenuated the activation of Activin A on Shh signaling. Simultaneously, Foxa transcription factors were downstream targets of Shh signaling in chondrocyte differentiation. Moreover, Shh pathway played an important role in the crosstalk between Activin A-Notch signaling and Foxa. Collectively, Shh signaling may act downstream of Notch pathway to mediate the effects of Activin A on the proliferation and differentiation of antler chondrocytes through targeting Foxa.
Collapse
Affiliation(s)
- Li Ma
- College of Veterinary Medicine, Jilin University, Changchun, PR China
| | - Cui-Cui Duan
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences, Changchun, PR China
| | - Zhan-Qing Yang
- College of Veterinary Medicine, Jilin University, Changchun, PR China
| | - Jun-Li Ding
- College of Veterinary Medicine, Jilin University, Changchun, PR China
| | - Shu Liu
- College of Veterinary Medicine, Jilin University, Changchun, PR China
| | - Zhan-Peng Yue
- College of Veterinary Medicine, Jilin University, Changchun, PR China.
| | - Bin Guo
- College of Veterinary Medicine, Jilin University, Changchun, PR China.
| |
Collapse
|
5
|
Bellanger A, Donini CF, Vendrell JA, Lavaud J, Machuca-Gayet I, Ruel M, Vollaire J, Grisard E, Győrffy B, Bièche I, Peyruchaud O, Coll JL, Treilleux I, Maguer-Satta V, Josserand V, Cohen PA. The critical role of the ZNF217 oncogene in promoting breast cancer metastasis to the bone. J Pathol 2017; 242:73-89. [PMID: 28207159 DOI: 10.1002/path.4882] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 11/10/2016] [Accepted: 01/18/2017] [Indexed: 12/24/2022]
Abstract
Bone metastasis affects >70% of patients with advanced breast cancer. However, the molecular mechanisms underlying this process remain unclear. On the basis of analysis of clinical datasets, and in vitro and in vivo experiments, we report that the ZNF217 oncogene is a crucial mediator and indicator of bone metastasis. Patients with high ZNF217 mRNA expression levels in primary breast tumours had a higher risk of developing bone metastases. MDA-MB-231 breast cancer cells stably transfected with ZNF217 (MDA-MB-231-ZNF217) showed the dysregulated expression of a set of genes with bone-homing and metastasis characteristics, which overlapped with two previously described 'osteolytic bone metastasis' gene signatures, while also highlighting the bone morphogenetic protein (BMP) pathway. The latter was activated in MDA-MB-231-ZNF217 cells, and its silencing by inhibitors (Noggin and LDN-193189) was sufficient to rescue ZNF217-dependent cell migration, invasion or chemotaxis towards the bone environment. Finally, by using non-invasive multimodal in vivo imaging, we found that ZNF217 increases the metastatic growth rate in the bone and accelerates the development of severe osteolytic lesions. Altogether, the findings of this study highlight ZNF217 as an indicator of the emergence of breast cancer bone metastasis; future therapies targeting ZNF217 and/or the BMP signalling pathway may be beneficial by preventing the development of bone metastases. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Aurélie Bellanger
- Univ. Lyon, Université Claude Bernard Lyon 1, INSERM U1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, France.,Univ. Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Caterina F Donini
- Univ. Lyon, Université Claude Bernard Lyon 1, INSERM U1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, France.,Univ. Lyon, Université Claude Bernard Lyon 1, Lyon, France.,Unité Cancer et Environnement, Centre Léon Bérard, Lyon, France
| | - Julie A Vendrell
- Univ. Lyon, Université Claude Bernard Lyon 1, INSERM U1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, France.,Univ. Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Jonathan Lavaud
- INSERM U1209, Institut Albert Bonniot, Grenoble, France.,Université Grenoble Alpes, Institut Albert Bonniot, Grenoble, France
| | - Irma Machuca-Gayet
- Univ. Lyon, Université Claude Bernard Lyon 1, Lyon, France.,INSERM, Unit 1033 (Faculté de Médecine Lyon Est), Lyon, France
| | - Maëva Ruel
- Univ. Lyon, Université Claude Bernard Lyon 1, INSERM U1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, France.,Univ. Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Julien Vollaire
- INSERM U1209, Institut Albert Bonniot, Grenoble, France.,Université Grenoble Alpes, Institut Albert Bonniot, Grenoble, France
| | - Evelyne Grisard
- Univ. Lyon, Université Claude Bernard Lyon 1, INSERM U1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, France.,Univ. Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Balázs Győrffy
- MTA TTK Lendület Cancer Biomarker Research Group, Budapest, Hungary.,Second Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Ivan Bièche
- Unit of Pharmacogenetics, Department of Genetics, Institut Curie, Paris, France
| | - Olivier Peyruchaud
- Univ. Lyon, Université Claude Bernard Lyon 1, Lyon, France.,INSERM, Unit 1033 (Faculté de Médecine Lyon Est), Lyon, France
| | - Jean-Luc Coll
- INSERM U1209, Institut Albert Bonniot, Grenoble, France.,Université Grenoble Alpes, Institut Albert Bonniot, Grenoble, France
| | | | - Véronique Maguer-Satta
- Univ. Lyon, Université Claude Bernard Lyon 1, INSERM U1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, France
| | - Véronique Josserand
- INSERM U1209, Institut Albert Bonniot, Grenoble, France.,Université Grenoble Alpes, Institut Albert Bonniot, Grenoble, France
| | - Pascale A Cohen
- Univ. Lyon, Université Claude Bernard Lyon 1, INSERM U1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, France.,Univ. Lyon, Université Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
6
|
Leto G, Incorvaia L, Flandina C, Ancona C, Fulfaro F, Crescimanno M, Sepporta MV, Badalamenti G. Clinical Impact of Cystatin C/Cathepsin L and Follistatin/Activin A Systems in Breast Cancer Progression: A Preliminary Report. Cancer Invest 2016; 34:415-423. [DOI: 10.1080/07357907.2016.1222416] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Gaetano Leto
- Department of Sciences for Health Promotion, School of Medicine, University of Palermo, Palermo, Italy
| | - Lorena Incorvaia
- Department of Surgical, Oncological and Oral Sciences, School of Medicine, University of Palermo, Palermo, Italy
| | - Carla Flandina
- Department of Sciences for Health Promotion, School of Medicine, University of Palermo, Palermo, Italy
| | - Chiara Ancona
- Department of Surgical, Oncological and Oral Sciences, School of Medicine, University of Palermo, Palermo, Italy
| | - Fabio Fulfaro
- Department of Surgical, Oncological and Oral Sciences, School of Medicine, University of Palermo, Palermo, Italy
| | - Marilena Crescimanno
- Department of Sciences for Health Promotion, School of Medicine, University of Palermo, Palermo, Italy
| | | | - Giuseppe Badalamenti
- Department of Surgical, Oncological and Oral Sciences, School of Medicine, University of Palermo, Palermo, Italy
| |
Collapse
|
7
|
Hiraga T. Targeted Agents in Preclinical and Early Clinical Development for the Treatment of Cancer Bone Metastases. Expert Opin Investig Drugs 2016; 25:319-34. [DOI: 10.1517/13543784.2016.1142972] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
8
|
Suvannasankha A, Chirgwin JM. Role of bone-anabolic agents in the treatment of breast cancer bone metastases. Breast Cancer Res 2015; 16:484. [PMID: 25757219 PMCID: PMC4429670 DOI: 10.1186/s13058-014-0484-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
Abstract
Skeletal metastases are an incurable complication afflicting the majority of patients who die from advanced breast cancer. They are most often osteolytic, characterized by net bone destruction and suppressed new bone formation. Life expectancy from first diagnosis of breast cancer bone metastases is several years, during which time skeletal-related events - including pain, fracture, hypercalcemia, and spinal cord compression - significantly degrade quality of life. The bone marrow niche can also confer hormonal and chemo-resistance. Most treatments for skeletal metastases target bone-destroying osteoclasts and are palliative. Recent results from the Breast cancer trials of Oral Everolimus-2 trial suggest that agents such as the mammalian target of rapamycin inhibitor everolimus may have efficacy against breast cancer bone metastases in part via stimulating osteoblasts as well as by inhibiting tumor growth. Selective estrogen receptor modulators similarly inhibit growth of estrogen receptor-positive breast cancers while having positive effects on the skeleton. This review discusses the future role of bone-anabolic agents for the specific treatment of osteolytic breast cancer metastases. Agents with both anti-tumor and bone-anabolic actions have been tested in the setting of multiple myeloma, a hematological malignancy that causes severe osteolytic bone loss and suppression of osteoblastic new bone formation. Stimulation of osteoblast activity inhibits multiple myeloma growth - a strategy that might decrease breast cancer burden in osteolytic bone metastases. Proteasome inhibitors (bortezomib and carfilzomib) inhibit the growth of myeloma directly and are anabolic for bone. Drugs with limited anti-tumor activity but which are anabolic for bone include intermittent parathyroid hormone and antibodies that neutralize the WNT inhibitors DKK1 and sclerostin, as well as the activin A blocker sotatercept and the osteoporosis drug strontium ranelate. Transforming growth factor-beta inhibitors have little tumor antiproliferative activity but block breast cancer production of osteolytic factors and are also anabolic for bone. Some of these treatments are already in clinical trials. This review provides an overview of agents with bone-anabolic properties, which may have utility in the treatment of breast cancer metastatic to the skeleton.
Collapse
|
9
|
Yaden BC, Wang YX, Wilson JM, Culver AE, Milner A, Datta-Mannan A, Shetler P, Croy JE, Dai G, Krishnan V. Inhibition of Activin A Ameliorates Skeletal Muscle Injury and Rescues Contractile Properties by Inducing Efficient Remodeling in Female Mice. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:1152-66. [DOI: 10.1016/j.ajpath.2013.12.029] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 11/26/2013] [Accepted: 12/12/2013] [Indexed: 01/05/2023]
|
10
|
[Pathophysiology of bone metastases and new molecular targets involved in bone remodelling]. Bull Cancer 2014; 100:1083-91. [PMID: 24152978 DOI: 10.1684/bdc.2013.1836] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Bone metastases are common complications of cancers. These skeletal lesions are usually osteolytic (excess of bone destruction), osteosclerostic (excess of bone formation) or mixed. Metastatic cancer cells residing in the bone marrow alter the functions of bone-resorbing (osteoclasts) and bone-forming (osteoblasts) cells and hijack signals coming from the bone matrix. In this review, we first described cellular and molecular mechanisms that drive cancer cells to colonize the bone marrow. We next show how cancer cells alter bone remodelling to promote the formation of osteolytic or osteosclerotic lesions.
Collapse
|
11
|
Razaq W. Bone Targeted Therapies for Bone Metastasis in Breast Cancer. J Clin Med 2013; 2:176-87. [PMID: 26237142 PMCID: PMC4470142 DOI: 10.3390/jcm2040176] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 08/07/2013] [Accepted: 09/10/2013] [Indexed: 02/06/2023] Open
Abstract
Cancer metastasis to the bone develops commonly in patients with various malignancies, and is a major cause of morbidity and diminished quality of life in many affected patients. Emerging treatments for metastatic bone disease have arisen from advances in our understanding of the unique cellular and molecular mechanisms that contribute to the bone metastasis. The tendency of cancer cells to metastasize to bone is probably the end result of many factors including vascular pathways, the highly vascular nature of the bone marrow (which increases the probability that cancer cells will be deposited in bone marrow capillaries), and molecular characteristics of the cancer cells that allow them to adapt to the bone marrow microenvironment. The goals of treating osseous metastases are manifold. Proper treatment can lead to significant improvements in pain control and function, and maintain skeletal integrity. The treatment plan requires a multidisciplinary approach. Widespread metastatic disease necessitates systemic therapy, while a localized problem is best managed with surgery, external beam radiotherapy, or both. Patients with bone metastasis can have prolonged survival, and proper management can have a significant impact on their quality of life. We will review the factors in this article that are promising molecular bone-targeted therapies or will be likely targets for future therapeutic intervention to restore bone remodeling and suppress tumor growth.
Collapse
Affiliation(s)
- Wajeeha Razaq
- Stephenson Cancer Center, The University of Oklahoma, Norman, OK 73104, USA.
| |
Collapse
|
12
|
Anastasilakis AD, Polyzos SA, Makras P, Gkiomisi A, Savvides M, Papatheodorou A, Terpos E. Circulating activin-A is elevated in postmenopausal women with low bone mass: the three-month effect of zoledronic acid treatment. Osteoporos Int 2013; 24:2127-32. [PMID: 23124716 DOI: 10.1007/s00198-012-2198-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 10/09/2012] [Indexed: 10/27/2022]
Abstract
UNLABELLED Activin-A is expressed in bone and seems to regulate osteoclastogenesis. In this study, serum activin-A was increased in postmenopausal women with low bone mass and was positively correlated to age and negatively to lumbar spinal bone mineral density (BMD). Serum activin-A levels did not change 3 months after zoledronic acid infusion. INTRODUCTION The aims of the study were to evaluate prospectively the circulating activin-A levels in postmenopausal women with low bone mass and explore possible correlations with clinical and laboratory data, as well as the 3-month effect of zoledronic acid infusion. METHODS Postmenopausal women with low bone mass assigned to receive zoledronic acid infusion (Patients, n = 47) and age-matched, postmenopausal women with normal bone mass (Controls, n = 27) were recruited on an outpatient basis. Main outcome measurement was serum activin-A levels. RESULTS Serum activin-A was higher in patients at baseline compared to controls (p < 0.001) and activin-A in the serum of patients and controls was positively correlated with age (Spearman's coefficient of correlation [rs] = 0.325; p = 0.005) and negatively with lumbar spinal (LS) BMD (rs = -0.425; p < 0.001). In multiple linear regression analysis, only age (B = 8.93; 95 % CI = 4.39-13.46; p < 0.001) was associated with serum activin-A levels at baseline, independent from group (patients or controls), previous anti-osteoporotic treatment, LS BMD and follicle-stimulating hormone. Circulating activin-A levels were not affected 3 months after zoledronic acid infusion. CONCLUSIONS Serum activin-A is increased in postmenopausal women with low bone mass compared with postmenopausal women with normal bone mass and is positively correlated to age and negatively to LS BMD.
Collapse
Affiliation(s)
- A D Anastasilakis
- Department of Endocrinology, 424 General Military Hospital, Ring Road, 564 29 N.Efkarpia, Thessaloniki, Greece.
| | | | | | | | | | | | | |
Collapse
|
13
|
Activin and TGFβ regulate expression of the microRNA-181 family to promote cell migration and invasion in breast cancer cells. Cell Signal 2013; 25:1556-66. [PMID: 23524334 DOI: 10.1016/j.cellsig.2013.03.013] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 03/06/2013] [Accepted: 03/16/2013] [Indexed: 12/26/2022]
Abstract
MicroRNA-181 (miR-181) is a multifaceted miRNA that has been implicated in many cellular processes such as cell fate determination and cellular invasion. While miR-181 is often overexpressed in human tumors, a direct role for this miRNA in breast cancer progression has not yet been characterized. In this study, we found this miRNA to be regulated by both activin and TGFβ. While we found no effect of miR-181 modulation on activin/TGFβ-mediated tumor suppression, our data clearly indicate that miR-181 plays a critical and prominent role downstream of two growth factors, in mediating their pro-migratory and pro-invasive effects in breast cancer cells miR-181 acts as a metastamir in breast cancer. Thus, our findings define a novel role for miR-181 downstream of activin/TGFβ in regulating their tumor promoting functions. Having defined miR-181 as a critical regulator of tumor progression in vitro, our results thus, highlight miR-181 as an important potential therapeutic target in breast cancer.
Collapse
|
14
|
Fields SZ, Parshad S, Anne M, Raftopoulos H, Alexander MJ, Sherman ML, Laadem A, Sung V, Terpos E. Activin receptor antagonists for cancer-related anemia and bone disease. Expert Opin Investig Drugs 2012; 22:87-101. [PMID: 23127248 DOI: 10.1517/13543784.2013.738666] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Antagonists of activin receptor signaling may be beneficial for cancer-related anemia and bone disease caused by malignancies such as multiple myeloma and solid tumors. AREAS COVERED We review evidence of dysregulated signaling by activin receptor pathways in anemia, myeloma-associated osteolysis, and metastatic bone disease, as well as potential involvement in carcinogenesis. We then review properties of activin receptor antagonists in clinical development. EXPERT OPINION Sotatercept is a novel receptor fusion protein that functions as a soluble trap to sequester ligands of activin receptor type IIA (ActRIIA). Preclinically, the murine version of sotatercept increased red blood cells (RBC) in a model of chemotherapy-induced anemia, inhibited tumor growth and metastasis, and exerted anabolic effects on bone in diverse models of multiple myeloma. Clinically, sotatercept increases RBC markedly in healthy volunteers and patients with multiple myeloma. With a rapid onset of action differing from erythropoietin, sotatercept is in clinical development as a potential first-in-class therapeutic for cancer-related anemia, including those characterized by ineffective erythropoiesis as in myelodysplastic syndromes. Anabolic bone activity in early clinical studies and potential antitumor effects make sotatercept a promising therapeutic candidate for multiple myeloma and malignant bone diseases. Antitumor activity has been observed preclinically with small-molecule inhibitors of transforming growth factor-β receptor type I (ALK5) that also antagonize the closely related activin receptors ALK4 and ALK7. LY-2157299, the first such inhibitor to enter clinical studies, has shown an acceptable safety profile so far in patients with advanced cancer. Together, these data identify activin receptor antagonists as attractive therapeutic candidates for multiple diseases.
Collapse
Affiliation(s)
- Scott Z Fields
- Monter Cancer Center, Hofstra North Shore-LIJ School of Medicine, Lake Success, NY, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Terpos E, Kastritis E, Christoulas D, Gkotzamanidou M, Eleutherakis-Papaiakovou E, Kanellias N, Papatheodorou A, Dimopoulos MA. Circulating activin-A is elevated in patients with advanced multiple myeloma and correlates with extensive bone involvement and inferior survival; no alterations post-lenalidomide and dexamethasone therapy. Ann Oncol 2012; 23:2681-2686. [PMID: 22492699 DOI: 10.1093/annonc/mds068] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Activin-A is a transforming growth factor -β superfamily member, which seems to be implicated in the biology of osteolytic disease in multiple myeloma. DESIGN AND METHODS Circulating activin-A was evaluated in 98 newly diagnosed myeloma patients (85 with symptomatic disease), in 40 patients with relapsed myeloma before and after four cycles of lenalidomide and dexamethasone (RD), in 27 healthy controls and in 10 monoclonal gammopathy of undetermined significance patients. RESULTS Patients with newly diagnosed symptomatic myeloma had increased circulating activin-A compared with controls (P < 0.001), while patients with relapsed disease had elevated activin-A even compared with symptomatic patients at diagnosis (P < 0.001). High activin-A correlated with advanced International Staging System stage (P = 0.002), increased bone resorption (P < 0.001) and extensive bone disease (P = 0.03). Low levels of activin-A (<442 pg/ml) were associated with superior median overall survival: not reached versus 59 months (P = 0.04), while activin-A inversely correlated with survival as a continuous variable (P < 0.001). RD did not alter circulating activin-A after four cycles of treatment, even in responders. CONCLUSIONS High circulating activin-A correlates with advanced features of myeloma, supporting the rationale for the use of activin-A antagonists, such as sotatercept in myeloma. The inability of RD to reduce activin-A reveals RD as a good candidate for combination therapies with activin-A antagonists in myeloma.
Collapse
Affiliation(s)
- E Terpos
- Department of Clinical Therapeutics, University of Athens School of Medicine, Athens, Greece.
| | - E Kastritis
- Department of Clinical Therapeutics, University of Athens School of Medicine, Athens, Greece
| | - D Christoulas
- Department of Clinical Therapeutics, University of Athens School of Medicine, Athens, Greece
| | - M Gkotzamanidou
- Department of Clinical Therapeutics, University of Athens School of Medicine, Athens, Greece
| | | | - N Kanellias
- Department of Clinical Therapeutics, University of Athens School of Medicine, Athens, Greece
| | - A Papatheodorou
- Department of Clinical Therapeutics, University of Athens School of Medicine, Athens, Greece
| | - M A Dimopoulos
- Department of Clinical Therapeutics, University of Athens School of Medicine, Athens, Greece
| |
Collapse
|
16
|
Wilson C, Holen I, Coleman RE. Seed, soil and secreted hormones: potential interactions of breast cancer cells with their endocrine/paracrine microenvironment and implications for treatment with bisphosphonates. Cancer Treat Rev 2012; 38:877-89. [PMID: 22398187 DOI: 10.1016/j.ctrv.2012.02.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2011] [Revised: 01/18/2012] [Accepted: 02/10/2012] [Indexed: 11/26/2022]
Abstract
The process of formation of metastasis is undoubtedly inefficient, with the majority of disseminated tumour cells perishing in their metastatic environment. Their ability to survive is determined by their intrinsic abilities, with emerging evidence of the importance of cancer stem cells possessing self propagating potential, but also the interaction with the premetastatic niche, which may either help or hinder their formation into micrometastasis, thus influencing recurrence and survival in breast cancer patients. Use of the bone targeted agents bisphosphonates in the adjuvant setting has been extensively studied in large clinical trials, and demonstrated an interesting interplay with the endocrine microenvironment, with postmenopausal women or premenopausal women receiving ovarian suppression therapy gaining a survival advantage compared to pre/perimenopausal women. The interaction between the endocrine hormones and the paracrine TGFβ growth factors may provide an explanation for the differences seen according to ovarian function in the response to bisphosphonates. In this review the evidence of interplay between ovarian endocrine hormones, TGFβ paracrine growth factors and bisphosphonates will be presented, and subsequent influence on breast cancer cells in the bone pre-metastatic niche hypothesised.
Collapse
Affiliation(s)
- C Wilson
- Academic Unit of Clinical Oncology, Cancer Clinical Trials Centre, Weston Park Hospital, Sheffield, UK.
| | | | | |
Collapse
|
17
|
Mendoza-Villanueva D, Zeef L, Shore P. Metastatic breast cancer cells inhibit osteoblast differentiation through the Runx2/CBFβ-dependent expression of the Wnt antagonist, sclerostin. Breast Cancer Res 2011; 13:R106. [PMID: 22032690 PMCID: PMC3262219 DOI: 10.1186/bcr3048] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 09/20/2011] [Accepted: 10/25/2011] [Indexed: 12/17/2022] Open
Abstract
INTRODUCTION Breast cancers frequently metastasise to the skeleton where they cause osteolytic bone destruction by stimulating osteoclasts to resorb bone and by preventing osteoblasts from producing new bone. The Runt-related transcription factor 2, Runx2, is an important determinant of bone metastasis in breast cancer. Runx2 is known to mediate activation of osteoclast activity and inhibition of osteoblast differentiation by metastatic breast cancer cells. However, while Runx2-regulated genes that mediate osteoclast activation have been identified, how Runx2 determines inhibition of osteoblasts is unknown. METHODS The aim of this study was to determine how Runx2 mediates the ability of metastatic breast cancer cells to modulate the activity of bone cells. We have previously demonstrated that Runx2 requires the co-activator core binding factor beta (CBFβ) to regulate gene expression in breast cancer cells. We, therefore, performed independent microarray analyses to identify target genes whose expression is dependent upon both Runx2 and CBFβ. Common target genes, with a role in modulating bone-cell function, were confirmed using a combination of siRNA, quantitative reverse transcriptase PCR (qRT-PCR), ELISA, promoter reporter analysis, Electrophoretic Mobility Shift Assay (EMSA) and chromatin immunoprecipitation (ChIP) assays. The function of Runx2/CBFβ-regulated genes in mediating the ability of MDA-MB-231 to inhibit osteoblast differentiation was subsequently established in primary bone marrow stromal cell cultures and MC-3T3 osteoblast cells. RESULTS We show that Runx2/CBFβ mediates inhibition of osteoblast differentiation by MDA-MB-231 cells through induction of the Wnt signaling antagonist, sclerostin. We demonstrate that MDA-MB-231 cells secrete sclerostin and that sclerostin-expression is critically dependent on both Runx2 and CBFβ. We also identified the osteoclast activators IL-11 and granulocyte-macrophage colony-stimulating factor (GM-CSF) as new target genes of Runx2/CBFβ in metastatic breast cancer cells. CONCLUSIONS This study demonstrates that Runx2 and CBFβ are required for the expression of genes that mediate the ability of metastatic breast cancer cells to directly modulate both osteoclast and osteoblast function. We also show that Runx2-dependent inhibition of osteoblast differentiation by breast cancer cells is mediated through the Wnt antagonist, sclerostin.
Collapse
Affiliation(s)
- Daniel Mendoza-Villanueva
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | | | | |
Collapse
|
18
|
Abstract
Breast cancer is prone to metastasize to bone. Once metastatic cells are in the bone marrow, they do not, on their own, destroy bone. Instead, they alter the functions of bone-resorbing (osteoclasts) and bone-forming cells (osteoblasts), resulting in skeletal complications that cause pathological fractures and pain. In this review, we describe promising molecular bone-targeted therapies that have arisen from recent advances in our understanding of the pathogenesis of breast cancer bone metastases. These therapies target osteoclasts (receptor activator of nuclear factor kB ligand, integrin αvβ3, c-Src, cathepsin K), osteoblasts (dickkopf-1, activin A, endothelin A) and the bone marrow microenvironment (transforming growth factor β, bone morphogenetic proteins, chemokine CXCL-12 and its receptor CXCR4). The clinical exploitation of these bone-targeted agents will provide oncologists with novel therapeutic strategies for the treatment of skeletal lesions in breast cancer.
Collapse
|
19
|
Abstract
Breast cancer is prone to metastasize to bone. Once metastatic cells are in the bone marrow, they do not, on their own, destroy bone. Instead, they alter the functions of bone-resorbing (osteoclasts) and bone-forming cells (osteoblasts), resulting in skeletal complications that cause pathological fractures and pain. In this review, we describe promising molecular bone-targeted therapies that have arisen from recent advances in our understanding of the pathogenesis of breast cancer bone metastases. These therapies target osteoclasts (receptor activator of nuclear factor kB ligand, integrin αvβ3, c-Src, cathepsin K), osteoblasts (dickkopf-1, activin A, endothelin A) and the bone marrow microenvironment (transforming growth factor β, bone morphogenetic proteins, chemokine CXCL-12 and its receptor CXCR4). The clinical exploitation of these bone-targeted agents will provide oncologists with novel therapeutic strategies for the treatment of skeletal lesions in breast cancer.
Collapse
|