1
|
Smout JL, Bain MM, McLaughlin M, Elmer KR. Common lizard primary oviduct cell culture: A model system for the genetic and cellular basis of oviparity and viviparity. Exp Cell Res 2024; 442:114196. [PMID: 39117090 DOI: 10.1016/j.yexcr.2024.114196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/16/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024]
Abstract
Reproduction by egg-laying (oviparity) or live-bearing (viviparity) is a genetically determined trait fundamental to the biology of amniotes. Squamates are an emerging model for the genetics of reproductive mode yet lack cell culture models valuable for exploring molecular mechanisms. Here, we report a novel primary culture model for reproductive biology: cell cultures derived from the oviduct tissues (infundibulum, uterus and vagina) of oviparous and viviparous common lizards (Lacertidae: Zootoca vivipara). We maintained and expanded these cultures for over 100 days, including repeated subculturing and successful revival of cryopreserved cells. Immunocytochemical investigation suggested expression of both epithelial and fibroblast-like proteins, and RNA sequencing of cultured cells as compared to in vivo oviduct tissue showed changes in gene expression in response to the cell culture environment. Despite this, we confirmed the maintenance of distinct gene expression patterns in viviparous and oviparous cells after 60+ days of cell culture, finding 354 differentially expressed genes between viviparous and oviparous cells. Furthermore, we confirmed the expression of 15 viviparity-associated candidate genes in cells maintained for 60+ days in culture. Our study demonstrates the feasibility and utility of oviduct cell culture for molecular analysis of reproductive mode and provides a tool for future genetic experiments.
Collapse
Affiliation(s)
- John Laurence Smout
- School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, Scotland, G12 8QQ, UK
| | - Maureen M Bain
- School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, Scotland, G12 8QQ, UK
| | - Mark McLaughlin
- School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, Scotland, G12 8QQ, UK
| | - Kathryn R Elmer
- School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, Scotland, G12 8QQ, UK.
| |
Collapse
|
2
|
Perez-Moreno E, Toledo T, Campusano P, Zuñiga S, Azócar L, Feuerhake T, Méndez GP, Labarca M, Pérez-Molina F, de la Peña A, Herrera-Cid C, Ehrenfeld P, Godoy AS, González A, Soza A. Galectin-8 counteracts folic acid-induced acute kidney injury and prevents its transition to fibrosis. Biomed Pharmacother 2024; 177:116923. [PMID: 38936192 DOI: 10.1016/j.biopha.2024.116923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/03/2024] [Accepted: 06/09/2024] [Indexed: 06/29/2024] Open
Abstract
Acute kidney injury (AKI), characterized by a sudden decline in kidney function involving tubular damage and epithelial cell death, can lead to progressive tissue fibrosis and chronic kidney disease due to interstitial fibroblast activation and tissue repair failures that lack direct treatments. After an AKI episode, surviving renal tubular cells undergo cycles of dedifferentiation, proliferation and redifferentiation while fibroblast activity increases and then declines to avoid an exaggerated extracellular matrix deposition. Appropriate tissue recovery versus pathogenic fibrotic progression depends on fine-tuning all these processes. Identifying endogenous factors able to affect any of them may offer new therapeutic opportunities to improve AKI outcomes. Galectin-8 (Gal-8) is an endogenous carbohydrate-binding protein that is secreted through an unconventional mechanism, binds to glycosylated proteins at the cell surface and modifies various cellular activities, including cell proliferation and survival against stress conditions. Here, using a mouse model of AKI induced by folic acid, we show that pre-treatment with Gal-8 protects against cell death, promotes epithelial cell redifferentiation and improves renal function. In addition, Gal-8 decreases fibroblast activation, resulting in less expression of fibrotic genes. Gal-8 added after AKI induction is also effective in maintaining renal function against damage, improving epithelial cell survival. The ability to protect kidneys from injury during both pre- and post-treatments, coupled with its anti-fibrotic effect, highlights Gal-8 as an endogenous factor to be considered in therapeutic strategies aimed at improving renal function and mitigating chronic pathogenic progression.
Collapse
Affiliation(s)
- Elisa Perez-Moreno
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile; Centro Científico y Tecnológico de Excelencia (CCTE) Ciencia & Vida, Santiago, Chile
| | - Tomás Toledo
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Pascale Campusano
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Sebastián Zuñiga
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Lorena Azócar
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Teo Feuerhake
- Department of Pathology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | - Mariana Labarca
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Francisca Pérez-Molina
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile; Centro Científico y Tecnológico de Excelencia (CCTE) Ciencia & Vida, Santiago, Chile
| | - Adely de la Peña
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile; Centro Científico y Tecnológico de Excelencia (CCTE) Ciencia & Vida, Santiago, Chile
| | - Cristian Herrera-Cid
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Pamela Ehrenfeld
- Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Alejandro S Godoy
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Alfonso González
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile; Centro Científico y Tecnológico de Excelencia (CCTE) Ciencia & Vida, Santiago, Chile
| | - Andrea Soza
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile; Centro Científico y Tecnológico de Excelencia (CCTE) Ciencia & Vida, Santiago, Chile.
| |
Collapse
|
3
|
Pichler R, Rizzo L, Tröndle K, Bühler M, Brucker H, Müller AL, Grand K, Farè S, Viau A, Kaminski MM, Kuehn EW, Koch F, Zimmermann S, Koltay P, Lienkamp SS. Tuning the 3D microenvironment of reprogrammed tubule cells enhances biomimetic modeling of polycystic kidney disease. Biomaterials 2022; 291:121910. [DOI: 10.1016/j.biomaterials.2022.121910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/04/2022] [Accepted: 11/06/2022] [Indexed: 11/09/2022]
|
4
|
Abstract
The epidermal growth factor (EGF) system has allowed chemists, biologists, and clinicians to improve our understanding of cell production and cancer therapy. The discovery of EGF led to the recognition of cell surface receptors capable of controlling the proliferation and survival of cells. The detailed structures of the EGF-like ligand and the responses of their receptors (EGFR-family) has revealed the conformational and aggregation changes whereby ligands activate the intracellular kinase domains. Biophysical analysis has revealed the preformed clustering of different EGFR-family members and the processes which occur on ligand binding. Understanding these receptor activation processes and the consequential cytoplasmic signaling has allowed the development of inhibitors which are revolutionizing cancer therapy. This Review describes the recent progress in our understanding of the activation of the EGFR-family, the effects of signaling from the EGFR-family on cell proliferation, and the targeting of the EGFR-family in cancer treatment.
Collapse
Affiliation(s)
- Antony W Burgess
- Honorary Laboratory Head, Personalized Oncology Division, WEHI, Parkville3050, Australia.,Professor Emeritus, Departments of Medical Biology and Surgery (Royal Melbourne Hospital), University of Melbourne, Melbourne3052, Australia.,The Brain Cancer Centre at WEHI, Parkville3052, Australia
| |
Collapse
|
5
|
Liao H, Zhang L, Lu S, Li W, Dong W. KIFC3 Promotes Proliferation, Migration, and Invasion in Colorectal Cancer via PI3K/AKT/mTOR Signaling Pathway. Front Genet 2022; 13:848926. [PMID: 35812733 PMCID: PMC9257096 DOI: 10.3389/fgene.2022.848926] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Background: KIFC3, belongs to kinesin superfamily proteins (KIFs), is well known for its role in intracellular cargo movement. KIFC3 has been identified as a docetaxel resistance gene in breast cancer cells, however, the role of KIFC3 and its potential mechanism in colorectal cancer (CRC) remains elusive.Objectives: We aims to investigate the effects of KIFC3 in proliferation, migration, and invasion in CRC as well as the potential mechanism inside.Methods: We investigated the expression of KIFC3 in the Oncomine, Gene Expression Profiling Interactive Analysis databases. The KIFC3 protein expression and mRNA level in CRC cells were evaluated by western blot and qRT-PCR. Cell proliferation ability was detected by CCK-8, EdU, colony formation assay and xenograft tumor in nude mice. Flow cytometry was used to detect the cell cycle. The effect of KIFC3 on the epithelial-to-mesenchymal transition (EMT) was investigated by transwell and wound healing assay. The association of KIFC3 with EMT and PI3K/AKT/mTOR signaling pathway were measured by western blot and immunofluorescence staining.Results: The expression of KIFC3 was higher in CRC tissues than normal colorectal tissue, and was negatively correlated with the overall survival of patients with CRC. KIFC3 silencing inhibited the proliferation, migration and invasion of CRC cells. Meanwhile, it could decrease the number of cells in S phase. KIFC3 silencing inhibited the expression of proliferating cell nuclear antigen, Cyclin A2, Cyclin E1, and CDK2 and increased the expression of p21 and p53. KIFC3 overexpression promoted the G1/S phase transition. KIFC3 silencing inhibited the EMT process, which decreased the level of N-cadherin, Vimentin, SNAIL 1, TWIST, MMP-2, MMP-9 and increased E-cadherin, while KIFC3 overexpression show the opposite results. Furthermore, the knockdown of KIFC3 suppressed the EMT process by modulating the PI3K/AKT/mTOR signaling pathway. KIFC3 silencing decreased the expression of phosphorylated PI3K, AKT, mTOR, but total PI3K, AKT, mTOR have no change. Inversely, the upregulation of KIFC3 increased the expression of phosphorylated PI3K, AKT and mTOR, total PI3K, AKT, mTOR have no change. In a xenograft mouse model, the depletion of KIFC3 suppressed tumor growth. the increased expression levels of KIFC3 could enhance the proliferation, migration and invasion of CRC cells, and enhance the EMT process through the PI3K/AKT/mTOR pathway.Conclusion: Our study substantiates that KIFC3 can participate in the regulation of CRC progression by which regulates EMT via the PI3K/AKT/mTOR axis.
Collapse
Affiliation(s)
- Huiling Liao
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lan Zhang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shimin Lu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wei Li
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Weiguo Dong
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
- *Correspondence: Weiguo Dong,
| |
Collapse
|
6
|
Abouelkheir M, Shabaan DA, Shahien MA. Delayed blockage of prostaglandin EP 4 receptors can reduce dedifferentiation, epithelial-to-mesenchymal transition and fibrosis following acute kidney injury. Clin Exp Pharmacol Physiol 2021; 48:791-800. [PMID: 33634509 DOI: 10.1111/1440-1681.13478] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 09/19/2020] [Accepted: 01/22/2021] [Indexed: 01/05/2023]
Abstract
Dedifferentiation of tubular epithelial cells is involved in both regeneration and fibrosis following acute kidney injury (AKI). Prostaglandin E2 receptor 4 (EP4 ) antagonist can inhibit the dedifferentiation of renal tubular cells. The present study investigated whether the time of blockage of EP4 receptors, using grapiprant, could affect the tubular regeneration or interstitial fibrosis in AKI. Cisplatin was used to induce AKI in 72 C57BL/6 adult female mice. Animals were assigned to four groups; control, cisplatin-treated, cisplatin-treated with early grapiprant intervention and cisplatin-treated with late grapiprant intervention. AKI was assessed by kidney function tests and histopathology. Fibrosis was evaluated by Masson's trichrome and alpha smooth muscle actin (α-SMA) expression. Markers of dedifferentiation, CD133, and epithelial to mesenchymal transition (EMT), vimentin were assessed. Early intervention with grapiprant significantly ameliorated AKI more efficiently than late intervention. However, even late intervention was useful in reducing the overall fibrosis as demonstrated by Masson's trichrome and α-SMA expression. In both grapiprant-treated groups, a parallel reduction of dedifferentiation (CD133) and EMT (vimentin) was evident. It seems that the progressive fibrotic changes that follow AKI could still be reduced possibly by targeting dedifferentiation and/or EMT.
Collapse
Affiliation(s)
- Mohamed Abouelkheir
- Department of Pharmacology and Therapeutics, College of Medicine, Jouf University, Sakaka, Saudi Arabia
- Pharmacology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Dalia A Shabaan
- Histology and Cell Biology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Mohamed Awad Shahien
- Pharmacology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
7
|
Xie T, Xia Z, Wang W, Zhou X, Xu C. BMPER Ameliorates Renal Fibrosis by Inhibiting Tubular Dedifferentiation and Fibroblast Activation. Front Cell Dev Biol 2021; 9:608396. [PMID: 33644047 PMCID: PMC7905093 DOI: 10.3389/fcell.2021.608396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 01/08/2021] [Indexed: 12/02/2022] Open
Abstract
Tubulointerstitial fibrosis is both a pathological manifestation of chronic kidney disease and a driving force for the progression of kidney disease. A previous study has shown that bone morphogenetic protein-binding endothelial cell precursor-derived regulator (BMPER) is involved in lung fibrogenesis. However, the role of BMPER in renal fibrosis remains unknown. In the present study, the expression of BMPER was examined by real-time PCR, Western blot and immunohistochemical staining. The in vitro effects of BMPER on tubular dedifferentiation and fibroblast activation were analyzed in cultured HK-2 and NRK-49F cells. The in vivo effects of BMPER were dissected in unilateral ureteral obstruction (UUO) mice by delivery of BMPER gene via systemic administration of plasmid vector. We reported that the expression of BMPER decreased in the kidneys of UUO mice and HK-2 cells. TGF-β1 increased inhibitor of differentiation-1 (Id-1) and induced epithelial mesenchymal transition in HK-2 cells, and knockdown of BMPER aggravated Id-1 up-regulation, E-cadherin loss, and tubular dedifferentiation. On the contrary, exogenous BMPER inhibited Id-1 up-regulation, prevented E-cadherin loss and tubular dedifferentiation after TGF-β1 exposure. In addition, exogenous BMPER suppressed fibroblast activation by hindering Erk1/2 phosphorylation. Knockdown of low-density lipoprotein receptor-related protein 1 abolished the inhibitory effect of BMPER on Erk1/2 phosphorylation and fibroblast activation. Moreover, delivery of BMPER gene improved renal tubular damage and interstitial fibrosis in UUO mice. Therefore, BMPER inhibits TGF-β1-induced tubular dedifferentiation and fibroblast activation and may hold therapeutic potential for tubulointerstitial fibrosis.
Collapse
Affiliation(s)
- Ting Xie
- Department of Woman's Health Care, Maternal and Child Health Hospital of Hubei Province, Wuhan, China
| | - Zunen Xia
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wei Wang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Institute of Urology, Anhui Medical University, Hefei, China
| | - Xiangjun Zhou
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Changgeng Xu
- Department of Urology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
8
|
Parker MI, Nikonova AS, Sun D, Golemis EA. Proliferative signaling by ERBB proteins and RAF/MEK/ERK effectors in polycystic kidney disease. Cell Signal 2019; 67:109497. [PMID: 31830556 DOI: 10.1016/j.cellsig.2019.109497] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/05/2019] [Accepted: 12/06/2019] [Indexed: 12/24/2022]
Abstract
A primary pathological feature of polycystic kidney disease (PKD) is the hyperproliferation of epithelial cells in renal tubules, resulting in formation of fluid-filled cysts. The proliferative aspects of the two major forms of PKD-autosomal dominant PKD (ADPKD), which arises from mutations in the polycystins PKD1 and PKD2, and autosomal recessive PKD (ARPKD), which arises from mutations in PKHD1-has encouraged investigation into protein components of the core cell proliferative machinery as potential drivers of PKD pathogenesis. In this review, we examine the role of signaling by ERBB proteins and their effectors, with a primary focus on ADPKD. The ERBB family of receptor tyrosine kinases (EGFR/ERBB1, HER2/ERBB2, ERBB3, and ERBB4) are activated by extracellular ligands, inducing multiple pro-growth signaling cascades; among these, activation of signaling through the RAS GTPase, and the RAF, MEK1/2, and ERK1/2 kinases enhance cell proliferation and restrict apoptosis during renal tubuloepithelial cyst formation. Characteristics of PKD include overexpression and mislocalization of the ERBB receptors and ligands, leading to enhanced activation and increased activity of downstream signaling proteins. The altered regulation of ERBBs and their effectors in PKD is influenced by enhanced activity of SRC kinase, which is promoted by the loss of cytoplasmic Ca2+ and an increase in cAMP-dependent PKA kinase activity that stimulates CFTR, driving the secretory phenotype of ADPKD. We discuss the interplay between ERBB/SRC signaling, and polycystins and their depending signaling, with emphasis on thes changes that affect cell proliferation in cyst expansion, as well as the inflammation-associated fibrogenesis, which characterizes progressive disease. We summarize the current progress of preclinical and clinical trials directed at inhibiting this signaling axis, and discuss potential future strategies that may be productive for controlling PKD.
Collapse
Affiliation(s)
- Mitchell I Parker
- Program in Molecular Therapeutics, Fox Chase Cancer Center, 19111, USA; Molecular & Cell Biology & Genetics (MCBG) Program, Drexel University College of Medicine, 19102, USA
| | - Anna S Nikonova
- Program in Molecular Therapeutics, Fox Chase Cancer Center, 19111, USA
| | - Danlin Sun
- Program in Molecular Therapeutics, Fox Chase Cancer Center, 19111, USA; Institute of Life Science, Jiangsu University, Jingkou District, Zhenjiang, Jiangsu 212013, China
| | - Erica A Golemis
- Program in Molecular Therapeutics, Fox Chase Cancer Center, 19111, USA.
| |
Collapse
|
9
|
Gwon Y, Kim SH, Kim HT, Kam TI, Park J, Lim B, Cha H, Chang HJ, Hong YR, Jung YK. Amelioration of amyloid β-FcγRIIb neurotoxicity and tau pathologies by targeting LYN. FASEB J 2018; 33:4300-4313. [PMID: 30540497 DOI: 10.1096/fj.201800926r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
SRC-family kinases (SFKs) have been implicated in Alzheimer's disease (AD), but their mode of action was scarcely understood. Here, we show that LYN plays an essential role in amyloid β (Aβ)-triggered neurotoxicity and tau hyperphosphorylation by phosphorylating Fcγ receptor IIb2 (FcγRIIb2). We found that enzyme activity of LYN was increased in the brain of AD patients and was promoted in neuronal cells exposed to Aβ 1-42 (Aβ1-42). Knockdown of LYN expression inhibited Aβ1-42-induced neuronal cell death. Of note, LYN interacted with FcγRIIb2 upon exposure to Aβ1-42 and phosphorylated FcγRIIb2 at Tyr273 within immunoreceptor tyrosine-based inhibitory motif in neuronal cells. With the use of the structure-based drug design, we isolated KICG2576, an ATP-competitive inhibitor of LYN. Determination of cocrystal structure illustrated that KICG2576 bound to the cleft in the LYN kinase domain and inhibited LYN with a half-maximal inhibitory concentration value of 0.15 μM. KICG2576 inhibited Aβ- or FcγRIIb2-induced cell death, and this effect was better than pyrazolopyrimidine 1, a widely used inhibitor of SFK. Upon exposure to Aβ, KICG2576 blocked the phosphorylation of FcγRIIb2 and translocation of phosphatidylinositol 3,4,5-trisphosphate 5-phosphatase 2, a binding protein to the phosphorylated FcγRIIb2, to the plasma membrane, resulting in the inhibition of tau hyperphosphorylation, the downstream event of Aβ1-42-FcγRIIb2 binding. Furthermore, intracerebroventricular injection of KICG2576 into mice ameliorated Aβ-induced memory impairment. These results suggest that LYN plays a crucial role in Aβ1-42-mediated neurotoxicity and tau pathology, providing a therapeutic potential of LYN in AD.-Gwon, Y., Kim, S.-H., Kim, H. T., Kam, T.-I., Park, J., Lim, B., Cha, H., Chang, H.-J., Hong, Y. R., Jung, Y.-K. Amelioration of amyloid β-FcγRIIb neurotoxicity and tau pathologies by targeting LYN.
Collapse
Affiliation(s)
- Youngdae Gwon
- School of Biological Sciences, Seoul National University, Seoul, South Korea; and
| | - Seo-Hyun Kim
- School of Biological Sciences, Seoul National University, Seoul, South Korea; and
| | - Hyun Tae Kim
- Crystalgenomics Incorporated, Gyeonggi-do, South Korea
| | - Tae-In Kam
- School of Biological Sciences, Seoul National University, Seoul, South Korea; and
| | - Jisu Park
- School of Biological Sciences, Seoul National University, Seoul, South Korea; and
| | - Bitna Lim
- School of Biological Sciences, Seoul National University, Seoul, South Korea; and
| | - Hyunju Cha
- Crystalgenomics Incorporated, Gyeonggi-do, South Korea
| | - Ho-Jin Chang
- Crystalgenomics Incorporated, Gyeonggi-do, South Korea
| | - Yong Rae Hong
- Crystalgenomics Incorporated, Gyeonggi-do, South Korea
| | - Yong-Keun Jung
- School of Biological Sciences, Seoul National University, Seoul, South Korea; and
| |
Collapse
|
10
|
Zhu Y, Li F, Shi W, Zhai C, Wang J, Yan X, Wang Q, Zhang Q, Yang L, Gao L, Li M. COP9 signalosome subunit 6 mediates PDGF -induced pulmonary arterial smooth muscle cells proliferation. Exp Cell Res 2018; 371:379-388. [PMID: 30180991 DOI: 10.1016/j.yexcr.2018.08.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 08/08/2018] [Accepted: 08/27/2018] [Indexed: 12/27/2022]
Abstract
Up-regulation of mammalian COP9 signalosome subunit 6 (CSN6) and consequent reduction of SCF ubiquitin ligase substrate receptor β-transduction repeat-containing protein (β-TrCP) have been shown to be associated with cancer cells proliferation. However, it is unclear whether CSN6 and β-TrCP are also involved in PDGF-induced pulmonary arterial smooth muscle cells (PASMCs) proliferation. This study aims to address this issue and further explore its potential mechanisms. Our results indicated that PDGF phosphorylated Akt, stimulated PASMCs proliferation; while inhibition of PDGF receptor (PDGFR) by imatinib prevented these effects. PDGF further up-regulated CSN6 protein expression, this was accompanied with β-TrCP reduction and increase of Cdc25A. Inhibition of PDGFR/PI3K/Akt signaling pathway reversed PDGF-induced such changes and cell proliferation. Prior transfection of CSN6 siRNA blocked PDGF-induced β-TrCP down-regulation, Cdc25A up-regulation and cell proliferation. Furthermore, pre-treatment of cells with MG-132 also abolished PDGF-induced β-TrCP reduction, Cdc25A elevation and cell proliferation. In addition, pre-depletion of Cdc25A by siRNA transfection suppressed PDGF-induced PASMCs proliferation. Taken together, our study indicates that up-regulation of CSN6 by PDGFR/PI3K/Akt signaling pathway decreases β-TrCP by increasing its ubiquitinated degradation, and thereby increases the expression of Cdc25A, which promotes PDGF-induced PASMCs proliferation.
Collapse
Affiliation(s)
- Yanting Zhu
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, People's Republic of China
| | - Fangwei Li
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, People's Republic of China
| | - Wenhua Shi
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, People's Republic of China
| | - Cui Zhai
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, People's Republic of China
| | - Jian Wang
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, People's Republic of China
| | - Xin Yan
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, People's Republic of China
| | - Qingting Wang
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, People's Republic of China
| | - Qianqian Zhang
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, People's Republic of China
| | - Lan Yang
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, People's Republic of China
| | - Li Gao
- Division of Allergy and Clinical Immunology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | - Manxiang Li
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, People's Republic of China.
| |
Collapse
|
11
|
Lagies S, Pichler R, Kaminski MM, Schlimpert M, Walz G, Lienkamp SS, Kammerer B. Metabolic characterization of directly reprogrammed renal tubular epithelial cells (iRECs). Sci Rep 2018; 8:3878. [PMID: 29497074 PMCID: PMC5832874 DOI: 10.1038/s41598-018-22073-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 02/15/2018] [Indexed: 12/11/2022] Open
Abstract
Fibroblasts can be directly reprogrammed to induced renal tubular epithelial cells (iRECs) using four transcription factors. These engineered cells may be used for disease modeling, cell replacement therapy or drug and toxicity testing. Direct reprogramming induces drastic changes in the transcriptional landscape, protein expression, morphological and functional properties of cells. However, how the metabolome is changed by reprogramming and to what degree it resembles the target cell type remains unknown. Using untargeted gas chromatography-mass spectrometry (GC-MS) and targeted liquid chromatography-MS, we characterized the metabolome of mouse embryonic fibroblasts (MEFs), iRECs, mIMCD-3 cells, and whole kidneys. Metabolic fingerprinting can distinguish each cell type reliably, revealing iRECs are most similar to mIMCD-3 cells and clearly separate from MEFs used for reprogramming. Treatment with the cytotoxic drug cisplatin induced typical changes in the metabolic profile of iRECs commonly occurring in acute renal injury. Interestingly, metabolites in the medium of iRECs, but not of mIMCD-3 cells or fibroblast could distinguish treated and non-treated cells by cluster analysis. In conclusion, direct reprogramming of fibroblasts into renal tubular epithelial cells strongly influences the metabolome of engineered cells, suggesting that metabolic profiling may aid in establishing iRECs as in vitro models for nephrotoxicity testing in the future.
Collapse
Affiliation(s)
- Simon Lagies
- Center for Biosystems Analysis (ZBSA), Albert-Ludwigs-University Freiburg, Habsburgerstr. 49, 79104, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Albertstr. 19a, 79104, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Schänzlestr. 1, 79104, Freiburg, Germany
| | - Roman Pichler
- Department of Medicine, Renal Division, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
| | - Michael M Kaminski
- Department of Medicine, Renal Division, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
| | - Manuel Schlimpert
- Center for Biosystems Analysis (ZBSA), Albert-Ludwigs-University Freiburg, Habsburgerstr. 49, 79104, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Albertstr. 19a, 79104, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Schänzlestr. 1, 79104, Freiburg, Germany
| | - Gerd Walz
- Department of Medicine, Renal Division, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
- BIOSS Centre of Biological Signalling Studies, University of Freiburg, Schänzlestr. 18, 79104, Freiburg, Germany
| | - Soeren S Lienkamp
- Department of Medicine, Renal Division, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany.
- BIOSS Centre of Biological Signalling Studies, University of Freiburg, Schänzlestr. 18, 79104, Freiburg, Germany.
| | - Bernd Kammerer
- Center for Biosystems Analysis (ZBSA), Albert-Ludwigs-University Freiburg, Habsburgerstr. 49, 79104, Freiburg, Germany.
- BIOSS Centre of Biological Signalling Studies, University of Freiburg, Schänzlestr. 18, 79104, Freiburg, Germany.
| |
Collapse
|
12
|
Nagarajan S, Bedi U, Budida A, Hamdan FH, Mishra VK, Najafova Z, Xie W, Alawi M, Indenbirken D, Knapp S, Chiang CM, Grundhoff A, Kari V, Scheel CH, Wegwitz F, Johnsen SA. BRD4 promotes p63 and GRHL3 expression downstream of FOXO in mammary epithelial cells. Nucleic Acids Res 2017; 45:3130-3145. [PMID: 27980063 PMCID: PMC5389510 DOI: 10.1093/nar/gkw1276] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Accepted: 12/09/2016] [Indexed: 12/12/2022] Open
Abstract
Bromodomain-containing protein 4 (BRD4) is a member of the bromo- and extraterminal (BET) domain-containing family of epigenetic readers which is under intensive investigation as a target for anti-tumor therapy. BRD4 plays a central role in promoting the expression of select subsets of genes including many driven by oncogenic transcription factors and signaling pathways. However, the role of BRD4 and the effects of BET inhibitors in non-transformed cells remain mostly unclear. We demonstrate that BRD4 is required for the maintenance of a basal epithelial phenotype by regulating the expression of epithelial-specific genes including TP63 and Grainy Head-like transcription factor-3 (GRHL3) in non-transformed basal-like mammary epithelial cells. Moreover, BRD4 occupancy correlates with enhancer activity and enhancer RNA (eRNA) transcription. Motif analyses of cell context-specific BRD4-enriched regions predicted the involvement of FOXO transcription factors. Consistently, activation of FOXO1 function via inhibition of EGFR-AKT signaling promoted the expression of TP63 and GRHL3. Moreover, activation of Src kinase signaling and FOXO1 inhibition decreased the expression of FOXO/BRD4 target genes. Together, our findings support a function for BRD4 in promoting basal mammary cell epithelial differentiation, at least in part, by regulating FOXO factor function on enhancers to activate TP63 and GRHL3 expression.
Collapse
Affiliation(s)
- Sankari Nagarajan
- Department of General, Visceral and Pediatric Surgery, Göttingen Center for Molecular Biosciences, University Medical Center Göttingen, 37077 Göttingen, Germany
| | - Upasana Bedi
- Institute of Molecular Oncology, University Medical Center Göttingen, 37077 Göttingen, Germany.,Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Anusha Budida
- Department of General, Visceral and Pediatric Surgery, Göttingen Center for Molecular Biosciences, University Medical Center Göttingen, 37077 Göttingen, Germany
| | - Feda H Hamdan
- Department of General, Visceral and Pediatric Surgery, Göttingen Center for Molecular Biosciences, University Medical Center Göttingen, 37077 Göttingen, Germany
| | - Vivek Kumar Mishra
- Department of General, Visceral and Pediatric Surgery, Göttingen Center for Molecular Biosciences, University Medical Center Göttingen, 37077 Göttingen, Germany
| | - Zeynab Najafova
- Department of General, Visceral and Pediatric Surgery, Göttingen Center for Molecular Biosciences, University Medical Center Göttingen, 37077 Göttingen, Germany
| | - Wanhua Xie
- Department of General, Visceral and Pediatric Surgery, Göttingen Center for Molecular Biosciences, University Medical Center Göttingen, 37077 Göttingen, Germany
| | - Malik Alawi
- Bioinformatics Core, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany.,Heinrich-Pette-Institute, Leibniz Institute for Experimental Virology, 20251 Hamburg, Germany
| | - Daniela Indenbirken
- Heinrich-Pette-Institute, Leibniz Institute for Experimental Virology, 20251 Hamburg, Germany
| | - Stefan Knapp
- Structural Genomics Consortium, University of Oxford, Oxford OX3 7DQ, UK.,Target Discovery Institute, University of Oxford, Oxford OX3 7FZ, UK.,Institute for Pharmaceutical Chemistry, Goethe University Frankfurt 60323, Germany
| | - Cheng-Ming Chiang
- University of Texas Southwestern Medical Center, Simmons Comprehensive Cancer Center, Dallas, TX 75235, USA
| | - Adam Grundhoff
- Heinrich-Pette-Institute, Leibniz Institute for Experimental Virology, 20251 Hamburg, Germany
| | - Vijayalakshmi Kari
- Department of General, Visceral and Pediatric Surgery, Göttingen Center for Molecular Biosciences, University Medical Center Göttingen, 37077 Göttingen, Germany
| | - Christina H Scheel
- Institute of Stem Cell Research, Helmholtz Center for Health and Environmental Research Munich, 85764 Neuherberg, Germany
| | - Florian Wegwitz
- Department of General, Visceral and Pediatric Surgery, Göttingen Center for Molecular Biosciences, University Medical Center Göttingen, 37077 Göttingen, Germany
| | - Steven A Johnsen
- Department of General, Visceral and Pediatric Surgery, Göttingen Center for Molecular Biosciences, University Medical Center Göttingen, 37077 Göttingen, Germany
| |
Collapse
|
13
|
Zhou X, Zhang W, Yao Q, Zhang H, Dong G, Zhang M, Liu Y, Chen JK, Dong Z. Exosome production and its regulation of EGFR during wound healing in renal tubular cells. Am J Physiol Renal Physiol 2017; 312:F963-F970. [PMID: 28356285 PMCID: PMC5495889 DOI: 10.1152/ajprenal.00078.2017] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 03/02/2017] [Accepted: 03/13/2017] [Indexed: 01/07/2023] Open
Abstract
Kidney repair following injury involves the reconstitution of a structurally and functionally intact tubular epithelium. Growth factors and their receptors, such as EGFR, are important in the repair of renal tubules. Exosomes are cell-produced small (~100 nm in diameter) vesicles that contain and transfer proteins, lipids, RNAs, and DNAs between cells. In this study, we examined the relationship between exosome production and EGFR activation and the potential role of exosome in wound healing. EGFR activation occurred shortly after scratch wounding in renal tubular cells. Wound repair after scratching was significantly promoted by EGF and suppressed by EGFR inhibitor gefitinib. Interestingly, scratch wounding induced a significant increase of exosome production. The exosome production was decreased by EGF and increased by gefitinib, suggesting a suppressive role of EGFR signaling in exosome production. Conversely, inhibition of exosome release by GW4869 and manumycin A markedly increased EGFR activation and promoted wound healing. Moreover, exosomes derived from scratch-wounding cells could inhibit wound healing. Collectively, the results indicate that wound healing in renal tubular cells is associated with EGFR activation and exosome production. Although EGFR activation promotes wound healing, released exosomes may antagonize EGFR activation and wound healing.
Collapse
Affiliation(s)
- Xiangjun Zhou
- Department of Urology, Taihe Hospital, Hubei University of Medicine, Hubei, China.,Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Wei Zhang
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, Georgia.,Department of Nephrology, The Third Xiangya Hospital of Central South University, Changsha, China; and
| | - Qisheng Yao
- Department of Urology, Taihe Hospital, Hubei University of Medicine, Hubei, China
| | - Hao Zhang
- Department of Nephrology, The Third Xiangya Hospital of Central South University, Changsha, China; and
| | - Guie Dong
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Ming Zhang
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Yutao Liu
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Jian-Kang Chen
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Zheng Dong
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, Georgia; .,Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
14
|
Long Y, Zhen X, Zhu F, Hu Z, Lei W, Li S, Zha Y, Nie J. Hyperhomocysteinemia Exacerbates Cisplatin-induced Acute Kidney Injury. Int J Biol Sci 2017; 13:219-231. [PMID: 28255274 PMCID: PMC5332876 DOI: 10.7150/ijbs.16725] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 10/21/2016] [Indexed: 12/12/2022] Open
Abstract
Hyperhomocysteinemia (HHcy) has been linked to several clinical manifestations including chronic kidney disease. However, it is not known whether HHcy has a role in the development of acute kidney injury (AKI). In the present study, we reported that HHcy mice developed more severe renal injury after cisplatin injection and ischemia-reperfusion injury shown as more severe renal tubular damage and higher serum creatinine. In response to cisplatin, HHcy mice showed more prevalent tubular cell apoptosis and decreased tubular cell proliferation. Mechanistically, a heightened ER stress and a reduced Akt activity were observed in kidney tissues of HHcy mice after cisplatin injection. Stimulating cultured NRK-52E cells with Hcy significantly increased the fraction of cells in G2/M phase and cell apoptosis together with decreased Akt kinase activity. Akt agonist IGF-1 rescued HHcy-induced cell cycle arrest and cell apoptosis. In conclusion, the present study provides evidence that HHcy increases the sensitivity and severity of AKI.
Collapse
Affiliation(s)
- Yanjun Long
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China;; Division of Nephrology, Guizhou Provincial People's Hospital, Guizhou Provincial Institute of Nephritic & Urinary Disease, Guiyang, P.R. China
| | - Xin Zhen
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Fengxin Zhu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Zheng Hu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Wenjing Lei
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Shuang Li
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Yan Zha
- Division of Nephrology, Guizhou Provincial People's Hospital, Guizhou Provincial Institute of Nephritic & Urinary Disease, Guiyang, P.R. China
| | - Jing Nie
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| |
Collapse
|
15
|
Design, synthesis and evaluation of acridine derivatives as multi-target Src and MEK kinase inhibitors for anti-tumor treatment. Bioorg Med Chem 2016; 24:261-9. [DOI: 10.1016/j.bmc.2015.12.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 12/01/2015] [Accepted: 12/07/2015] [Indexed: 01/17/2023]
|
16
|
Lim TG, Jeon AJ, Yoon JH, Song D, Kim JE, Kwon JY, Kim JR, Kang NJ, Park JS, Yeom MH, Oh DK, Lim Y, Lee CC, Lee CY, Lee KW. 20-O-β-D-glucopyranosyl-20(S)-protopanaxadiol, a metabolite of ginsenoside Rb1, enhances the production of hyaluronic acid through the activation of ERK and Akt mediated by Src tyrosin kinase in human keratinocytes. Int J Mol Med 2015; 35:1388-94. [PMID: 25738334 DOI: 10.3892/ijmm.2015.2121] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 01/29/2015] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to determine the mechanisms through which 20-O-β-D-glucopyranosyl-20(S)-protopanaxadiol (20GPPD) promotes the production of hyaluronic acid (HA) in human keratinocytes. 20GPPD is the primary bioactive metabolite of Rb1, a major ginsenoside found in ginseng (Panax ginseng). We sought to elucidate the underlying mechanisms behind the 20GPPD-induced production of HA. We found that 20GPPD induced an increase in HA production by elevating hyaluronan synthase 2 (HAS2) expression in human keratinocytes. The phosphorylation of extracellular signal-regulated kinase (ERK) and Akt was also enhanced by 20GPPD in a dose-dependent manner. The pharmacological inhibition of ERK (using U0126) or Akt (using LY294002) suppressed the 20GPPD-induced expression of HAS2, whereas treatment with an epidermal growth factor receptor (EGFR) inhibitor (AG1478) or an intracellular Ca2+ chelator (BAPTA/AM) did not exert any observable effects. The increased Src phosphorylation was also confirmed following treatment with 20GPPD in the human keratinocytes. Following pre-treatment with the Src inhibitor, PP2, both HA production and HAS2 expression were attenuated. Furthermore, the 20GPPD-enhanced ERK and Akt signaling decreased following treatment with PP2. Taken together, our results suggest that Src kinase plays a critical role in the 20GPPD-induced production of HA by acting as an upstream modulator of ERK and Akt activity in human keratinocytes.
Collapse
Affiliation(s)
- Tae-Gyu Lim
- Advanced Institutes of Convergence Technology, Seoul National University, Suwon 443-270, Republic of Korea
| | - Ae Ji Jeon
- Advanced Institutes of Convergence Technology, Seoul National University, Suwon 443-270, Republic of Korea
| | - Ji Hye Yoon
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 143-701, Republic of Korea
| | - Dasom Song
- WCU Biomodulation Major, Department of Agricultural Biotechnology and Institute on Aging, Seoul National University, Seoul 151-921, Republic of Korea
| | - Jong-Eun Kim
- WCU Biomodulation Major, Department of Agricultural Biotechnology and Institute on Aging, Seoul National University, Seoul 151-921, Republic of Korea
| | - Jung Yeon Kwon
- Advanced Institutes of Convergence Technology, Seoul National University, Suwon 443-270, Republic of Korea
| | - Jong Rhan Kim
- Advanced Institutes of Convergence Technology, Seoul National University, Suwon 443-270, Republic of Korea
| | - Nam Joo Kang
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 702-701, Republic of Korea
| | - Jun-Seong Park
- Skin Research Institute, Amorepacific Corporation R&D Center, Yongin 341-1, Republic of Korea
| | - Myeong Hun Yeom
- Skin Research Institute, Amorepacific Corporation R&D Center, Yongin 341-1, Republic of Korea
| | - Deok-Kun Oh
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 143-701, Republic of Korea
| | - Yoongho Lim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 143-701, Republic of Korea
| | - Charles C Lee
- Department of Food Science, Cornell University, Ithaca, NY 14850, USA
| | - Chang Yong Lee
- Department of Food Science, Cornell University, Ithaca, NY 14850, USA
| | - Ki Won Lee
- Advanced Institutes of Convergence Technology, Seoul National University, Suwon 443-270, Republic of Korea
| |
Collapse
|
17
|
Wada Y, Iyoda M, Matsumoto K, Shindo-Hirai Y, Kuno Y, Yamamoto Y, Suzuki T, Saito T, Iseri K, Shibata T. Epidermal growth factor receptor inhibition with erlotinib partially prevents cisplatin-induced nephrotoxicity in rats. PLoS One 2014; 9:e111728. [PMID: 25390346 PMCID: PMC4229108 DOI: 10.1371/journal.pone.0111728] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Accepted: 10/05/2014] [Indexed: 11/19/2022] Open
Abstract
The effects of blocking the epidermal growth factor receptor (EGFR) in acute kidney injury (AKI) are controversial. Here we investigated the renoprotective effect of erlotinib, a selective tyrosine kinase inhibitor that can block EGFR activity, on cisplatin (CP)-induced AKI. Groups of animals were given either erlotinib or vehicle from one day before up to Day 3 following induction of CP-nephrotoxicity (CP-N). In addition, we analyzed the effects of erlotinib on signaling pathways involved in CP-N by using human renal proximal tubular cells (HK-2). Compared to controls, rats treated with erlotinib exhibited significant improvement of renal function and attenuation of tubulointerstitial injury, and reduced the number of apoptotic and proliferating cells. Erlotinib-treated rats had a significant reduction of renal cortical mRNA for profibrogenic genes. The Bax/Bcl-2 mRNA and protein ratios were significantly reduced by erlotinib treatment. In vitro, we observed that erlotinib significantly reduced the phosphorylation of MEK1 and Akt, processes that were induced by CP in HK-2. Taken together, these data indicate that erlotinib has renoprotective properties that are likely mediated through decreases in the apoptosis and proliferation of tubular cells, effects that reflect inhibition of downstream signaling pathways of EGFR. These results suggest that erlotinib may be useful for preventing AKI in patients receiving CP chemotherapy.
Collapse
Affiliation(s)
- Yukihiro Wada
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Masayuki Iyoda
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
- * E-mail:
| | - Kei Matsumoto
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Yuki Shindo-Hirai
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Yoshihiro Kuno
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Yasutaka Yamamoto
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Taihei Suzuki
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Tomohiro Saito
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Ken Iseri
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Takanori Shibata
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| |
Collapse
|
18
|
MicroRNAs as potential biomarkers for VERO cell tumorigenicity. Vaccine 2014; 32:4799-805. [DOI: 10.1016/j.vaccine.2014.05.065] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 04/30/2014] [Accepted: 05/20/2014] [Indexed: 01/07/2023]
|
19
|
Johno H, Kitamura M. Pathological in situ reprogramming of somatic cells by the unfolded protein response. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 183:644-54. [PMID: 23831328 DOI: 10.1016/j.ajpath.2013.05.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Revised: 05/07/2013] [Accepted: 05/10/2013] [Indexed: 12/19/2022]
Abstract
In response to tissue injuries, terminally differentiated cells are reprogrammed to undergo dedifferentiation to gain mitogenic and metabolic properties. The dedifferentiated cells acquire an immature phenotype, proliferate actively, produce abundant extracellular matrix, and recruit circulating leukocytes via secretion of chemokines, contributing to tissue repair and/or fibrosis. However, this remodeling process is self-limiting, and in the later phase, the activated, dedifferentiated cells are reprogrammed to redifferentiate into a mature, quiescent phenotype. Currently, molecular mechanisms underlying this bidirectional pathological reprogramming remain elusive. It is known that the unfolded protein response (UPR) is induced at local tissues under pathological situations and affects cellular fate-survival or death. It is also known that the UPR is involved in cell differentiation and organogenesis during embryonic development. In this review, we describe a hypothesis for regulatory roles of the UPR in the pathological reprogramming of somatic cells (ie, cellular dedifferentiation and redifferentiation at the sites of injury).
Collapse
Affiliation(s)
- Hisashi Johno
- Department of Molecular Signaling, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Yamanashi, Japan
| | | |
Collapse
|
20
|
Immunohistochemical analysis of vimentin in oral submucous fibrosis. J Cancer Epidemiol 2013; 2013:549041. [PMID: 23840210 PMCID: PMC3693162 DOI: 10.1155/2013/549041] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 05/11/2013] [Accepted: 05/28/2013] [Indexed: 11/26/2022] Open
Abstract
Background. Oral submucous fibrosis (OSF), a precancerous condition, is characterized by abnormal accumulation of collagen fibers in oral submucosa. Vimentin is a Class 2 intermediate filament (IF) and primarily expressed in cells of mesenchymal origin. Vimentin is also found to be involved in cell growth, cell cycling, and tumour differentiation.
Objective. The purpose of the study was to compare the expression of vimentin in various histological grades of OSF. Materials and Methods. To assess the immunohistochemical expression of vimentin in 20 mild cases of OSF, 20 severe cases of OSF, and ten cases of normal oral buccal mucosa. Results. The overall staining intensity of vimentin significantly increased statistically (P < 0.01) in OSF cases over normal control. A significant increase in the staining intensity of vimentin was also noted in the fibroblasts of severe cases of OSF (P = 0.03). Conclusion. Considering the marked vimentin expression in the present study, future studies should include cytoskeleton IF and other filaments in the fibroblasts of OSF.
Collapse
|
21
|
He S, Liu N, Bayliss G, Zhuang S. EGFR activity is required for renal tubular cell dedifferentiation and proliferation in a murine model of folic acid-induced acute kidney injury. Am J Physiol Renal Physiol 2012; 304:F356-66. [PMID: 23255615 DOI: 10.1152/ajprenal.00553.2012] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Proliferation of dedifferentiated intrinsic renal tubular cells has been recognized to be the major cellular event that contributes to renal repair after acute kidney injury (AKI). However, the underlying mechanism that initiates renal tubular dedifferentiation in vivo remains unexplored. Here we investigated whether epidermal growth factor receptor (EGFR) mediates this process in a murine model of folic acid (FA)-induced AKI using waved-2 mice that have reduced tyrosine kinase activity of EGFR and gefitinib, a specific EGFR inhibitor. Administration of FA for 48 h induced EGFR phosphorylation in the kidney of wild-type mice, but this was inhibited in waved-2 mice and wild-type mice given gefitinib. Compared with wild-type mice, waved-2 mice and wild-type mice treated with gefitinib had increased renal dysfunction, histologic damage, and tubular cell apoptosis after FA administration. PAX2, a dedifferentiation marker, and proliferating cell nuclear antigen, a proliferating marker, were highly expressed in renal tubular cells in wild-type mice; however, their expression was largely inhibited in the kidney of waved-2 mice. Inhibition of EGFR with gefitinib also blocked FA-induced expression of these two proteins in wild-type mice. Moreover, FA exposure resulted in phosphorylation of AKT, a downstream signaling molecule of the phosphatidylinositol 3-kinases pathway associated with renal epithelial proliferation in wild-type mice, and its phosphorylation was totally suppressed in waved-2 mice and wild-type mice given gefitinib. Taken together, these results suggest that EGFR activation is essential for initiation of renal tubular cell dedifferentiation and proliferation after AKI.
Collapse
Affiliation(s)
- Song He
- Department of Medicine, Alpert Medical School, Brown University, Rhode Island Hospital, Providence, RI 02903, USA
| | | | | | | |
Collapse
|
22
|
|
23
|
Peng J, Ramesh G, Sun L, Dong Z. Impaired wound healing in hypoxic renal tubular cells: roles of hypoxia-inducible factor-1 and glycogen synthase kinase 3β/β-catenin signaling. J Pharmacol Exp Ther 2011; 340:176-84. [PMID: 22010210 DOI: 10.1124/jpet.111.187427] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Wound and subsequent healing are frequently associated with hypoxia. Although hypoxia induces angiogenesis for tissue remodeling during wound healing, it may also affect the healing response of parenchymal cells. Whether and how wound healing is affected by hypoxia in kidney cells and tissues is currently unknown. Here, we used scratch-wound healing and transwell migration models to examine the effect of hypoxia in cultured renal proximal tubular cells (RPTC). Wound healing and migration were significantly slower in hypoxic (1% oxygen) RPTC than normoxic (21% oxygen) cells. Hypoxia-inducible factor-1α (HIF-1α) was induced during scratch-wound healing in normoxia, and the induction was more evident in hypoxia. Nevertheless, HIF-1α-null and wild-type cells healed similarly after scratch wounding. Moreover, activation of HIF-1α with dimethyloxalylglycine in normoxic cells did not suppress wound healing, negating a major role of HIF-1α in wound healing in this model. Scratch-wound healing was also associated with glycogen synthase kinase 3β (GSK3β)/β-catenin signaling, which was further enhanced by hypoxia. Pharmacological inhibition of GSK3β resulted in β-catenin expression, accompanied by the suppression of wound healing and transwell cell migration. Ectopic expression of β-catenin in normoxic cells could also suppress wound healing, mimicking the effect of hypoxia. Conversely, inhibition of β-catenin via dominant negative mutants or short hairpin RNA improved wound healing and transwell migration in hypoxic cells. The results suggest that GSK3β/β-catenin signaling may contribute to defective wound healing in hypoxic renal cells and tissues.
Collapse
Affiliation(s)
- Jianping Peng
- Department of Cellular Biology and Anatomy, Georgia Health Sciences University, Augusta, GA 30912, USA
| | | | | | | |
Collapse
|