1
|
Zhou X, Zhu S, Li J, Mateus A, Williams C, Gilthorpe J, Backman LJ. Mechanical Loading Modulates AMPK and mTOR Signaling in Muscle Cells. J Proteome Res 2024; 23:4286-4295. [PMID: 39213513 PMCID: PMC11459513 DOI: 10.1021/acs.jproteome.4c00242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/14/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Skeletal muscle adaptation to exercise involves various phenotypic changes that enhance the metabolic and contractile functions. One key regulator of these adaptive responses is the activation of AMPK, which is influenced by exercise intensity. However, the mechanistic understanding of AMPK activation during exercise remains incomplete. In this study, we utilized an in vitro model to investigate the effects of mechanical loading on AMPK activation and its interaction with the mTOR signaling pathway. Proteomic analysis of muscle cells subjected to static loading (SL) revealed distinct quantitative protein alterations associated with RNA metabolism, with 10% SL inducing the most pronounced response compared to lower intensities of 5% and 2% as well as the control. Additionally, 10% SL suppressed RNA and protein synthesis while activating AMPK and inhibiting the mTOR pathway. We also found that SRSF2, necessary for pre-mRNA splicing, is regulated by AMPK and mTOR signaling, which, in turn, is regulated in an intensity-dependent manner by SL with the highest expression in 2% SL. Further examination showed that the ADP/ATP ratio was increased after 10% SL compared to the control and that SL induced changes in mitochondrial biogenesis. Furthermore, Seahorse assay results indicate that 10% SL enhances mitochondrial respiration. These findings provide novel insights into the cellular responses to mechanical loading and shed light on the intricate AMPK-mTOR regulatory network in muscle cells.
Collapse
Affiliation(s)
- Xin Zhou
- Department
of Medical and Translational Biology, Faculty of Medicine, Umeå University, 90187 Umeå, Sweden
| | - Shaochun Zhu
- Department
of Chemistry, Faculty of Medicine, Umeå
University, 90187 Umeå, Sweden
| | - Junhong Li
- Department
of Medical and Translational Biology, Faculty of Medicine, Umeå University, 90187 Umeå, Sweden
- Section
of Physiotherapy, Department of Community Medicine and Rehabilitation,
Faculty of Medicine, Umeå University, 90187 Umeå, Sweden
| | - Andre Mateus
- Department
of Chemistry, Faculty of Medicine, Umeå
University, 90187 Umeå, Sweden
| | - Chloe Williams
- Department
of Medical and Translational Biology, Faculty of Medicine, Umeå University, 90187 Umeå, Sweden
| | - Jonathan Gilthorpe
- Department
of Medical and Translational Biology, Faculty of Medicine, Umeå University, 90187 Umeå, Sweden
| | - Ludvig J. Backman
- Department
of Medical and Translational Biology, Faculty of Medicine, Umeå University, 90187 Umeå, Sweden
- Section
of Physiotherapy, Department of Community Medicine and Rehabilitation,
Faculty of Medicine, Umeå University, 90187 Umeå, Sweden
| |
Collapse
|
2
|
Suaifan GARY, Alkhawaja B, Shehadeh MB, Sharmaa M, Hor Kuan C, Okechukwu PN. Glucosamine substituted sulfonylureas: IRS-PI3K-PKC-AKT-GLUT4 insulin signalling pathway intriguing agent. RSC Med Chem 2024; 15:695-703. [PMID: 38389876 PMCID: PMC10880904 DOI: 10.1039/d3md00647f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 12/30/2023] [Indexed: 02/24/2024] Open
Abstract
Normally, skeletal muscle accounts for 70-80% of insulin-stimulated glucose uptake in the postprandial hyperglycemia state. Consequently, abnormalities in glucose uptake by skeletal muscle or insulin resistance (IR) are deemed as initial metabolic defects in the pathogenesis of type 2 diabetes mellitus (T2DM). Globally, T2DM is growing in exponential proportion. The majority of T2DM patients are treated with sulfonylureas in combination with other drugs to improve insulin sensitivity. Glycosylated sulfonylureas (sulfonylurea-glucosamine analogues) are modified analogues of sulfonylurea that have been previously reported to possess antidiabetic activity. The aim of this study was to evaluate the impact of glycosylated sulfonylureas on the insulin signalling pathway at the molecular level using L6 skeletal muscle cell (in vitro) and extracted soleus muscle (ex vivo) models. To create an in vitro model, insulin resistance was established utilizing a high insulin-glucose approach in differentiated L6 muscle cells from Rattus norvegicus. Additionally, for the ex vivo model, extracted soleus muscles, adult Sprague-Dawley rats were subjected to a solution containing 25 mmol L-1 glucose and 100 mmol L-1 insulin for 24 hours to induce insulin resistance. After insulin resistance, compounds under investigation and standard medicines (metformin and glimepiride) were tested. The differential expression of PI3K, IRS-1, PKC, AKT2, and GLUT4 genes involved in the insulin signaling pathway was evaluated using qPCR. The evaluated glycosylated sulfonylurea analogues exhibited a significant increase in the gene expression of insulin-dependent pathways both in vitro and ex vivo, confirming the rejuvenation of the impaired insulin signaling pathway genes. Altogether, glycosylated sulfonylurea analogues described in this study represent potential therapeutic anti-diabetic drugs.
Collapse
Affiliation(s)
- Ghadeer A R Y Suaifan
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, The University of Jordan Amman 11942 Jordan
| | - Bayan Alkhawaja
- Faculty of Pharmacy and Medical Sciences, University of Petra Amman 11196 Jordan
| | - Mayadah B Shehadeh
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, The University of Jordan Amman 11942 Jordan
| | - Mridula Sharmaa
- Department of Food and Nutrition, Faculty of Applied Sciences, UCSI University Kuala Lumpur 56000 Malaysia
| | - Chan Hor Kuan
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University Kuala Lumpur 56000 Malaysia
- Faculty of Pharmacy and Medical Sciences, University of Petra Amman 11196 Jordan
| | - Patrick Nwabueze Okechukwu
- Department of Food and Nutrition, Faculty of Applied Sciences, UCSI University Kuala Lumpur 56000 Malaysia
| |
Collapse
|
3
|
Xu K, Liu Q, Huang W, Chu Y, Fan W, Liu J, He Y, Huang F. Promotive Effect of FBXO32 on the Odontoblastic Differentiation of Human Dental Pulp Stem Cells. Int J Mol Sci 2023; 24:ijms24097708. [PMID: 37175415 PMCID: PMC10178205 DOI: 10.3390/ijms24097708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/11/2023] [Accepted: 04/15/2023] [Indexed: 05/15/2023] Open
Abstract
Odontoblastic differentiation of human dental pulp stem cells (hDPSCs) is crucial for the intricate formation and repair processes in dental pulp. Until now, the literature is not able to demonstrate the role of ubiquitination in the odontoblastic differentiation of hDPSCs. This study investigated the role of F-box-only protein 32 (FBXO32), an E3 ligase, in the odontoblastic differentiation of hDPSCs. The mRNA expression profile was obtained from ribonucleic acid sequencing (RNA-Seq) data and analyzed. Immunofluorescence and immunohistochemical staining identify the FBXO32 expression in human dental pulp and hDPSCs. Small-hairpin RNA lentivirus was used for FBXO32 knockdown and overexpression. Odontoblastic differentiation of hDPSCs was determined via alkaline phosphatase activity, Alizarin Red S staining, and mRNA and protein expression levels were detected using real-time quantitative polymerase chain reaction and Western blotting. Furthermore, subcutaneous transplantation in nude mice was performed to evaluate the role of FBXO32 in mineralization in vivo using histological analysis. FBXO32 expression was upregulated in the odontoblast differentiated hDPSCs as evidenced by RNA-Seq data analysis. FBXO32 was detected in hDPSCs and the odontoblast layer of the dental pulp. Increased FBXO32 expression in hDPSCs during odontoblastic differentiation was confirmed. Through lentivirus infection method, FBXO32 downregulation in hDPSCs attenuated odontoblastic differentiation in vitro and in vivo, whereas FBXO32 upregulation promoted the hDPSCs odontoblastic differentiation, without affecting proliferation and migration. This study demonstrated, for the first time, the promotive role of FBXO32 in regulating the odontoblastic differentiation of hDPSCs, thereby providing novel insights into the regulatory mechanisms during odontoblastic differentiation in hDPSCs.
Collapse
Affiliation(s)
- Ke Xu
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Qin Liu
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Wushuang Huang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Yanhao Chu
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Wenguo Fan
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Jiawei Liu
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Yifan He
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Fang Huang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| |
Collapse
|
4
|
Prateeksha, Yusuf MA, Singh BN, Sudheer S, Kharwar RN, Siddiqui S, Abdel-Azeem AM, Fernandes Fraceto L, Dashora K, Gupta VK. Chrysophanol: A Natural Anthraquinone with Multifaceted Biotherapeutic Potential. Biomolecules 2019; 9:E68. [PMID: 30781696 PMCID: PMC6406798 DOI: 10.3390/biom9020068] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 02/05/2019] [Accepted: 02/07/2019] [Indexed: 12/16/2022] Open
Abstract
Chrysophanol is a unique anthraquinone having broad-spectrum therapeutic potential along with ecological importance. It is the first polyketide that has been reported to be biosynthesized in an organism-specific manner. The traditional Chinese and Korean medicinal systems provide evidence of the beneficial effects of chrysophanol on human health. The global distribution of chrysophanol encountered in two domains of life (bacteria and eukaryota) has motivated researchers to critically evaluate the properties of this compound. A plethora of literature is available on the pharmacological properties of chrysophanol, which include anticancer, hepatoprotective, neuroprotective, anti-inflammatory, antiulcer, and antimicrobial activities. However, the pharmacokinetics and toxicity studies on chrysophanol demand further investigations for it to be used as a drug. This is the first comprehensive review on the natural sources, biosynthetic pathways, and pharmacology of chrysophanol. Here we reviewed recent advancements made on the pharmacokinetics of the chrysophanol. Additionally, we have highlighted the knowledge gaps of its mechanism of action against diseases and toxicity aspects.
Collapse
Affiliation(s)
- Prateeksha
- Department of Biosciences, Integral University, Lucknow-226026, Uttar Pradesh, India;
- Herbal Nanobiotechnology Lab, Pharmacology Division, CSIR-National Botanical Research Institute, Lucknow-226001, Uttar Pradesh, India
| | - Mohd Aslam Yusuf
- Department of Bioengineering, Integral University, Lucknow-226016, Uttar Pradesh, India;
| | - Brahma N. Singh
- Herbal Nanobiotechnology Lab, Pharmacology Division, CSIR-National Botanical Research Institute, Lucknow-226001, Uttar Pradesh, India
| | - Surya Sudheer
- Department of Chemistry and Biotechnology, ERA Chair of Green Chemistry, Tallinn University of Technology, 12618 Tallinn, Estonia;
| | - Ravindra N. Kharwar
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi-221005, Uttar Pradesh, India;
| | - Saba Siddiqui
- Integral Institute of Agricultural Science and Technology (IIAST), Integral University, Lucknow-226026, Uttar Pradesh, India;
| | - Ahmed M. Abdel-Azeem
- Botany Department, Faculty of Science, University of Suez Canal, Ismailia 41522, Egypt;
| | - Leonardo Fernandes Fraceto
- Institute of Science and Technology of Sorocaba, São Paulo State University–Unesp, Sorocaba–São Paulo 18087-180, Brazil;
| | - Kavya Dashora
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India;
| | - Vijai K. Gupta
- Department of Chemistry and Biotechnology, ERA Chair of Green Chemistry, Tallinn University of Technology, 12618 Tallinn, Estonia;
| |
Collapse
|
5
|
Zhang F, Li Y, Chen L, Cheng J, Wu P, Chu W, Zhang J. Characterization of the Ubiquitin Specific Protease (USP) family members in the fast and slow muscle fibers from Chinese perch (Siniperca chuatsi). Gene 2018; 677:1-9. [PMID: 30030202 DOI: 10.1016/j.gene.2018.07.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 07/02/2018] [Accepted: 07/05/2018] [Indexed: 11/16/2022]
Abstract
Skeletal muscle atrophy results from fasting, disuse and other systemic diseases. Muscle atrophy is associated with increased muscle protein degradation via the Ubiquitin proteasome system (UPS). The Ubiquitin Specific Proteases (USPs), also known as deubiquitinating enzymes, regulates a wide variety of cellular processes in skeletal muscle. In our study, among the 41 members of the USP family identified in the skeletal muscle transcriptome of Chinese perch, 24 USPs were differentially expressed between the fast and slow muscle fibers. The expressional profile of 4 muscle-related USPs (USP10, USP14, USP19, USP45) was investigated in the fast and slow muscle in response to fasting at 4 and 7 days. The results showed that the expression of USP10, USP14 and USP19 was significantly increased in the fast muscle after fasting for 4 days and 7 days. But only the USP10 and USP14 had significantly increased at 7 days of fasting in the slow muscle. The expression of MAFbx and MuRF1 up-regulated and major myofibrillar genes down-regulated, indicating that all of these four USPs are involved in the protein degradation of the fast and slow muscle.
Collapse
Affiliation(s)
- FangLiang Zhang
- Department of Bioengineering and Environmental Science, Changsha University, Changsha, Hunan 410003, China.
| | - YuLong Li
- Department of Bioengineering and Environmental Science, Changsha University, Changsha, Hunan 410003, China
| | - Lin Chen
- Department of Bioengineering and Environmental Science, Changsha University, Changsha, Hunan 410003, China
| | - Jia Cheng
- Department of Bioengineering and Environmental Science, Changsha University, Changsha, Hunan 410003, China
| | - Ping Wu
- Department of Bioengineering and Environmental Science, Changsha University, Changsha, Hunan 410003, China
| | - WuYing Chu
- Department of Bioengineering and Environmental Science, Changsha University, Changsha, Hunan 410003, China; Collaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan Province, Changde 415000, China.
| | - JianShe Zhang
- Department of Bioengineering and Environmental Science, Changsha University, Changsha, Hunan 410003, China; Collaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan Province, Changde 415000, China.
| |
Collapse
|
6
|
Ohtsubo H, Sato Y, Suzuki T, Mizunoya W, Nakamura M, Tatsumi R, Ikeuchi Y. APOBEC2 negatively regulates myoblast differentiation in muscle regeneration. Int J Biochem Cell Biol 2017; 85:91-101. [DOI: 10.1016/j.biocel.2017.02.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 02/06/2017] [Accepted: 02/07/2017] [Indexed: 01/08/2023]
|
7
|
Xia XD, Zhou Z, Yu XH, Zheng XL, Tang CK. Myocardin: A novel player in atherosclerosis. Atherosclerosis 2017; 257:266-278. [DOI: 10.1016/j.atherosclerosis.2016.12.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 11/29/2016] [Accepted: 12/01/2016] [Indexed: 12/21/2022]
|
8
|
Enoki Y, Watanabe H, Arake R, Sugimoto R, Imafuku T, Tominaga Y, Ishima Y, Kotani S, Nakajima M, Tanaka M, Matsushita K, Fukagawa M, Otagiri M, Maruyama T. Indoxyl sulfate potentiates skeletal muscle atrophy by inducing the oxidative stress-mediated expression of myostatin and atrogin-1. Sci Rep 2016; 6:32084. [PMID: 27549031 PMCID: PMC4994088 DOI: 10.1038/srep32084] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 08/02/2016] [Indexed: 02/07/2023] Open
Abstract
Skeletal muscle atrophy, referred to as sarcopenia, is often observed in chronic kidney disease (CKD) patients, especially in patients who are undergoing hemodialysis. The purpose of this study was to determine whether uremic toxins are involved in CKD-related skeletal muscle atrophy. Among six protein-bound uremic toxins, indole containing compounds, indoxyl sulfate (IS) significantly inhibited proliferation and myotube formation in C2C12 myoblast cells. IS increased the factors related to skeletal muscle breakdown, such as reactive oxygen species (ROS) and inflammatory cytokines (TNF-α, IL-6 and TGF-β1) in C2C12 cells. IS also enhanced the production of muscle atrophy-related genes, myostatin and atrogin-1. These effects induced by IS were suppressed in the presence of an antioxidant or inhibitors of the organic anion transporter and aryl hydrocarbon receptor. The administered IS was distributed to skeletal muscle and induced superoxide production in half-nephrectomized (1/2 Nx) mice. The chronic administration of IS significantly reduced the body weights accompanied by skeletal muscle weight loss. Similar to the in vitro data, IS induced the expression of myostatin and atrogin-1 in addition to increasing the production of inflammatory cytokines by enhancing oxidative stress in skeletal muscle. These data suggest that IS has the potential to accelerate skeletal muscle atrophy by inducing oxidative stress-mediated myostatin and atrogin-1 expression.
Collapse
Affiliation(s)
- Yuki Enoki
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Japan
| | - Hiroshi Watanabe
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Japan.,Center for Clinical Pharmaceutical Sciences, School of Pharmacy, Kumamoto University, Kumamoto, Japan
| | - Riho Arake
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Japan
| | - Ryusei Sugimoto
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Japan
| | - Tadashi Imafuku
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Japan
| | - Yuna Tominaga
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Japan
| | - Yu Ishima
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Japan.,Center for Clinical Pharmaceutical Sciences, School of Pharmacy, Kumamoto University, Kumamoto, Japan
| | - Shunsuke Kotani
- Department of Organic Chemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Makoto Nakajima
- Department of Organic Chemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Motoko Tanaka
- Department of Nephrology, Akebono Clinic, Kumamoto, Japan
| | | | - Masafumi Fukagawa
- Division of Nephrology, Endocrinology and Metabolism, Tokai University School of Medicine, Kanagawa, Japan
| | - Masaki Otagiri
- Faculty of Pharmaceutical Sciences, Kumamoto, Japan.,DDS Research Institute, Sojo University, Kumamoto, Japan
| | - Toru Maruyama
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Japan.,Center for Clinical Pharmaceutical Sciences, School of Pharmacy, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
9
|
Singh P, Li D, Gui Y, Zheng XL. Atrogin-1 Increases Smooth Muscle Contractility Through Myocardin Degradation. J Cell Physiol 2016; 232:806-817. [PMID: 27403897 DOI: 10.1002/jcp.25485] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 07/11/2016] [Indexed: 01/25/2023]
Abstract
Atrogin-1, an E3 ligase present in skeletal, cardiac and smooth muscle, down-regulates myocardin protein during skeletal muscle differentiation. Myocardin, the master regulator of smooth muscle cell (SMC) differentiation, induces expression of smooth muscle marker genes through its association with serum response factor (SRF), which binds to the CArG box in the promoter. Myocardin undergoes ubiquitylation and proteasomal degradation. Evidence suggests that proteasomal degradation of myocardin is critical for myocardin to exert its transcriptional activity, but there is no report about the E3 ligase responsible for myocardin ubiquitylation and subsequent transactivation. Here, we showed that overexpression of atrogin-1 increased contractility of cultured SMCs and mouse aortic tissues in organ culture. Overexpression of dominant-negative myocardin attenuated the increase in SMC contractility induced by atrogin-1. Atrogin-1 overexpression increased expression of the SM contractile markers while downregulated expression of myocardin protein but not mRNA. Atrogin-1 also ubiquitylated myocardin for proteasomal degradation in vascular SMCs. Deletion studies showed that atrogin-1 directly interacted with myocardin through its amino acids 284-345. Immunostaining studies showed nuclear localization of atrogin-1, myocardin, and the Rpt6 subunit of the 26S proteasome. Atrogin-1 overexpression not only resulted in degradation of myocardin but also increased recruitment of RNA Polymerase II onto the promoters of myocardin target genes. In summary, our results have revealed the roles for atrogin-1 in the regulation of smooth muscle contractility through enhancement of myocardin ubiquitylation/degradation and its transcriptional activity. J. Cell. Physiol. 232: 806-817, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Pavneet Singh
- Department of Biochemistry and Molecular Biology, Smooth Muscle Research Group, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Dong Li
- Department of Physiology and Pharmacology, Smooth Muscle Research Group, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Yu Gui
- Department of Physiology and Pharmacology, Smooth Muscle Research Group, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Xi-Long Zheng
- Department of Biochemistry and Molecular Biology, Smooth Muscle Research Group, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
10
|
Abstract
Myocardin (MYOCD) is a potent transcriptional coactivator that functions primarily in cardiac muscle and smooth muscle through direct contacts with serum response factor (SRF) over cis elements known as CArG boxes found near a number of genes encoding for contractile, ion channel, cytoskeletal, and calcium handling proteins. Since its discovery more than 10 years ago, new insights have been obtained regarding the diverse isoforms of MYOCD expressed in cells as well as the regulation of MYOCD expression and activity through transcriptional, post-transcriptional, and post-translational processes. Curiously, there are a number of functions associated with MYOCD that appear to be independent of contractile gene expression and the CArG-SRF nucleoprotein complex. Further, perturbations in MYOCD gene expression are associated with an increasing number of diseases including heart failure, cancer, acute vessel disease, and diabetes. This review summarizes the various biological and pathological processes associated with MYOCD and offers perspectives to several challenges and future directions for further study of this formidable transcriptional coactivator.
Collapse
Affiliation(s)
- Joseph M Miano
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| |
Collapse
|
11
|
Ciarapica R, De Salvo M, Carcarino E, Bracaglia G, Adesso L, Leoncini PP, Dall'Agnese A, Walters ZS, Verginelli F, De Sio L, Boldrini R, Inserra A, Bisogno G, Rosolen A, Alaggio R, Ferrari A, Collini P, Locatelli M, Stifani S, Screpanti I, Rutella S, Yu Q, Marquez VE, Shipley J, Valente S, Mai A, Miele L, Puri PL, Locatelli F, Palacios D, Rota R. The Polycomb group (PcG) protein EZH2 supports the survival of PAX3-FOXO1 alveolar rhabdomyosarcoma by repressing FBXO32 (Atrogin1/MAFbx). Oncogene 2014; 33:4173-84. [PMID: 24213577 DOI: 10.1038/onc.2013.471] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 09/11/2013] [Accepted: 09/30/2013] [Indexed: 12/20/2022]
Abstract
The Polycomb group (PcG) proteins regulate stem cell differentiation via the repression of gene transcription, and their deregulation has been widely implicated in cancer development. The PcG protein Enhancer of Zeste Homolog 2 (EZH2) works as a catalytic subunit of the Polycomb Repressive Complex 2 (PRC2) by methylating lysine 27 on histone H3 (H3K27me3), a hallmark of PRC2-mediated gene repression. In skeletal muscle progenitors, EZH2 prevents an unscheduled differentiation by repressing muscle-specific gene expression and is downregulated during the course of differentiation. In rhabdomyosarcoma (RMS), a pediatric soft-tissue sarcoma thought to arise from myogenic precursors, EZH2 is abnormally expressed and its downregulation in vitro leads to muscle-like differentiation of RMS cells of the embryonal variant. However, the role of EZH2 in the clinically aggressive subgroup of alveolar RMS, characterized by the expression of PAX3-FOXO1 oncoprotein, remains unknown. We show here that EZH2 depletion in these cells leads to programmed cell death. Transcriptional derepression of F-box protein 32 (FBXO32) (Atrogin1/MAFbx), a gene associated with muscle homeostasis, was evidenced in PAX3-FOXO1 RMS cells silenced for EZH2. This phenomenon was associated with reduced EZH2 occupancy and H3K27me3 levels at the FBXO32 promoter. Simultaneous knockdown of FBXO32 and EZH2 in PAX3-FOXO1 RMS cells impaired the pro-apoptotic response, whereas the overexpression of FBXO32 facilitated programmed cell death in EZH2-depleted cells. Pharmacological inhibition of EZH2 by either 3-Deazaneplanocin A or a catalytic EZH2 inhibitor mirrored the phenotypic and molecular effects of EZH2 knockdown in vitro and prevented tumor growth in vivo. Collectively, these results indicate that EZH2 is a key factor in the proliferation and survival of PAX3-FOXO1 alveolar RMS cells working, at least in part, by repressing FBXO32. They also suggest that the reducing activity of EZH2 could represent a novel adjuvant strategy to eradicate high-risk PAX3-FOXO1 alveolar RMS.
Collapse
Affiliation(s)
- R Ciarapica
- Department of Oncohematology, Ospedale Pediatrico Bambino Gesù, IRCCS, Roma, Italy
| | - M De Salvo
- Department of Oncohematology, Ospedale Pediatrico Bambino Gesù, IRCCS, Roma, Italy
| | | | - G Bracaglia
- Department of Oncohematology, Ospedale Pediatrico Bambino Gesù, IRCCS, Roma, Italy
| | - L Adesso
- Department of Oncohematology, Ospedale Pediatrico Bambino Gesù, IRCCS, Roma, Italy
| | - P P Leoncini
- Department of Oncohematology, Ospedale Pediatrico Bambino Gesù, IRCCS, Roma, Italy
| | | | - Z S Walters
- Sarcoma Molecular Pathology, Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, Sutton, UK
| | - F Verginelli
- Department of Oncohematology, Ospedale Pediatrico Bambino Gesù, IRCCS, Roma, Italy
| | - L De Sio
- Department of Oncohematology, Ospedale Pediatrico Bambino Gesù, IRCCS, Roma, Italy
| | - R Boldrini
- Department of Pathology, Ospedale Pediatrico Bambino Gesù, IRCCS, Roma, Italy
| | - A Inserra
- Department of Surgery, Ospedale Pediatrico Bambino Gesù, IRCCS, Roma, Italy
| | - G Bisogno
- Department of Pediatrics, Oncohematology Unit, University of Padova, Padova, Italy
| | - A Rosolen
- Department of Pediatrics, Oncohematology Unit, University of Padova, Padova, Italy
| | - R Alaggio
- Medicine DIMED, Pathology Unit, University of Padova, Padova, Italy
| | - A Ferrari
- Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - P Collini
- Anatomic Pathology Unit 2, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - M Locatelli
- Scientific Directorate, Ospedale Pediatrico Bambino Gesù, IRCCS, Roma, Italy
| | - S Stifani
- Centre for Neuronal Survival, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - I Screpanti
- Department of Molecular Medicine, Sapienza University, Roma, Italy
| | - S Rutella
- Department of Oncohematology, Ospedale Pediatrico Bambino Gesù, IRCCS, Roma, Italy
| | - Q Yu
- Cancer Therapeutics and Stratified Oncology, Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore
| | - V E Marquez
- Chemical Biology Laboratory, Frederick National Laboratory for Cancer Research, CCR, National Cancer Institute, NIH, Frederick, MD, USA
| | - J Shipley
- Sarcoma Molecular Pathology, Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, Sutton, UK
| | - S Valente
- Istituto Pasteur, Fondazione Cenci Bolognetti, Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza University, Roma, Italy
| | - A Mai
- Istituto Pasteur, Fondazione Cenci Bolognetti, Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza University, Roma, Italy
| | - L Miele
- Cancer Institute, University of Mississippi Medical Center, Jackson, MS, USA
| | - P L Puri
- 1] IRCCS Fondazione Santa Lucia, Roma, Italy [2] Muscle Development and Regeneration Program, Sanford-Burnham Medical Research Institute, La Jolla, CA, USA
| | - F Locatelli
- 1] Department of Oncohematology, Ospedale Pediatrico Bambino Gesù, IRCCS, Roma, Italy [2] Dipartimento di Scienze Pediatriche, Università di Pavia, Pavia, Italy
| | - D Palacios
- IRCCS Fondazione Santa Lucia, Roma, Italy
| | - R Rota
- Department of Oncohematology, Ospedale Pediatrico Bambino Gesù, IRCCS, Roma, Italy
| |
Collapse
|
12
|
Zheng XL. Myocardin and smooth muscle differentiation. Arch Biochem Biophys 2014; 543:48-56. [DOI: 10.1016/j.abb.2013.12.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 12/15/2013] [Accepted: 12/18/2013] [Indexed: 01/08/2023]
|