1
|
Sharick JT, Atieh AJ, Gooch KJ, Leight JL. Click chemistry functionalization of self-assembling peptide hydrogels. J Biomed Mater Res A 2023; 111:389-403. [PMID: 36210776 PMCID: PMC10092743 DOI: 10.1002/jbm.a.37460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/16/2022] [Accepted: 09/29/2022] [Indexed: 01/12/2023]
Abstract
Self-assembling peptide (SAP) hydrogels provide a fibrous microenvironment to cells while also giving users control of biochemical and mechanical cues. Previously, biochemical cues were introduced by physically mixing them with SAPs prior to hydrogel assembly, or by incorporating them into the SAP sequence during peptide synthesis, which limited flexibility and increased costs. To circumvent these limitations, we developed "Click SAPs," a novel formulation that can be easily functionalized via click chemistry thiol-ene reaction. Due to its high cytocompatibility, the thiol-ene click reaction is currently used to crosslink and functionalize other types of polymeric hydrogels. In this study, we developed a click chemistry compatible SAP platform by addition of a modified lysine (lysine-alloc) to the SAP sequence, enabling effective coupling of thiol-containing molecules to the SAP hydrogel network. We demonstrate the flexibility of this approach by incorporating a fluorescent dye, a cellular adhesion peptide, and a matrix metalloproteinase-sensitive biosensor using the thiol-ene reaction in 3D Click SAPs. Using atomic force microscopy, we demonstrate that Click SAPs retain the ability to self-assemble into fibers, similar to previous systems. Additionally, a range of physiologically relevant stiffnesses can be achieved by adjusting SAP concentration. Encapsulated cells maintain high viability in Click SAPs and can interact with adhesion peptides and a matrix metalloproteinase biosensor, demonstrating that incorporated molecules retain their biological activity. The Click SAP platform supports easier functionalization with a wider array of bioactive molecules and enables new investigations with temporal and spatial control of the cellular microenvironment.
Collapse
Affiliation(s)
- Joe T Sharick
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA.,The Center for Cancer Engineering, The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Angelina J Atieh
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA.,The Center for Cancer Engineering, The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Keith J Gooch
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA.,Davis Heart & Lung Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Jennifer L Leight
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA.,The Center for Cancer Engineering, The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
2
|
Gelain F, Luo Z, Rioult M, Zhang S. Self-assembling peptide scaffolds in the clinic. NPJ Regen Med 2021; 6:9. [PMID: 33597509 PMCID: PMC7889856 DOI: 10.1038/s41536-020-00116-w] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 12/03/2020] [Indexed: 12/11/2022] Open
Abstract
Well-defined scaffold hydrogels made of self-assembling peptides have found their way into clinical products. By examining the properties and applications of two self-assembling peptides-EAK16 and RADA16-we highlight the potential for translating designer biological scaffolds into commercial products.
Collapse
Affiliation(s)
- Fabrizio Gelain
- Institute for Stem-Cell Biology, Regenerative Medicine and Innovative Therapies (ISBREMIT), IRCCS Casa Sollievo della Sofferenza, 71013, San Giovanni Rotondo, Italy.
- Center for Nanomedicine and Tissue Engineering (CNTE), ASST Grande Ospedale Metropolitano Niguarda, 20162, Milan, Italy.
| | - Zhongli Luo
- College of Basic Medical Sciences, Molecular Medicine and Cancer Research Centre, Chongqing Medical University, Chongqing, 400016, China.
| | | | - Shuguang Zhang
- Laboratory of Molecular Architecture, Media Lab, Massachusetts Institute of Technology, Cambridge, MA, 02139-4307, USA.
| |
Collapse
|
3
|
Gelain F, Luo Z, Zhang S. Self-Assembling Peptide EAK16 and RADA16 Nanofiber Scaffold Hydrogel. Chem Rev 2020; 120:13434-13460. [DOI: 10.1021/acs.chemrev.0c00690] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Fabrizio Gelain
- Institute for Stem-cell Biology, Regenerative Medicine and Innovative Therapies, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, 71013, Italy
- Center for Nanomedicine and Tissue Engineering, ASST Grande Ospedale Metropolitano Niguarda, Piazza dell’Ospedale Maggiore, 3, Milan 20162, Italy
| | - Zhongli Luo
- College of Basic Medical Sciences, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Shuguang Zhang
- Laboratory of Molecular Architecture, Media Lab, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139-4307, United States
| |
Collapse
|
4
|
Kaur S, Tripathi DM, Venugopal JR, Ramakrishna S. Advances in biomaterials for hepatic tissue engineering. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2020. [DOI: 10.1016/j.cobme.2020.05.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
5
|
Calitz C, Hamman JH, Fey SJ, Wrzesinski K, Gouws C. Recent advances in three-dimensional cell culturing to assess liver function and dysfunction: from a drug biotransformation and toxicity perspective. Toxicol Mech Methods 2018; 28:369-385. [PMID: 29297242 DOI: 10.1080/15376516.2017.1422580] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Carlemi Calitz
- Pharmacen™, Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| | - Josias H. Hamman
- Pharmacen™, Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| | - Stephen J. Fey
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| | - Krzysztof Wrzesinski
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| | - Chrisna Gouws
- Pharmacen™, Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| |
Collapse
|
6
|
Roth AD, Lee MY. Idiosyncratic Drug-Induced Liver Injury (IDILI): Potential Mechanisms and Predictive Assays. BIOMED RESEARCH INTERNATIONAL 2017; 2017:9176937. [PMID: 28133614 PMCID: PMC5241492 DOI: 10.1155/2017/9176937] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 11/29/2016] [Indexed: 12/16/2022]
Abstract
Idiosyncratic drug-induced liver injury (IDILI) is a significant source of drug recall and acute liver failure (ALF) in the United States. While current drug development processes emphasize general toxicity and drug metabolizing enzyme- (DME-) mediated toxicity, it has been challenging to develop comprehensive models for assessing complete idiosyncratic potential. In this review, we describe the enzymes and proteins that contain polymorphisms believed to contribute to IDILI, including ones that affect phase I and phase II metabolism, antioxidant enzymes, drug transporters, inflammation, and human leukocyte antigen (HLA). We then describe the various assays that have been developed to detect individual reactions focusing on each of the mechanisms described in the background. Finally, we examine current trends in developing comprehensive models for examining these mechanisms. There is an urgent need to develop a panel of multiparametric assays for diagnosing individual toxicity potential.
Collapse
Affiliation(s)
- Alexander D. Roth
- Department of Chemical & Biomedical Engineering, Cleveland State University, 1960 East 24th Street, Cleveland, OH 44115-2214, USA
| | - Moo-Yeal Lee
- Department of Chemical & Biomedical Engineering, Cleveland State University, 1960 East 24th Street, Cleveland, OH 44115-2214, USA
| |
Collapse
|
7
|
Perez RA, Jung CR, Kim HW. Biomaterials and Culture Technologies for Regenerative Therapy of Liver Tissue. Adv Healthc Mater 2017; 6. [PMID: 27860372 DOI: 10.1002/adhm.201600791] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 09/10/2016] [Indexed: 12/18/2022]
Abstract
Regenerative approach has emerged to substitute the current extracorporeal technologies for the treatment of diseased and damaged liver tissue. This is based on the use of biomaterials that modulate the responses of hepatic cells through the unique matrix properties tuned to recapitulate regenerative functions. Cells in liver preserve their phenotype or differentiate through the interactions with extracellular matrix molecules. Therefore, the intrinsic properties of the engineered biomaterials, such as stiffness and surface topography, need to be tailored to induce appropriate cellular functions. The matrix physical stimuli can be combined with biochemical cues, such as immobilized functional groups or the delivered actions of signaling molecules. Furthermore, the external modulation of cells, through cocultures with nonparenchymal cells (e.g., endothelial cells) that can signal bioactive molecules, is another promising avenue to regenerate liver tissue. This review disseminates the recent approaches of regenerating liver tissue, with a focus on the development of biomaterials and the related culture technologies.
Collapse
Affiliation(s)
- Roman A. Perez
- Institute of Tissue Regeneration Engineering (ITREN); Dankook University; Cheonan 330-714 Republic of Korea
- Regenerative Medicine Research Institute; Universitat Internacional de Catalunya; Barcelona 08017 Spain
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine; Dankook University; Cheonan 330-714 Republic of Korea
| | - Cho-Rok Jung
- Gene Therapy Research Unit; KRIBB; 125 Gwahak-ro Yuseong-gu, Daejeon 34141 Republic of Korea
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN); Dankook University; Cheonan 330-714 Republic of Korea
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine; Dankook University; Cheonan 330-714 Republic of Korea
- Department of Biomaterials Science; Dankook University Dental College; Cheonan 330-714 Republic of Korea
| |
Collapse
|
8
|
Herzog N, Hansen M, Miethbauer S, Schmidtke KU, Anderer U, Lupp A, Sperling S, Seehofer D, Damm G, Scheibner K, Küpper JH. Primary-like human hepatocytes genetically engineered to obtain proliferation competence display hepatic differentiation characteristics in monolayer and organotypical spheroid cultures. Cell Biol Int 2016; 40:341-53. [PMID: 26715207 DOI: 10.1002/cbin.10574] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 12/23/2015] [Indexed: 12/27/2022]
Abstract
Primary human hepatocytes are in great demand during drug development and in hepatology. However, both scarcity of tissue supply and donor variability of primary cells create a need for the development of alternative hepatocyte systems. By using a lentivirus vector system to transfer coding sequences of Upcyte® proliferation genes, we generated non-transformed stable hepatocyte cultures from human liver tissue samples. Here, we show data on newly generated proliferation-competent HepaFH3 cells investigated as conventional two-dimensional monolayer and as organotypical three-dimensional (3D) spheroid culture. In monolayer culture, HepaFH3 cells show typical cobblestone-like hepatocyte morphology and anchorage-dependent growth for at least 20 passages. Immunofluorescence staining revealed that characteristic hepatocyte marker proteins cytokeratin 8, human serum albumin, and cytochrome P450 (CYP) 3A4 were expressed. Quantitative real-time PCR analyses showed that expression levels of analyzed phase I CYP enzymes were at similar levels compared to those of cultured primary human hepatocytes and considerably higher than in the liver carcinoma cell line HepG2. Additionally, transcripts for phase II liver enzymes and transporter proteins OATP-C, MRP2, Oct1, and BSEP were present in HepaFH3. The cells produced urea and converted model compounds such as testosterone, diclofenac, and 7-OH-coumarin into phases I and II metabolites. Interestingly, phases I and II enzymes were expressed at about the same levels in convenient monolayer cultures and complex 3D spheroids. In conclusion, HepaFH3 cells and related primary-like hepatocyte lines seem to be promising tools for in vitro research of liver functions and as test system in drug development and toxicology analysis.
Collapse
Affiliation(s)
- Natalie Herzog
- Faculty of Science, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Max Hansen
- Faculty of Science, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Sebastian Miethbauer
- Faculty of Science, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Kai-Uwe Schmidtke
- Faculty of Science, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Ursula Anderer
- Faculty of Science, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Amelie Lupp
- Institute of Pharmacology and Toxicology, Jena University Hospital, Jena, Germany
| | - Sebastian Sperling
- Department of General, Visceral and Transplantation Surgery, Charité University Medicine, Berlin, Germany
| | - Daniel Seehofer
- Department of General, Visceral and Transplantation Surgery, Charité University Medicine, Berlin, Germany
| | - Georg Damm
- Department of General, Visceral and Transplantation Surgery, Charité University Medicine, Berlin, Germany
| | - Katrin Scheibner
- Faculty of Science, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Jan-Heiner Küpper
- Faculty of Science, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| |
Collapse
|
9
|
Giri S, Acikgöz A, Bader A. Isolation and Expansion of Hepatic Stem-like Cells from a Healthy Rat Liver and their Efficient Hepatic Differentiation of under Well-defined Vivo Hepatic like Microenvironment in a Multiwell Bioreactor. J Clin Exp Hepatol 2015; 5:107-22. [PMID: 26155038 PMCID: PMC4491607 DOI: 10.1016/j.jceh.2015.03.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 03/20/2015] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Currently, undifferentiated cells are found in all tissue and term as local stem cells which are quiescent in nature and less in number under normal healthy conditions but activate upon injury and repair the tissue or organs via automated activating mechanism. Due to very scanty presence of local resident somatic local stem cells in healthy organs, isolation and expansion of these adult stems is an immense challenge for medical research and cell based therapy. Particularly organ like liver, there is an ongoing controversy about existence of liver stem cells. METHODS Herein, Hepatic stem cells population was identified during culture of primary hepatocyte cells upon immediate isolation of primary hepatocyte cells. These liver stem cells has been expanded extensively and differentiated into primary hepatocytes under defined culture conditions in a nanostructured self assembling peptides modular bioreactor that mimic the state of art of liver microenvironment and compared with Matrigel as a positive control. Nanostructured self assembling peptides were used a defined extracellular matrix and Matrigel was used for undefined extracellular matrix. Proliferation of hepatic stem cells was investigated by two strategies. First strategy is to provide high concentration of hepatocyte growth factor (HGF) and second strategy is to evaluate the role of recombinant human erythropoietin (rHuEPO) in presence of trauma/ischemia cytokines (IL-6, TNF-α). Expansion to hepatic differentiation is observed by morphological analysis and was evaluated for the expression of hepatocyte-specific genes using RT-PCR and biochemical methods. RESULTS Hepatocyte-specific genes are well expressed at final stage (day 21) of differentiation period. The differentiated hepatocytes exhibited functional hepatic characteristics such as albumin secretion, urea secretion and cytochrome P450 expression. Additionally, immunofluorescence analysis revealed that hepatic stem cells derived hepatocytes exhibited mature hepatocyte markers (albumin, CK-19, CPY3A1, alpha 1-antitrypsin). Expansion and hepatic differentiation was efficiently in nanostructured self assembling peptides without such batch to batch variation while there was much variation in Matrigel coated bioreactor. In conclusion, the results of the study suggest that the nanostructured self assembling peptides coated bioreactor supports expansion as well as hepatic differentiation of liver stem cells which is superior than Matrigel. CONCLUSION This defined microenvironment conditions in bioreactor module can be useful for research involving bioartificial liver system, stem cell research and engineered liver tissue which could contribute to regenerative cell therapies or drug discovery and development.
Collapse
Key Words
- A1AT, Alpha 1-antitrypsin
- AFP, α-fetoprotein
- CK 7, Cytokeratin 7
- CK-19, Cytokeratin 19
- CPY3A1, Cytochrome P450 3A 1
- EROD, Ethoxyresorufin O-deethylase
- GaIN, D-galactosamine
- HGF, Hepatocyte growth factor
- IL-6, Interleukin 6
- MROD, Methoxyresorufin O-demethylase
- Matrigel
- PROD, Pentoxyresorufin O-depentylase
- TNF-α, Tumor necrosis factor alpha
- Thy1, Thy-1 cell surface antigen
- bioreactor
- defined culture conditions
- hepatic stem cells
- nanostructured self assembling peptides
- rHuEPO, Recombinant human erythropoietin
Collapse
Affiliation(s)
- Shibashish Giri
- Department of Cell Techniques and Applied Stem Cell Biology, Center for Biotechnology and Biomedicine (BBZ), University of Leipzig, Deutscher Platz 5, 04103 Leipzig, Germany,Address for correspondence: Shibashish Giri, Department of Cell Techniques and Applied Stem Cell Biology, Center for Biotechnology and Biomedicine, Medical faculty, University of Leipzig, Deutscher Platz 5, D-04103 Leipzig, Germany.
| | - Ali Acikgöz
- Department of Cell Techniques and Applied Stem Cell Biology, Center for Biotechnology and Biomedicine (BBZ), University of Leipzig, Deutscher Platz 5, 04103 Leipzig, Germany,Department of Gastroenterology and Hepatology, Klinikum St Georg, Delitzscher Straße, Leipzig, Germany
| | - Augustinus Bader
- Department of Cell Techniques and Applied Stem Cell Biology, Center for Biotechnology and Biomedicine (BBZ), University of Leipzig, Deutscher Platz 5, 04103 Leipzig, Germany
| |
Collapse
|
10
|
Abstract
Modern medicine faces a growing crisis as demand for organ transplantations continues to far outstrip supply. By stimulating the body’s own repair mechanisms, regenerative medicine aims to reduce demand for organs, while the closely related field of tissue engineering promises to deliver “off-the-self” organs grown from patients’ own stem cells to improve supply. To deliver on these promises, we must have reliable means of generating complex tissues. Thus far, the majority of successful tissue engineering approaches have relied on macroporous scaffolds to provide cells with both mechanical support and differentiative cues. In order to engineer complex tissues, greater attention must be paid to nanoscale cues present in a cell’s microenvironment. As the extracellular matrix is capable of driving complexity during development, it must be understood and reproduced in order to recapitulate complexity in engineered tissues. This review will summarize current progress in engineering complex tissue through the integration of nanocomposites and biomimetic scaffolds.
Collapse
Affiliation(s)
- John W Cassidy
- Centre for Cell Engineering, University of Glasgow, Glasgow, UK. ; Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| |
Collapse
|
11
|
Tamai M, Adachi E, Tagawa YI. Characterization of a liver organoid tissue composed of hepatocytes and fibroblasts in dense collagen fibrils. Tissue Eng Part A 2013; 19:2527-35. [PMID: 23815236 DOI: 10.1089/ten.tea.2012.0704] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The adult liver is wrapped in a connective tissue sheet called the liver capsule, which consists of collagen fibrils and fibroblasts. In this study, we set out to construct a liver organoid tissue that would be comparable to the endogenous liver, using a bioreactor. In vitro liver organoid tissue was generated by combining collagen fibrils, fibroblasts, and primary murine hepatocytes or Hep G2 on a mesh of poly-lactic acid fabric using a bioreactor. Then, the suitability of this liver organoid tissue for transplantation was tested by implanting the constructs into partially hepatectomized BALB/cA-nu/nu mice. As determined by using scanning and transmission electron microscopes, the liver organoid tissues were composed of densely packed collagen fibrils with fibroblasts and aggregates of oval or spherical hepatocytes. Angiogenesis was induced after the transplantation, and blood vessels connected the liver organoid tissue with the surrounding tissue. Thus, a novel approach was applied to generate transplantable liver organoid tissue within a condensed collagen fibril matrix. These results suggested that a dense collagen network populated with fibroblasts can hold a layer of concentrated hepatocytes, providing a three-dimensional microenvrionment suitable for the reestablishment of cell-cell and cell-extracellular matrix (ECM) interactions, and resulting in the maintenance of their liver-specific functions. This liver organoid tissue may be useful for the study of intrahepatic functions of various cells, cytokines, and ECMs, and may fulfill the fundamental requirements of a donor tissue.
Collapse
Affiliation(s)
- Miho Tamai
- 1 Department of Biomolecular Engineering, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology , Kanagawa, Japan
| | | | | |
Collapse
|
12
|
Palakkan AA, Hay DC, Anil Kumar PR, Kumary TV, Ross JA. Liver tissue engineering and cell sources: issues and challenges. Liver Int 2013; 33:666-76. [PMID: 23490085 DOI: 10.1111/liv.12134] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 01/27/2013] [Indexed: 02/13/2023]
Abstract
Liver diseases are of major concern as they now account for millions of deaths annually. As a result of the increased incidence of liver disease, many patients die on the transplant waiting list, before a donor organ becomes available. To meet the huge demand for donor liver, alternative approaches using liver tissue engineering principles are being actively pursued. Even though adult hepatocytes, the primary cells of the liver are most preferred for tissue engineering of liver, their limited availability, isolation from diseased organs, lack of in vitro propagation and deterioration of function acts as a major drawback to their use. Various approaches have been taken to prevent the functional deterioration of hepatocytes including the provision of an adequate extracellular matrix and co-culture with non-parenchymal cells of liver. Great progress has also been made to differentiate human stem cells to hepatocytes and to use them for liver tissue engineering applications. This review provides an overview of recent challenges, issues and cell sources with regard to liver tissue engineering.
Collapse
Affiliation(s)
- Anwar A Palakkan
- Tissue Injury and Repair Group, University of Edinburgh - MRC Centre for Regenerative Medicine, Edinburgh, UK
| | | | | | | | | |
Collapse
|
13
|
Giri S, Braumann UD, Giri P, Acikgöz A, Scheibe P, Nieber K, Bader A. Nanostructured self-assembling peptides as a defined extracellular matrix for long-term functional maintenance of primary hepatocytes in a bioartificial liver modular device. Int J Nanomedicine 2013; 8:1525-39. [PMID: 23626466 PMCID: PMC3632584 DOI: 10.2147/ijn.s33589] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Much effort has been directed towards the optimization of the capture of in vivo hepatocytes from their microenvironment. Some methods of capture include an ex vivo cellular model in a bioreactor based liver module, a micropatterned module, a microfluidic 3D chip, coated plates, and other innovative approaches for the functional maintenance of primary hepatocytes. However, none of the above methods meet US Food and Drug Administration (FDA) guidelines, which recommend and encourage that the duration of a toxicity assay of a drug should be a minimum of 14 days, to a maximum of 90 days for a general toxicity assay. Existing innovative reports have used undefined extracellular matrices like matrigel, rigid collagen, or serum supplementations, which are often problematic, unacceptable in preclinical and clinical applications, and can even interfere with experimental outcomes. We have overcome these challenges by using integrated nanostructured self-assembling peptides and a special combination of growth factors and cytokines to establish a proof of concept to mimic the in vivo hepatocyte microenvironment pattern in vitro for predicting the in vivo drug hepatotoxicity in a scalable bioartificial liver module. Hepatocyte functionality (albumin, urea) was measured at days 10, 30, 60, and 90 and we observed stable albumin secretion and urea function throughout the culture period. In parallel, drug metabolizing enzyme biomarkers such as ethoxyresorufin-O-deethylase, the methylthiazol tetrazolium test, and the lactate dehydrogenase test were carried out at days 10, 30, 60, and 90. We noticed excellent mitochondrial status and membrane stability at 90 days of culture. Since alpha glutathione S-transferase (GST) is highly sensitive and a specific marker of hepatocyte injury, we observed significantly low alpha GST levels on all measured days (10, 30, 60, and 90). Finally, we performed the image analysis of mitochondria-cultured hepatocytes at day 90 in different biophysical parameters using confocal microscopy. We applied an automatic algorithm-based method for 3D visualization to show the classic representation of the mitochondrial distribution in double hepatocytes. An automated morphological measurement was conducted on the mitochondrial distribution in the cultured hepatocytes. Our proof of concept of a scalable bioartificial liver modular device meets FDA guidelines and may function as an alternative model of animal experimentation for pharmacological and toxicological studies involving drug metabolism, enzyme induction, transplantation, viral hepatitis, hepatocyte regeneration, and can also be used in other existing bioreactor modules for long-term culture for up to 90 days or more.
Collapse
Affiliation(s)
- Shibashish Giri
- Department of Cell Techniques and Applied Stem Cell Biology, Center for Biotechnology and Biomedicine (BBZ), University of Leipzig, Leipzig, Germany.
| | | | | | | | | | | | | |
Collapse
|
14
|
Peck Y, Wang DA. Three-dimensionally engineered biomimetic tissue models forin vitrodrug evaluation: delivery, efficacy and toxicity. Expert Opin Drug Deliv 2013; 10:369-83. [DOI: 10.1517/17425247.2013.751096] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
15
|
Tralau T, Riebeling C, Pirow R, Oelgeschläger M, Seiler A, Liebsch M, Luch A. Wind of change challenges toxicological regulators. ENVIRONMENTAL HEALTH PERSPECTIVES 2012; 120:1489-94. [PMID: 22871563 PMCID: PMC3556610 DOI: 10.1289/ehp.1104782] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Accepted: 08/07/2012] [Indexed: 05/09/2023]
Abstract
BACKGROUND In biomedical research, the past two decades have seen the advent of in vitro model systems based on stem cells, humanized cell lines, and engineered organotypic tissues, as well as numerous cellular assays based on primarily established tumor-derived cell lines and their genetically modified derivatives. OBJECTIVE There are high hopes that these systems might replace the need for animal testing in regulatory toxicology. However, despite increasing pressure in recent years to reduce animal testing, regulators are still reluctant to adopt in vitro approaches on a large scale. It thus seems appropriate to consider how we could realistically perform regulatory toxicity testing using in vitro assays only. DISCUSSION AND CONCLUSION Here, we suggest an in vitro-only approach for regulatory testing that will benefit consumers, industry, and regulators alike.
Collapse
Affiliation(s)
- Tewes Tralau
- German Federal Institute for Risk Assessment (BfR), Center for Alternative Methods to Animal Experiments (ZEBET), Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
16
|
Tralau T, Luch A. Drug-mediated toxicity: illuminating the ‘bad’ in the test tube by means of cellular assays? Trends Pharmacol Sci 2012; 33:353-64. [DOI: 10.1016/j.tips.2012.03.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 03/12/2012] [Accepted: 03/28/2012] [Indexed: 12/19/2022]
|
17
|
Luo Z, Zhang S. Designer nanomaterials using chiral self-assembling peptide systems and their emerging benefit for society. Chem Soc Rev 2012; 41:4736-54. [DOI: 10.1039/c2cs15360b] [Citation(s) in RCA: 183] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|