1
|
Zhang X, Zhang B, Zhang Y, Zhang F. Association analysis of hepatocellular carcinoma-related hub proteins and hub genes. Proteomics Clin Appl 2023; 17:e2200090. [PMID: 37050894 DOI: 10.1002/prca.202200090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 03/29/2023] [Accepted: 04/03/2023] [Indexed: 04/14/2023]
Abstract
PURPOSE Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide. The occurrence and development of HCC are closely related to epigenetic modifications. Epigenetic modifications can regulate gene expression and related functions through DNA methylation. This paper presents an association analysis method of HCC-related hub proteins and hub genes. EXPERIMENTAL DESIGN Bioinformatics analysis of HCC-related DNA methylation data is carried out to clarify the molecular mechanism of HCC-related genes and to find hub genes (genes with more connections in the network) by constructing in the gene interaction network. This paper proposes an accurate prediction method of protein-protein interaction (PPI) based on deep learning model DeepSG2PPI. The trained DeepSG2PPI model predicts the interaction relationship between the synthetic proteins regulated by HCC-related genes. RESULTS This paper finds that four genes are the intersection of hub genes and hub proteins. The four genes are: FBL, CCNB2, ALDH18A1, and RPLP0. The association of RPLP0 gene with HCC is a new finding of this study. RPLP0 is expected to become a new biomarker for the treatment, diagnosis, and prognosis of HCC. The four proteins corresponding to the four genes are: ENSP00000221801, ENSP00000288207, ENSP00000360268, and ENSP00000449328. CONCLUSIONS AND CLINICAL RELEVANCE The association between the hub genes with the hub proteins is analyzed. The mutual verification of the hub genes and the hub proteins can obtain more credible HCC-related genes and proteins, which is helpful for the diagnosis, treatment, and drug development of HCC.
Collapse
Affiliation(s)
- Xinhong Zhang
- School of Software, Henan University, Kaifeng, China
| | - Boyan Zhang
- School of Software, Henan University, Kaifeng, China
| | - Yawei Zhang
- Henan Key Laboratory of Big Data Analysis and Processing, Henan University, Kaifeng, China
| | - Fan Zhang
- Henan Key Laboratory of Big Data Analysis and Processing, Henan University, Kaifeng, China
| |
Collapse
|
2
|
Zha LH, Zhou J, Li TZ, Luo H, Zhang MQ, Li S, Yu ZX. NLRC3 inhibits MCT-induced pulmonary hypertension in rats via attenuating PI3K activation. J Cell Physiol 2019; 234:15963-15976. [PMID: 30767203 DOI: 10.1002/jcp.28255] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/15/2019] [Accepted: 01/22/2019] [Indexed: 01/24/2023]
Abstract
Phosphoinositide 3-kinase (PI3K) activation plays a critical role in the pulmonary vascular remodeling of pulmonary hypertension (PH). The nucleotide-oligomerization domain (NOD)-like receptor subfamily C3 (NLRC3) inhibits proliferation and inflammation via PI3K signaling in cancer. We previously showed NLRC3 was significantly reduced in PH patients, but the mechanism of function remains unclear. This study aimed to determine the potential role of NLRC3 in PH. We found that NLRC3 was downregulated in the pulmonary arteries of PH animal models and platelet-derived growth factor-BB (PDGF-BB) stimulated pulmonary arterial smooth muscle cells (PASMCs). NLRC3 pretreatment reduced right ventricular systolic pressure, attenuated pulmonary vascular remodeling and RVHI, and ameliorated proliferation, migration, and inflammation. Monocrotaline (MCT)- and PDGF-BB-mediated PI3K activation were suppressed by NLRC3 pretreatment. 740Y-P decreased the effect of NLRC3. Collectively, NLRC3 protected against MCT-induced rat PH and PDGF-BB-induced PASMC proliferation, migration, and inflammation through a mechanism involving PI3K inhibition. NLRC3 may have a therapeutic effect on PH and provide a promising therapeutic strategy for PH.
Collapse
Affiliation(s)
- Li-Huang Zha
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Jun Zhou
- MedicalScience Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Tang-Zhiming Li
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Hui Luo
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Men-Qiu Zhang
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Sheng Li
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Zai-Xin Yu
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| |
Collapse
|
3
|
Successful development of squamous cell carcinoma and hyperplasia in RGEN-mediated p27 KO mice after the treatment of DMBA and TPA. Lab Anim Res 2018; 34:118-125. [PMID: 30310408 PMCID: PMC6170220 DOI: 10.5625/lar.2018.34.3.118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 09/06/2018] [Indexed: 11/21/2022] Open
Abstract
To evaluate the carcinogenicity of p27 knockout (KO) mice with RNA-guided endonuclease (RGENs)-mediated p27 mutant exon I gene (IΔ), alterations in the carcinogenic phenotypes including tumor spectrum, tumor suppressor proteins, apoptotic proteins and cell cycle regulators were observed in p27 (IΔ) KO mice after treatment with 7,12-Dimethylbenz[a]anthracene (DMBA) and 12-O-tetradecanoylphorbol-13-acetate (TPA)(DT) for 5 months. The target region (544~571 nt) in exon I of the p27 gene was successfully disrupted in p27 (IΔ) KO mice using the RGEN-induced non-homologous end joining (NHEJ) technique. After DT exposure for 5 months, a few solid tumors (identified as squamous cell carcinoma) developed on the surface of back skin of DT-treated p27 (IΔ) KO mice. Also, squamous cell hyperplasia with chronic inflammation was detected in the skin dermis of DT-treated p27 (IΔ) KO mice, while the Vehicle+p27 (IΔ) KO mice and WT mice maintained their normal histological skin structure. A significant increase was observed in the expression levels of tumor suppressor protein (p53), apoptotic proteins (Bax, Bcl-2 and Caspase-3) and cell-cycle regulator proteins (Cyclin D1, CDK2 and CDK4) in the skin of DT-treated p27 (IΔ) KO mice, although their enhancement ratio was varied. Taken together, the results of the present study suggest that squamous cell carcinoma and hyperplasia of skin tissue can be successfully developed in new p27 (IΔ) KO mice produced by RGEN-induced NHEJ technique following DT exposure for 5 months.
Collapse
|
4
|
Saito Y, Kuwahara Y, Yamamoto Y, Suzuki M, Fukumoto M, Yamamoto F. ddY Mice Fed 10% Fat Diet Exhibit High p27KIP Expression and Delayed Hepatocyte DNA Synthesis During Liver Regeneration. Metab Syndr Relat Disord 2018; 16:305-313. [DOI: 10.1089/met.2017.0131] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Yohei Saito
- Department of Radiopharmacy, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Yoshikazu Kuwahara
- Department of Radiation Biology and Medicine, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Yumi Yamamoto
- Department of Radiopharmacy, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Masatoshi Suzuki
- Department of Pathology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, Japan
| | - Manabu Fukumoto
- Department of Pathology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, Japan
| | - Fumihiko Yamamoto
- Department of Radiopharmacy, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| |
Collapse
|
5
|
Xu M, Liu Z, Wang C, Yao B, Zheng X. EDG2 enhanced the progression of hepatocellular carcinoma by LPA/PI3K/AKT/ mTOR signaling. Oncotarget 2017; 8:66154-66168. [PMID: 29029500 PMCID: PMC5630400 DOI: 10.18632/oncotarget.19825] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 06/28/2017] [Indexed: 12/12/2022] Open
Abstract
HCC is the leading type of the malignant liver tumors with the unsatisfied prognosis. Liver resection has been considered as the predominant curative therapy, however, the post-surgical prognostic evaluation remains an urgent problem and the mechanism of HCC metastases has not been understood completely. EDG2 has been found to accelerate tumor progression through mediating different cell pathways, however, it remains unclear about the role of EDG2 on hepatocarcinogenesis. Here, EDG2 expression was found increased notably in HCC tissues by immunohistochemistry compared with adjacent liver tissues and comparison of survival curves revealed that EDG2 upregulation in HCC tissues was associated with the worse prognosis after liver resection. The positive correlation between EDG2 up-regulation and EMT was observed in HCC samples. Furthermore, EDG2 over-expression in HCC cells brought the typical EMT characteristics including up-regulation of Vimentin, Fibronectin and N-cadherin, suppression of E-cadherin, and enhanced cell migration and invasion capacities. Knockdown of EDG2 reversed the EMT phenotype in HCC cells. The in vivo experiments also identified the oncogenic role of EDG2 on HCC growth. The mechanistic studies elucidated that EDG2 enhanced mTOR phosphorylation via PI3K/AKT signaling and consequently induced EMT of HCC cells. Moreover, EDG2 was found to promote cell viability and proliferation of HCC cell through PI3K/AKT/mTOR/Skp2/p27Kip1 signaling. Taken together, the data here demonstrated EDG2 was a potential predictor for HCC patients receiving liver resection and accelerated HCC progression via regulating EMT driven by PI3K/AKT/mTOR signaling.
Collapse
Affiliation(s)
- Meng Xu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Zhikui Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Cong Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Bowen Yao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Xin Zheng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| |
Collapse
|
6
|
Liao YT, Hsieh MH, Yang YH, Wang YC, Tsai CS, Chen VCH, Gossop M. Association between depression and enterovirus infection: A nationwide population-based cohort study. Medicine (Baltimore) 2017; 96:e5983. [PMID: 28151890 PMCID: PMC5293453 DOI: 10.1097/md.0000000000005983] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Enterovirus (EV) infection is common among children and adolescents. Few studies have investigated the relationship of depression after EV infection. This study explores an association between EV infection and subsequent depression in children and adolescents and assesses the risk of depression after EV infection with central nervous system involvement in a nationwide population-based retrospective cohort.A random sample of 1,000,000 people was derived from Taiwan National Health Insurance Research Database and we identified enrollees less than 18 years with EV infection before 2005 and followed up until December 2009. A total 48,010 cases with EV infection and 48,010 healthy controls matched for sex, age, and residence were obtained. Association between EV infection and depression risk was assessed by Cox proportional hazards models to determine the hazard ratios (HRs) and confidence intervals (CIs). We further stratified EV infection into with central nervous system (CNS) involvement and without and compared with matched cohort.Children and adolescents with EV infection had no elevated risk of depression compared with healthy controls (adjusted HR, aHR = 1.00, 95% CI: 0.83-1.21). However, CNS EV infection was associated with increased risk of depression (aHR = 1.62, 95% CI: 1.02-2.58) in the fully adjusted Cox regression model.To the best of our knowledge, this is the first study investigating depression in children and adolescents with CNS EV infection. The results suggested that children and adolescents with CNS EV infection were a susceptible group for subsequent depressive disorders.
Collapse
Affiliation(s)
- Yin-To Liao
- Department of Psychiatry, Chung Shan Medical University Hospital
- Department of Psychiatry, School of Medicine, Chung Shan Medical University
| | - Ming-Hong Hsieh
- Department of Psychiatry, Chung Shan Medical University Hospital
- Department of Psychiatry, School of Medicine, Chung Shan Medical University
| | - Yao-Hsu Yang
- Institute of Occupational Medicine and Industrial Hygiene, National Taiwan University, Taipei
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Puzi City, Chiayi
| | | | - Ching-Shu Tsai
- Chang Gung Medical Foundation, Chiayi Chang Gung Memorial Hospital Chiayi
- Chang Gung University, Taoyuan, Taiwan
| | - Vincent Chin-Hung Chen
- Chang Gung Medical Foundation, Chiayi Chang Gung Memorial Hospital Chiayi
- Chang Gung University, Taoyuan, Taiwan
| | | |
Collapse
|
7
|
SHEN BO, JIANG YINGJIE, CHEN YUANRAN, ZHENG HUICONG, ZENG WEI, LI YUYUAN, YIN AOXIAN, NIE YUQIANG. Expression and inhibitory role of TIMP-3 in hepatocellular carcinoma. Oncol Rep 2016; 36:494-502. [DOI: 10.3892/or.2016.4818] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 03/04/2016] [Indexed: 11/06/2022] Open
|
8
|
Xiang M, Su H, Hong Z, Yang T, Shu G. Chemical composition of total flavonoids from Polygonum amplexicaule and their pro-apoptotic effect on hepatocellular carcinoma cells: Potential roles of suppressing STAT3 signaling. Food Chem Toxicol 2015; 80:62-71. [PMID: 25754378 DOI: 10.1016/j.fct.2015.02.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 02/03/2015] [Accepted: 02/23/2015] [Indexed: 12/28/2022]
Abstract
Polygonum amplexicaule D. Don var. sinense Forb (P. amplexicaule) is a medical plant traditionally used in the treatment of malignant diseases including hepatocellular carcinoma (HCC), but the scientific basis underlying its anti-HCC activity remains poorly understood. Here, we explored the chemical profile of total flavonoids from P. amplexicaule (TFPA). Nine compounds that constituted the major components of TFPA were separated and identified. Further investigations revealed that TFPA dose-dependently induced HepG2, Huh-7 and H22 HCC cell apoptosis. In HCC cells, TFPA dramatically inhibited the transcriptional activity of signal transducer and activator of transcription 3 (STAT3). In addition, TFPA increased the expression of SHP-1, a protein tyrosine phosphatase catalyzing STAT3 dephosphorylation, in HCC cells. Animal studies showed that TFPA considerably provoked transplanted H22 cell apoptosis with undetectable toxicological effects on tumor-bearing mice. Consistently, TFPA dose-dependently inhibited transcriptional activity of STAT3 in transplanted tumor tissues. This study collectively demonstrated that TFPA has the capacity of inducing HCC cell apoptosis both in vitro and in vivo with low toxic effects on normal hepatocytes and vital organs of tumor-bearing mice. Suppressing STAT3 signaling is implicated in TFPA-mediated HCC cell apoptosis.
Collapse
Affiliation(s)
- Meixian Xiang
- College of Pharmacy, South-Central University for Nationalities, Wuhan, China
| | - Hanwen Su
- Renmin Hospital, Wuhan University, Wuhan, China
| | - Zongguo Hong
- College of Pharmacy, South-Central University for Nationalities, Wuhan, China
| | - Tianming Yang
- College of Pharmacy, South-Central University for Nationalities, Wuhan, China
| | - Guangwen Shu
- College of Pharmacy, South-Central University for Nationalities, Wuhan, China.
| |
Collapse
|
9
|
Guo J, Ma Z, Ma Q, Wu Z, Fan P, Zhou X, Chen L, Zhou S, Goltzman D, Miao D, Wu E. 1, 25(OH)₂D₃ inhibits hepatocellular carcinoma development through reducing secretion of inflammatory cytokines from immunocytes. Curr Med Chem 2014; 20:4131-41. [PMID: 23992309 DOI: 10.2174/09298673113209990248] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 04/02/2013] [Accepted: 04/03/2013] [Indexed: 12/31/2022]
Abstract
Epidemiological and clinical studies have indicated that low vitamin D activity is not only associated with an increased cancer risk and a more aggressive tumor growth, but also connected with an aggravated liver damage caused by chronic inflammation. Meanwhile, increasing evidence has demonstrated that 1,25(OH)₂D₃ (the most biologically active metabolite of vitamin D) can inhibit inflammatory response in some chronic inflammatory associated cancer, which is considered to have the anti-tumor potency. However, the interaction between 1,25(OH)₂D₃ and inflammation during hepatocellular carcinoma (HCC) initiation and progression is not yet clear. Here, we report an anti-tumorigenesis effect of 1,25(OH)₂D₃ via decreasing inflammatory cytokine secretion in HCC and hypothesize the possible underlying mechanism. Firstly, we show that the enhanced tumor growth is associated with elevated inflammatory cytokine IL-6 and TNF-α in 1α(OH)ase gene-knockout mice. Secondly, 1,25(OH)₂D₃ can inhibit vitamin D receptor (VDR) shRNA interfered tumor cell growth through decreasing inflammatory cytokine secretion in vitro and in vivo. Finally, using p27(kip1) gene knock-out mouse model, we demonstrate that the effect of 1,25(OH)₂D₃ in inhibiting immune cell related inflammatory cytokine secretion, exerts in a p27(kip1) gene dependent way. Collectively, 1,25(OH)₂D₃ inhibits HCC development through up-regulating the expression of p27(kip1) in immune cell and reducing inflammatory cytokine production.
Collapse
Affiliation(s)
- Jian Guo
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an 710061, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Svinka J, Mikulits W, Eferl R. STAT3 in hepatocellular carcinoma: new perspectives. Hepat Oncol 2014; 1:107-120. [PMID: 30190945 PMCID: PMC6114013 DOI: 10.2217/hep.13.7] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Chronic liver damage and inflammation are strong promoters of hepatocellular carcinoma (HCC) formation. HCC cells communicate with inflammatory and stromal cells via cytokine/chemokine signals. These heterotypic interactions inhibit immunologic anticancer activities and promote protumorigenic activities, such as angiogenesis or invasiveness. STAT3 mediates several reciprocal interactions between liver cancer cells and stromal cells and modulates preconditions of tumor formation such as chronic inflammation. Therefore, activation of STAT3 is considered as a tumor-promoting event in HCC formation. However, the oncogenic role of STAT3 in cancers has been challenged by several reports that suggest a tumor-suppressive activity. Here we discuss tumor-promoting and tumor-suppressive effects of cytokine-activated STAT3 in HCC.
Collapse
Affiliation(s)
- Jasmin Svinka
- Medical University Vienna & Comprehensive Cancer Center, Institute for Cancer Research, Borschkegasse 8a, A-1090 Vienna, Austria
| | - Wolfgang Mikulits
- Medical University Vienna & Comprehensive Cancer Center, Institute for Cancer Research, Borschkegasse 8a, A-1090 Vienna, Austria
| | - Robert Eferl
- Medical University Vienna & Comprehensive Cancer Center, Institute for Cancer Research, Borschkegasse 8a, A-1090 Vienna, Austria
| |
Collapse
|
11
|
Inhibition of tumour cell growth by carnosine: some possible mechanisms. Amino Acids 2013; 46:327-37. [PMID: 24292217 DOI: 10.1007/s00726-013-1627-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 11/20/2013] [Indexed: 10/26/2022]
Abstract
The naturally occurring dipeptide carnosine (β-alanyl-L-histidine) has been shown to inhibit, selectively, growth of transformed cells mediated, at least in part, by depleting glycolytic ATP levels. The mechanism(s) responsible has/have yet to be determined. Here, we discuss a number of probable and/or possible processes which could, theoretically, suppress glycolytic activity which would decrease ATP supply and generation of metabolic intermediates required for continued cell reproduction. Possibilities include effects on (i) glycolytic enzymes, (ii) metabolic regulatory activities, (iii) redox biology, (iv) protein glycation, (v) glyoxalase activity, (vi) apoptosis, (vii) gene expression and (viii) metastasis. It is possible, by acting at various sites that this pluripotent dipeptide may be an example of an endogenous "smart drug".
Collapse
|